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ABSTRACT Precise measurement of mechanical properties of living cells is important in under-
standing their mechanics-biology relations. In this study, we adopted the atomic force microscope
to measure the creep deformation and stress relaxation of six different human cell lines. We exam-
ined whether the measured creep and relaxation trajectories satisfy a verification relation derived
based on the linear viscoelastic theory. We compared the traditional spring-dashpot and the newly
developed power-law-type constitutive relations in fitting the experimental measurements. We
found that the human normal liver (L02), hepatic cancer (HepG2), hepatic stellate (LX2) and
gastric cancer (NCI-N87) cell lines are linear viscoelastic materials, and human normal gastric
(GES-1) and gastric cancer (SGC7901) cell lines are nonlinear due to failing in satisfying the ver-
ification relation for linear viscoelastic theory. The three-parameter power-law-type constitutive
relation can fit the experimental measurements better than that of the five-parameter classical
spring-dashpot.
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1. Introduction
Living cells are soft and complex materials with cytoskeletons continuously subjected to highly

dynamic remodeling. Their mechanical properties have been found to be related to various cellular
physiology behaviors, including cell locomotion [1], differentiation [2], adhesion [3, 4] and nanoparticle
endocytosis [5–7]. In addition, it has been widely revealed that many human diseases also have close
relationships with the mechanical properties of corresponding cells [8–13]. For example, the malaria-
infected red blood cells can become stiffer and sticky, which are unfavorable for the oxygen transport,
eventually leading to severe anemia, coma or even death [12]. Therefore, precise measurement of the
mechanical properties of living cells can be very crucial for diagnosing human disease and better
understanding biological processes.

Quantitative measurement of material properties of living cells is usually difficult due to the facts
of their low stiffness, small size and severe thermal fluctuations. Despite these difficulties, a series
of experimental efforts have been conducted to probe the mechanical properties of living cells by
using various techniques, including the atomic force microscopy (AFM) [14–18], magnetic twisting
cytometry [19], magnetic or optical tweezers [20], microplate rheometer [21] and particle tracking
microrheology [22, 23]. In these measurements, indentation techniques based on the AFM were most
popularly adopted. As long as the force–indentation curves are measured by using the AFM, the
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Hertz contact calibration model based on the isotropic elastic theory is usually introduced to fit them.
Material constants of cells are determined as fitting parameters [14–17]. However, as cells are complex
living materials, thermal fluctuations and cytoskeleton remodeling often enable them to exhibit both
solid-like property of elasticity and fluid-like behavior of viscidity. Usually, under such a situation,
the material constants of cells cannot be uniquely determined by simply using the elastic constitutive
relation in the AFM measurements. For example, it has been reported that the Young’s moduli of two
types of breast cancer cells exhibit strong dependence on loading rates in the AFM experiments [17].

There have been many studies attempting to determine the viscoelastic property of cells in terms
of the traditional systems of Hookean springs and Newtonian viscous dashpots [24, 25]. However, the
cytoskeletons of cells are complex polymer networks comprised of polymers with randomly distributed
lengths, bending rigidities, orientations and entanglement densities, which usually make the charac-
teristic time scales of creep and relaxation determined from exponential decays widely distributed and
infinite in number. We can imagine that the spring-dashpot-type models of viscoelasticity for cells
cannot be accurate unless a sufficient number of elements of springs and dashpots are introduced. For
example, Susana et al. [24] used a spring-dashpot model with five parameters to fit the indentation
curves of MCF-7 cells. Recently, cell-type-specific power-law behaviors have been observed in various
types of cultured cells with different measurement techniques when analyzed over certain time scales
[21, 26]. Although such a power-law treatment seems capable of capturing the essential nature of living
cells under indentation, it is still far from complete in facilitating unique viscoelastic constitutive rela-
tions for general living cells. As has been pointed out by Bu et al. [27], there exist two critical issues
in determining the linear constitutive relations of the cells. The first one is that both the behaviors of
deformation creep and stress relaxation of a cell should be measured. The second one is that a con-
volution relation between the measured creep compliance and relaxation modulus should be verified
so that whether or not the cell is a linear viscoelastic material can be justified. The reason for such
verification is that cells as materials are generally nonlinear, although most of them are nearly linear
over certain ranges of some variables of stress, strain, time and temperature. Only after the cells have
been confirmed to be linear viscoelastic materials, the constitutive relation and the material constants
can be constructed and extracted in terms of the measured creep compliance and relaxation modulus.

In spite of the progresses mentioned above, so far, understanding is still poor in how the constitutive
relation of viscoelasticity of each specific type of cells can be precisely determined. In this study, we
focus on the measurements of deformation creep and force relaxation trajectories of six different human
cell lines by using the technique of AFM indentation. From these trajectories, we determine the creep
compliance and relaxation modulus of each cell line by using the classical spring-dashpot and the power-
law models, respectively. Then, we determine which model gives the better fit and verify whether the
determined pair of creep compliance and relaxation modulus satisfy the convolution relation derived
from the linear viscoelastic theory, so that we can eventually determine whether or not this cell line is
a linear viscoelastic material, and extract the material constants accordingly.

2. Materials and Methods
2.1. Cell Preparation

The present study focuses on the human normal gastric (GES-1), gastric cancer (SGC7901, NCI-
N87), normal hepatic (L02), hepatic cancer (HepG2), and hepatic stellate (LX2) cell lines. For the
purpose of routine culture, the hepatic cell lines were maintained at 37 ◦C in a 5% CO2 incubator
(Memmert, INE800749L, Germany), and the gastric cell lines were also maintained at the incubator
(HealForce, HF90, China) with the same settings. For the AFM indentation, cells harvested from the
subculture were seeded on sterilized 35-mm petri dishes which would stay in the incubator for 22–25
h prior to each indentation. The medium was changed with normal saline before the AFM indentation
to clear extracellular secretion and dead cells.

2.2. AFM Indentation

A Nanowizard III BioScience AFM (JPK, Germany) was used for the indentation tests. A modified
silicon nitride AFM cantilever (NovaScan, USA) with a spring constant of 0.01 N/m was used to indent
the cells. A 4.5-µm diameter polystyrene bead was adhered to the cantilever tip. The experiments were
conducted at room temperature within 1 h per dish to ensure the bioactivity of cells. For all the AFM
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indentation measurements, the cantilever was always vertically approaching the nucleus areas of the
cells at an ultrafast initial velocity of 50 µm/s. Once a pre-defined force for the creep and pre-defined
height for the relaxation are reached, the approaching is stopped by controlling the position of cantilever
base. Subsequently, under such pre-defined constant force and height, the cantilever was kept in contact
with the cells for 20 s, lying within the experimentally observed time range of about 0.01–100 s [28].

2.3. Deformation Creep and Stress Relaxation of Linear Viscoelastic Materials

We assume living cells as incompressible linear viscoelastic solids. Then, the corresponding consti-
tutive equations can be written as [29]

εij (t) =
∫ t

0

J (t − τ)
dσij (τ)

dτ
dτ , σij (t) =

∫ t

0

Y (t − τ)
dεij (τ)

dτ
dτ (1)

where J (t) is the creep compliance of the viscoelastic body, Y (t) the relaxation modulus, εij and σij

are components of the strain and stress tensors, respectively. Applying the Laplace transform to Eq.
(1) in terms of time, we obtain

ε̂ij = sĴ (s) σ̂ij (s) , σ̂ij = sŶ (s) ε̂ij (s) (2)

where Ĵ (s) , Ŷ (s) , ε̂ij (s) and σ̂ij (s) are the Laplace transforms of J (t), Y (t), εij and σij . From Eq.
(2), we can easily deduce that Ŷ (s) = 1/s2Ĵ (s), which corresponds to the following relation in real
time space as [29] ∫ t

0

J (t − τ) Y (t) dτ = t (3)

We note that Eq. (3) is derived based on the assumption of incompressible linear viscoelasticity. In the
following sections, we will use this relation as the criterion to verify whether the mechanical properties
of a living cell are linear, so that one can know whether or not the experimentally determined creep
compliance and relaxation modulus can be used to construct the constitutive relation.

In practical applications of viscoelastic modeling, there exist many different models to specify the
creep compliance and relaxation modulus in Eq. (1). Traditionally, the constitutive relation of a general
linear viscoelastic solid can be represented by a network of linear combinations of springs and dashpots.
Following such a spring-dashpot representation, the creep compliance and relaxation modulus can be
expressed though a so-called Prony series [30, 31],

J (t) =
1
E

[
1 +

m∑
i=0

ci

(
1 − e−t/τi

)]
, Y (t) = E

⎡
⎣1 −

n∑
j=0

dj

(
1 − e−t/τ ′

j

)⎤
⎦ (4)

where E represents the initial Young’s modulus, τi, τ
′
j are the typical creep and relaxation time scales,

m and n together are related to the number of springs and dashpots in the system. The Prony series
in Eq. (4) are named as the m-th order and n-th order in this study, respectively.

We can see from Eq. (4) that the spring-dashpot type constitutive relations of the viscoelastic
materials usually consist of a finite number of scales of the characteristic times for the creep and
relaxation behaviors. If a large number of terms of Eq. (4) are required in accurately describing the
mechanical behaviors of the materials, e.g., the living cells, then the expressions of Eq. (4) may become
no longer practical as the coefficient of each term can be very hard to uniquely determine. However,
like the soft glass rheology theory derived from soft matter physics, the viscoelastic spectrum of living
cells lacks any distinct timescales that can be identified with discrete structural elements or processes,
meaning that a large number of parameters will be inevitably involved to fit experimental measurements
successfully by using Eq. (4). In order to resolve this problem, we adopt the power-law-type creep
function as follows [29, 32]

J (t) =
1
E

(t/τ0)
β (5)

where E still represents the effective Young’s modulus at time τ0, then 1/E becomes the elastic
compliance, and β characterizes the degree of dissipation or “fluidity” of the viscoelastic material [32–
34]. When β approaches zero, Eq. (5) becomes the inverse of material stiffness, corresponding to the
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Fig. 1. Schematic of the experimental setup for the indentation of a cell using spherical indenter probes

deformation of a purely elastic solid. On the contrary, if β tends to unity, Eq. (5) becomes corresponding
to the deformation of a purely viscous Newtonian fluid. For living cells, the measured β are typically
located between 0.1 and 0.5 [32–34]. For incompressible linear viscoelastic materials, the relation in
Eq. (3) must be satisfied. Then, the corresponding relaxation modulus can be determined from Eq. (3)
as follows [27]

Y (t) =
E

Γ (1 + β) Γ (1 − β)
(t/τ0)

−β (6)

In the following sections, we will use the classical spring-dashpot model represented by Eq. (4), and the
power-law model by Eqs. (5) and (6) to fit the experimental measurements on the creep and relaxation
behaviors.

2.4. AFM Measurements and Data Processing

Figure 1 shows the process of indentation of a single cell, where Z is the vertical height of the probe
base, Z0 the value of Z at the contact point, d the vertical deflection of the cantilever. In addition, we
define δ as the indentation depth and P the indentation force. If the spring constant of the cantilever
is k, then we have

P = kΔd (7)

where

δ = Z0 − Z − Δd, Δd = d − d0 (8)

When the incompressible viscoelastic solid is indented by a rigid sphere with radius R, the relation
between the indentation force and indentation depth can be expressed as [35–37]

P (t) =
8
√

R

3

∫ t

0

Y (t − τ)
∂

[
δ3/2 (τ)

]
∂τ

dτ (9)

or

δ3/2 (t) =
3

8
√

R

∫ t

0

J (t − τ)
∂P (τ)

∂τ
dτ (10)

When a step external force or displacement is applied during the indentation, we have P (t) = P0H (t)
and δ (t) = δ0H (t). Then, Eqs. (9) and (10) become [27, 35]

J (t) =
8
√

R

3P0
δ (t)3/2 and Y (t) =

3

8
√

Rδ
3/2
0

P (t) (11)

Figure 2 shows the time trajectories during the displacement creep and force relaxation experiments
for the AFM indentation of normal hepatic cells. Figure 2a illustrates the creep test, in which the pre-
defined indentation force is sustained at 0.88 nN for 20 s after the rapid loading and before unloading,
while the Z-position decreases from 11.89µm to 5.88µm with time over 20 s. Figure 2b demonstrates
the relaxation test, in which the Z-position is kept at 6.91µm after the rapid loading and before
unloading, while the indentation force decreases from 1.9 nN to 0.7 nN over 20 s.



Vol. 32, No. 5 Y. Bu et al.: Measuring Viscoelastic Properties of Living Cells 603

Fig. 2. Creep and relaxation measurements on normal hepatic cells (L02): a creep of the Z-position of cantilever base
under force-controlled loading; b relaxation of the indentation force under displacement-controlled loading

(a) (b)

(c) (d)

Fig. 3. Normalized indentation depth of a human hepatic cell lines and c human gastric cell lines, and normalized
indentation force of b human hepatic cell lines and d human gastric cell lines, where N is the number of cells used for
the measurements

3. Result and Discussion
We repeated the deformation creep and force relaxation tests for N times by using N different cells

for each cell line. During each test, we recorded the indentation depth δ (t) for the creep test, and the
indentation force P (t) for the relaxation test, as a function of time. We performed ensemble average
over N different trajectories to obtain the mean value of the normalized indentation depth of the 3/2
power,

〈
(δ/δ0)3/2

〉
, and the normalized indentation force, 〈P/P0〉. Figure 3 shows the comparison on〈

(δ/δ0)3/2
〉

and 〈P/P0〉 as functions of time for the hepatic (a, b) and gastric cells (c, d). It can be
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Comparison of experimental results and the corresponding least-square fittings in terms of the power-law and
spring-dashpot models for the creep compliance of a L02, c HepG2, and e LX2, and the relaxation modulus of b L02, d
HepG2, and f LX2

seen from Fig. 3a, b that the L02 and HepG2 cells show similar fluidity, while the LX2 cells appear
more solid-like than them. This is not surprise since LX2 cells are the major cells involved in liver
fibrosis, which is the formation of scar tissue in response to liver damage. However, for the gastric cell
lines in Fig. 3c, d, the creep and relaxation results give contradictory predictions. For example, Fig. 3c
indicates that the fluidity of the three gastric cell lines is in the order of NCI-N87>SGC7901 >GES-1
according to the creep test, while Fig. 3d shows an opposite trend in terms of the relaxation test.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Comparison of experimental results and the corresponding least-square fittings in terms of the power-law and
spring-dashpot models for the creep compliance of a GES-1, c NCI-N87, and e SGC7901, and the relaxation modulus of
b GES-1, d NCI-N87, and f SGC7901

These unreasonable results imply that at least two of the three cell lines are nonlinear materials,
leading to wrong predictions of mechanical properties based on the linear theory. This fact indicates
that one cannot simply use the experimental results of either creep or relaxation to describe the
mechanical properties of living cells without verifying whether the creep compliance and relaxation
modulus satisfy the linearity requirement in Eq. (3).
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Table 1. Least-square fitting parameters for the power-law model, e = 1 × 10−3

1/E (kPa−1) τ0 (s) β

L02 4.643 ± 2e 7.586e ± 0.02e 0.1804 ± 0.4e
HepG2 4.539 ± e 5.808e ± 0.25e 0.1867 ± 1.1e
LX2 3.826 ± e 1.074e ± 0.03e 0.1247 ± 0.4e
GES-1∗ 3.997 ± e 0.1674e ± 0.0019e 0.08696 ± 0.09e
NCI-N87 2.717 ± e 2.3e ± 0.012e 0.1497 ± 0.1e
SGC7901∗ 6.744 ± e 1.4e ± 0.011e 0.125 ± 0.1e

Table 2. Least-square fitting parameters for the spring-dashpot model in terms of the first-order Prony series, e = 1 × 10−3

1/E (kPa−1) c1 τ1 (s)

L02 4.658 ± 7e 2.881 ± 8e 2.87 ± 0.035
HepG2 4.552 ± 6e 2.35 ± 5e 2.085 ± 0.027
LX2 3.834 ± e 1.389 ± 3e 1.316 ± 0.019
GES-1∗ 4.003 ± 4e 1.606 ± 3e 0.9042 ± 0.0149
NCI-N87 2.723 ± 4e 2.624 ± 5e 2.054 ± 0.025
SGC7901∗ 6.761 ± 8e 2.092 ± 4e 1.676 ± 0.023

Table 3. Least-square fitting parameters for the spring-dashpot model in terms of the second-order Prony series, e = 1 × 10−3

1/E (kPa−1) c1 τ1 (s) c2 τ2 (s)

L02 4.644 ± e 1.426 ± 3e 0.2252 ± 2.5e 2.249 ± 8e 13.06 ± 0.12
HepG2 4.541 ± e 1.281 ± 3e 0.2275 ± 2.6e 1.471 ± 4e 9.375 ± 0.079
LX2 3.826 ± e 0.848 ± 2e 0.1521 ± 2e 0.7065 ± 1.9e 7.278 ± 0.064
GES-1∗ 3.997 ± e 1.07 ± 2e 0.121 ± 2e 0.7137 ± 2e 6.979 ± 0.065
NCI-N87 2.716 ± e 1.4 ± 4e 0.2092 ± 3e 1.609 ± 4e 8.388 ± 0.075
SGC7901∗ 6.744 ± e 1.205 ± 3e 0.1585 ± 3e 1.194 ± 3e 8.318 ± 0.063

In order to predict the creep compliance and relaxation modulus from the indentation test for
different cell lines, we consider the ensemble average on both sides of Eq. (11), which gives

〈J (t)〉 =

〈
8
√

R

3P0
δ (t)3/2

〉
and 〈Y (t)〉 =

〈
3

8
√

Rδ
3/2
0

P (t)

〉
(12)

The solid squares in Figs. 4 and 5 show the experimental results on the average values of creep
compliance and relaxation modulus as functions of time for both hepatic (Fig. 4) and gastric (Fig. 5)
cells. These experimental data can be fitted by the classical spring-dashpot model and the power-law-
type model, as shown in Eqs. (4–6). By using the least-square fitting method, Tables 1, 2 and 3 list
the fitting parameters of the power-law and spring-dashpot models in terms of the creep experiments.
Interestingly, the results of fitted effective elastic compliance 1/E for all the cell lines are almost
not affected by the model selection. In contrary, values of the fitted characteristic time scales, τi, in
terms of the spring-dashpot model, even exhibit differences in orders of magnitudes. Further studies are
therefore needed for understanding the relation between such large discrepancies and the corresponding
biological appearances of cells.

Figures 4a, c, e and 5a, c, e show the comparison between the experimental results on creep compli-
ance and the least-square fittings of the experimental data by using the power-law and spring-dashpot
models in terms of the 1st-order and 2nd-order Prony series with the fitting parameters listed in Tables
1, 2 and 3. It can be seen from Figs. 4a, c, e and 5a, c, e that the 3-parameter power-law model can
fit all the experimental results very well, the fitting results based on the 3-parameter spring-dashpot
model show large discrepancies with experiments, and those based on the 5-parameter spring-dashpot
model seem close to the experiments. However, we can see from Figs. 4a, c, e and 5a, c, e that the



Vol. 32, No. 5 Y. Bu et al.: Measuring Viscoelastic Properties of Living Cells 607

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Convolution of the experimentally measured creep compliance and relaxation modulus of a L02, b HepG2, c LX2,
d GES-1, e NCI-N87, and f SGC7901 cells

fitting results based on the 5-parameter spring-dashpot model show unrealistic sharp turning points
or large slops at times close to the corresponding time scales τ1 in Table 3 for each cell line.

Once the creep compliance is obtained by fitting the creep experiments, the relaxation modulus is
obtained by applying the fitting parameters in Tables 1, 2 and 3 to Eqs. (4–6). Figures 4b, d, f and 5b,
d, f show the comparison between the experimental results on relaxation modulus and the theoretical
predictions based on the power-law and spring-dashpot models in terms of the fitting parameters in
Tables 1, 2 and 3. It can be seen from Figs. 4b, d, f and 5b, d, f that the theoretical predictions agree
with the experiments very well for cell lines of L02, HepG2, LX2 and NCI-N87, but not for GES-1
and SGC7901. This comparison implies that L02, HepG2, LX2 and NCI-N87 are linear viscoelastic
materials, and GES-1 and SGC7901 are nonlinear.
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In order to further verify which cell line is linear or nonlinear, we consider the derived relation in
Eq. (3). Once we have experimentally obtained the creep compliance and the relaxation modulus as
functions of time, J (t) and Y (t), we can numerically calculate their convolution, J (t) ∗ Y (t), then
perform ensemble average to obtain < J (t) ∗ Y (t) >. We compare the experimentally determined
〈J (t) ∗ Y (t)〉 with the function t. The linear viscoelasticity of a material needs these two functions to
be identical. Otherwise, the material must be nonlinear. Figure 6 shows such comparisons. We can see
from Fig. 6 that the convolutions, 〈J (t) ∗ Y (t)〉, for the cell lines of L02, HepG2, LX2 and NCI-N87
are close to the function t, but those for GES-1 and SGC7901 show obvious discrepancies. In order to
give a quantitative estimation on such a discrepancy, we calculate (〈J (t) ∗ Y (t) > rlanglet) /t for each
cell line. The values are 7% to 13.1% for L02, − 14.6% to − 4.8% for HepG2, − 2.8% to 2.7% for LX2,
and − 5.5% to 2% for NCI-N87. However, such a value becomes − 54.7% to − 42.6% for GES-1, and
− 38.7% to − 21.7% for SGC7901. Therefore, it can be easily deduced that the cell lines of NCI-N87
and GES-1 show obvious nonlinear material properties. For these two cell lines, one cannot simply use
the linear viscoelastic constitutive relation to predict their mechanical behaviors.

4. Conclusions
In summary, we have used the AFM to measure the deformation creep and force relaxation trajec-

tories of six different human cell lines. Based on these measurements, we have determined the creep
compliance and relaxation modulus of these cells by the technique of least-square fitting in terms of the
power-law and spring-dashpot models, respectively. We found that the 3-parameter power-law model
can fit the experiments very well. For the spring-dashpot model, only when the fitting parameters are
at least 5, then the fitting results can be acceptable, but there still exist unexpected sharp turns in
the fitting curves. We have further verified whether the measured creep compliance and relaxation
modulus satisfy the convolution relation derived from the linear viscoelastic theory, by which one can
know whether a cell line follows a linear constitutive relation. We found that the human normal hepatic
(L02), hepatic cancer (HepG2), hepatic stellate (LX2) and gastric cancer (NCI-N87) cell lines are lin-
ear viscoelastic materials, and human normal gastric (GES-1) and gastric cancer (SGC7901) cell lines
are nonlinear. The obtained fitting parameters can be used as the corresponding material constants
for the former, but not the latter. Not only the material constants, for the cell lines with nonlinear
mechanical properties, like GES-1 and SGC7901, the simple creep and relaxation behaviors can even
give contradictory predictions on their mechanical properties and behaviors.
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[26] Schierbaum N, Rheinlaender J, Schäffer TE. Viscoelastic properties of normal and cancerous human breast
cells are affected differently by contact to adjacent cells. Acta Biomater. 2017;55:239–48.

[27] Bu Y, Li L, Wang JZ. Power law creep and relaxation with the atomic force microscope: determining
viscoelastic property of living cells. Sci. China Technol. Sc. 2019;62(5):781–6.

[28] Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Taback NA, Millet EJ, Fredberg JJ. Time scale
and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E. 2003;68(4):041914.

[29] Findley WN, Lai JS, Onaran K. Creep and relaxation of nonlinear viscoelastic materials: with an intro-
duction to linear viscoelasticity. In: Linear viscoelastic constitutive equations. North-Holland: Journal of
Applied Mechanics; 1976. pp. 50–107.

[30] Christensen R. Theory of viscoelasticity: an introduction. In: Viscoelastic stress stain constitutive relations.
London: Academic Press; 1982. pp. 1–34.

[31] Cao YP, Ji XY, Feng XQ. Geometry independence of the normalized relaxation functions of viscoelastic
materials in indentation. Philos. Mag. 2010;90(12):1639–55.

[32] Kollmannsberger P, Fabry B. Linear and nonlinear rheology of living cells. Rev. Mater. Res. 2011;41:75–97.
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