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Abstract

Nesting success tends to increase with age in birds, in part because older birds select more concealed nest sites based on
experience and/or an assessment of prevailing predation risk. In general, greater plant diversity is associated with more bio-
diversity and more vegetation cover. Here, we ask if older Darwin’s finch males nest in areas with greater vegetation cover
and if these nest sites also have greater avian species diversity assessed using song. We compared patterns in Darwin’s Small
Tree Finch (Camarhynchus parvulus) and Darwin’s Small Ground Finch (Geospiza fuliginosa) as males build the nest in
both systems. We measured vegetation cover, nesting height, and con- vs. heterospecific songs per minute at 55 nests (22 C.
parvulus, 33 G. fuliginosa). As expected, in both species, older males built nests in areas with more vegetation cover and these
nests had less predation. A novel finding is that nests of older males also had more heterospecific singing neighbors. Future
research could test whether older males outcompete younger males for access to preferred nest sites that are more concealed
and sustain a greater local biodiversity. The findings also raise questions about the ontogenetic and fitness consequences of
different acoustical experiences for developing nestlings inside the nest.
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Zusammenfassung

Alterseffekte bei Darwinfinken: Altere Miinnchen bauen Nester mit mehr Vegetationsdecke und haben mehr
heterospezifisch singende Nachbarn.

Der Nesterfolg nimmt bei Vogeln tendenziell mit dem Alter zu, was zum Teil darauf zuriickzufiihren ist, dass dltere Vogel
aufgrund ihrer Erfahrung und/oder der Einschitzung des vorherrschenden Priadationsrisikos besser versteckte Nistplitze
auswihlen. Im Allgemeinen ist eine gro3ere Pflanzenvielfalt mit einer groeren Artenvielfalt und mehr Vegetationsdecke
verbunden. Wir untersuchen hier, ob ltere Miannchen der Darwinfinken in Gebieten mit gro3erer Vegetationsdecke nisten und
ob diese Nistplitze auch eine groere Vogelartenvielfalt aufweisen, die anhand des Gesangs beurteilt wird. Wir verglichen
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die Muster beim Zwergdarwinfink (Camarhynchus parvulus) und Kleingrundfink (Geospiza fuliginosa), da die Midnnchen
in beiden Systemen das Nest bauen. Wir haben an 55 Nestern (22 C. parvulus, 33 G. fuliginosa) die Vegetationsdeckung,
die Nisthohe und die kon- vs. heterospezifischen Gesidnge gemessen. Wie erwartet, haben idltere Méannchen beider Arten
ihre Nester in Bereichen mit groerer Vegetationsdecke gebaut, und diese Nester wurden auch seltener ausgeraubt. Eine
neue Erkenntnis ist, dass die Nester der édlteren Mannchen auch mehr heterospezifisch singende Nachbarn hatten. Kiinftige
Untersuchungen konnten priifen, ob dltere Miannchen jiingere Miannchen um den Zugang zu bevorzugten Nistplidtzen
verdridngen, die besser versteckt sind und eine gro3ere lokale Artenvielfalt aufweisen. Die Ergebnisse werfen auch Fragen
zu den Konsequenzen der unterschiedlichen akustischen Erfahrungen fiir die Entwicklung der Nestlinge im Nest auf.

Introduction

In most bird species, breeding success and nesting behav-
iors change with age and experience, with experienced indi-
viduals usually better concealing their nests to improve nest
survival (Marzluff 1988; Kleindorfer 2007a; Ost and Steele
2010; Horie and Takagi 2012). Females may prefer older
males, particularly in species where males build the nest. For
instance, in the Small tree finch (Camarhynchus parvulus),
males build the nest and males increase the proportion of
black plumage in the head and chin with each annual molt
until they attain a completely black head in their fifth year
(Kleindorfer 2007a). Female Darwin’s finches more quickly
pair with older, darker males (Kleindorfer et al. 2019a), and
pairs with an older male experienced higher breeding suc-
cess because of lower nest predation (Kleindorfer 2007a).
The proximate cause for lower nest predation in Small Tree
Finches is thought to be nest placement, as nests of older
males were more concealed and positioned higher up in the
canopy, a pattern found in other studies too (Wappl et al.
2020; Heyer et al. 2021).

Males may use their own local breeding success as a
patch quality cue that integrates the effect of various nest
site attributes on breeding performance (Danchin et al. 1998;
Doligez et al. 2002; Mariette and Griffith 2012). That is,
males may return to a particular breeding site if they were
previously successful at that site. Perhaps older males select
safer nest sites based on experience and/or an assessment
of prevailing predation risk. For example, Mgller (1989)
showed that older Northern Wheatear (Oenanthe oenanthe)
males adjusted nesting height in relation to previous nesting
outcome, with evidence that ground nesting birds may adjust
their nest site and nest concealment according to predation
risk. In general, older males have more breeding experi-
ence than younger males, though the mechanisms by which
they evaluate previous experience and whether they make
informed choices about future nest site selection is often
unknown and can no doubt vary between systems.

In many species, individuals form breeding aggregations,
which may carry significant benefits, such as protection from
predators via a dilution effect that lowers individual detect-
ability by predators, for example (Hamilton 1971; Ruben-
stein 1978). More individuals in an area can also increase
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predation risk by attracting predators to an area (Hassell
et al. 1977; Hammond et al. 2007). While nesting in close
proximity may increase the risk of extra-pair paternity or
intra-specific brood parasitism (Brown and Brown 1989;
Stewart et al. 2010), forming nesting associations with het-
erospecifics may circumvent that problem. For instance, in
Darwin’s Finches on Santa Cruz Island, Galapagos, birds
that nested in ‘mixed species associations’ with heterospe-
cific neighbors had less nest predation (Kleindorfer et al.
2009). Close proximity to conspecifics also increases food
competition, and local food abundance can affect the num-
ber and composition of individuals in an area (Forero et al.
2002; Booth 2004). Therefore, the neighborhood composi-
tion may influence nest survival, and in some systems, birds
may avoid areas with many conspecific food competitors or
favor areas with many heterospecific neighbors that provide
additional anti-predator defense.

Nesting habitat also has consequences for the sensory
experience of birds which in turn may influence their fit-
ness. Songbirds are vocal production learners that acquire
their song from conspecifics (Nelson et al. 1995; Catchpole
and Slater 2008; Plamondon et al. 2008; Konishi 2010).
Exposure to a tutor’s song that can become a song tem-
plate is therefore a fundamental experience that guides
song learning (Nottebohm 1972; Grant and Grant 1996).
When individuals differ in song syllable composition and
there is competition to transfer song syllable type to off-
spring (Evans and Kleindorfer 2016), fathers that nest in
heterospecific neighborhoods may have an advantage to
transmit their song type to offspring. Fathers in heterospe-
cific neighborhoods should have less competition or inter-
ference for song syllable transmission compared to fathers
with many conspecific neighbors because some offspring
may attend to non-paternal conspecific song types (see also
Katsis et al. 2018; 2023; Colombelli-Negrel et al. 2021).
Learning and discrimination, including elementary forms
of vocal production learning, can begin already during the
egg in some songbird embryos. For example, Superb Fairy-
wrens (Malurus cyaneus) produce a vocally acquired call
after hatch copied from their (foster) mother’s in-nest call
elements during incubation (Colombelli-Négrel et al. 2012),
and embryos across avian taxa have been shown to learn
to discriminate between sounds in ovo (Colombelli-Négrel
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Table 1 Sample size per nes.ting Nesting phase Small ground finch Small tree finch

phase: the number of recordings

and number of nests for each Recordings Nests Recordings Nests

ear

Y 2020 2022 2020 2022 2020 2022 2020 2022
Nest building 0 0 7 4 12 1 12
Incubation 26 10 0 4 1 3
Feeding 40 18 0 13 0 7 0
Number of nests 33 22

and Kleindorfer 2017; Rivera et al 2018; Colombelli-Négrel
et al. 2021). In an elegant field study, Mennill et al. (2018)
showed that wild Savannah Sparrows (Passerculus sand-
wichensis) learned their songs from experimentally broad-
cast tutors placed near the nest in the wild. Thus, acoustic
neighborhood is expected to play a significant role in vocal
learning when vocal production learning embryos and nest-
lings are exposed to song in general, though to date, there
are few studies that measure the acoustic neighborhood at
the time of nesting across species.

There is a strong positive association between vegeta-
tion diversity and the avian diversity it supports (Lantz et al.
2011; Weisshaupt et al. 2011; La Sorte et al. 2020; Geladi
et al. 2021). In forest systems, forests with more canopy
cover and taller trees also sustained more bird species (Kirk
and Hobson 2001). Similarly, in urban areas, avian species
richness was higher in parks with more vegetation coverage
(La Sorte et al. 2020). Vegetation cover may be associated
with multi-level species richness as well as creating condi-
tions for lower predation risk when songbirds select nest
sites with more vegetation cover. In general, older males are
expected to compete for and occupy better-quality territories
(e.g., trees with broad canopy cover) that sustain more food
resources (Sherry and Holmes 1989; Part 2001) and, when
nest sites are more concealed in dense vegetation, lower pre-
dation risk (Hill 1988). A diverse heterospecific neighbor-
hood could be a by-product of nest site preference for food or
safety (associated with a dense vegetation cover), but in turn
may facilitate other pathways, for example, acoustic habitat
imprinting (see also Davis and Stamps 2004).

The aim of this study is to test if the nest sites of older
male Small Ground Finches (Geospiza fuliginosa) and small
tree finches differ in predictable ways from the nest sites of
younger males, with specific attention to the singing activity
of heterospecific and conspecific neighbors, as well as veg-
etation characteristics. First, we aimed to replicate the find-
ings from Santa Cruz Island that older males occupy areas
with more vegetation cover, in taller trees, and with higher
nesting height in Floreana Island. Second, we test a new
prediction that the acoustic neighborhood experienced by
the offspring of older males will be more species rich with
higher singing activity. Specifically, we predict that older

males will nest in areas with more heterospecific neighbors
and thus more heterospecific vocal activity while younger
males will have more conspecific neighbors and more con-
specific vocal activity. We also predict that the nest sites of
older males will have more canopy cover and nests will be
located higher up in taller trees. If nest predation is associ-
ated with singing activity (because sound alerts predators to
an active area to search for nests), then we predict increased
nest predation at nests with higher singing activity.

Methods
Study site and study species

This study was conducted on Floreana Island (— 1.299829,
—90.455674) during the onset of nesting and the Darwin’s
finch breeding season that peaks during February and March
and coincides with the onset of heavier rains usually dur-
ing January and February (rainfall data can be accessed via
https://www.galapagosvitalsigns.org). The nesting data were
collected during February—March 2020 and February 2022
at 55 Darwin’s finch nests (Table 1), including Small Ground
Finches (G. fuliginosa) (N=33) and Small Tree Finches
(C. parvulus) (N=22). The nests were located across eight
100 x 200 m? study plots in the highland Scalesia forest near
Cerro Pajas or in two 100 x 200 m? study plots at Asilo de la
Paz, also a Scalesia-dominated forest.

From a long-term study using color-banded birds, Dar-
win’s finches are socially monogamous per brood (Grant
and Weiner 1999; Keller et al. 2001; Kleindorfer 2007b).
The onset of nesting occurs during the onset of heavier rains
from January to March. Males use song and behavioral dis-
plays to defend small nesting territories (ca. 20 m?) against
intruders. During higher rainfall years, the males may build
several nests while singing to attract females, and eventu-
ally a female may choose one of the nests for egg-laying
(Kleindorfer 2007a). However, during this study in 2020
and 2022, both years had low to moderately low rainfall and
each male only built one display nest. The female is a unipa-
rental incubator and the incubation phase lasts 12—14 days
(Kleindorfer 2007a, b). Both parents provide food deliveries
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Fig. 1 Changes in plumage
coloration in male small tree
finches with each annual molt.
Males require, on average,

5 years to attain a fully black
chin and crown. Brown to black
5 correspond to the color and
age categories BO-B5 used,
with B0 being yearling males
and BS5 including 5 years and
older males. Copyright Lauren
K. Common (colour figure
online)

Brown

Black 3

Black 2

Black 1

Black 4 Black 5

to nestlings until they fledge after 12—14 days (Kleindorfer
et al. 2021a). Between 17 and 60% of highland Darwin’s
finch nests are depredated across species and years (Klein-
dorfer 2007a, b; Kleindorfer and Dudaniec 2009; O’Connor
et al. 2010; Cimadom et al. 2014; Kleindorfer et al. 2021b).
In both species, males build a domed-shaped nest, often in
Scalesia pedunculata trees. The avian vampire fly (Philornis
downsi) is a major cause of nesting failure. On Floreana
Island, newly built nests and nests with eggs do not contain
P. downsi; only nests with chicks contain the avian vam-
pire fly larvae (Common et al. 2019, 2023). In this study,
18 of the nests progressed to the chick stage in 2020 for
which we also had information on number of P. downsi lar-
vae and pupae at the time of nesting outcome; there was no
association between male age and number of vampire flies
(r=-0.002, p=0.992, n=18). In 2022, a year with low
rainfall, Darwin’s finches built a display nest, sang at the
nest, but no eggs were laid and hence there were no avian
vampire flies in finch nests in the 2022 data.

Male age

Darwin’s finch males can be aged in the field using binocu-
lars based on the proportion of black plumage. In Darwin’s
tree finches (Fig. 1), the proportion of black plumage on
the chin and crown increases with each year of molt until
they obtain a fully black head after about five years (Lack
1947; Kleindorfer 2007a; Langton and Kleindorfer 2019).
In Darwin’s ground finches, the proportion of black plumage
increases with each year of molt across five years (Fig. 2),
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until the male acquires full black plumage across its body
(Grant and Grant 1987). Female Tree Finches remain olive
green and female Ground Finches remain grayish across
their lives and cannot be aged from plumage. The age clas-
sification of males is based on the six classes described by
Grant and Grant (1987) for Small Ground Finches and by
Kleindorfer (2007a) for small tree finches (Figs. 1, 2). The
change in plumage with age gives us the rare opportunity
to study the effects of age on nest site attributes, and how
these are associated with the acoustic neighborhood near the
nest, nest site vegetation, and predation outcome using an
observational approach. The sample size per age class and
species in this study is as follows: (i) small ground finches
B1=2,B2=3, B3=4, B4=3, B5=21, and (ii) small tree
finches B0O=2,B1=1,B2=6,B3=2,B4=5,B5=6.

Nest monitoring and nest site characteristics

Nests were monitored following our standardized protocol
that we developed in 2000 and maintained throughout the
study (Kleindorfer et al. 2014; Common et al. 2020). Nests
were routinely inspected, with binoculars and ladder dur-
ing 2004 to 2006, and since 2008 with a borescope, every
three days during incubation and every two days during the
nesting phase to confirm activity. Nesting height estimation
was practiced using a laser pointer (LTI laser rangefinder)
prior to field work, which we did using clearly visible trees
on-campus at Flinders University, Australia. The laser range-
finder was first pointed at the base of the tree and then the
top to compute two vertical angles, from which tree height
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Fig.2 Changes in plumage
coloration in male small ground
finches with each annual molt.
Males require, on average,

5 years to attain a fully black
body. Brown to black 5 cor-
respond to the color and age
categories BO-B5 used, with
BO being yearling males and
BS5 including 5 years and older
males. Copyright Lauren K.
Common (colour figure online)

Black 3

was calculated. We calibrated among team members at the
start of the field season and visually estimated tree height as
meters above ground during field work.

We measured the following nest-site vegetation char-
acteristics per nest within two weeks of nest building: (1)
nesting height (m above the ground; ocular estimation after
training with a laser pointer device on-campus at Flinders
University), (2) nesting tree height (ocular estimation after
training with a laser pointer device on-campus at Flinders
University), (3) percentage canopy cover 1 m around the
nest (ocular estimation after training calibration with bota-
nist Heinke Jaeger in the field in 2020), and (4) percentage
ground cover (ocular estimation calculated for 4 X 5 m quad-
rants at the base of the nest).

Video and audio recordings at nests

Video and audio data were collected using GoPro cameras
(GoPro Hero 7, GoPro Inc.) placed within 5 m of the nest.
GoPro cameras were attached to metal hooks and hung on
branches with an extendable 6 m pole 1-5 m from the nest.
Each nest was recorded during either building, incubation
and/or feeding once (sample size in Table 1). The aver-
age GoPro recording duration (min) per nest was 33 +3
(mean + Standard Deviation). We did two to three record-
ings per day, per nest. We used the first and last record-
ing of each nest for our analyses (Mean+SD=1.95+1.1
recordings per nest were used). All recordings were made
between 0600 and 1000 during the month of February,

Black 1

Black 4 Black 5

which is generally the month with the onset of nest build-
ing in Darwin’s finches on Floreana Island.

Solomon coder (Péter 2019) was used to systematically
extract information from video recordings to calculate the
number of singing events in the neighborhood of the nest.
All songs heard were recorded and sampled at a radius
of ~25 m per nest, as this was the detectability of sound
recordings on the GoPro.

Species identification from song recordings

There are a total of six songbird species in the highlands
of Floreana Island, and birds from six other avian taxa
(Kleindorfer et al. 2019b) (see Table 2). Songs and calls
were compared against a long-term data base managed by
Kleindorfer for two decades with 7000 + songs and calls
from most species; if a sound could not be identified, the
clip was posted on the Galapagos Land Bird WhatsApp
group and long-term Galapagos ornithologists (e.g., Bir-
git Fessl, Thalia Grant, Tui de Roy) provided their expert
opinion, which always achieved 100% consensus. The
sound identification was also facilitated because only 12
avian land bird taxa (Table 2) are present in the highlands
of Floreana Island. The calls of the species listed are iden-
tifiable species signals and hence, after training on avail-
able recordings and with expert advice, it is likely that
all vocalizations were correctly classified to species level.
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Table 2 Landbirds in the

. Songbirds (Passeriformes)
Floreana highlands, shown

Other avian Taxa

as Passeriformes and other
avian taxa, including also

the Whimbrel (Numenius
phaeopus), a wader commonly
seen and heard on the island

Medium tree finch (Camarhynchus pauper) (E)
Galapagos flycatcher (Myiarchus magnirostris) (E)
Yellow warbler (Setophaga petechia aureola)

(E subspecies)

Small ground finch (Geospiza fuliginosa) (E)
Medium ground finch (Geospiza fortis) (E)

Small tree finch (Camarhynchus parvulus) (E)

Galapagos dove (Zenaida galapagoensis) (E)

Short-eared owl (Asio flammeus galapagoensis)
(E subspecies)

Dark-billed cuckoo (Coccyzus melacoryphus) (N)
Paint-billed crake (Mustelirallus erythrops) (N)
Smooth-billed ani (Crotophaga ani) (1)
Whimbrel (Numenius phaeopus) (N)

The IUCN classification is shown per species as endemic (E), native (N) or introduced (I)

Data analysis

All data analyses were conducted using R v.4.1.0 (R Core
Team 2021). We analyzed the following variables: (1) male
age (assessed from plumage categories shown in Figs. 1 and
2), (2) number of total singing events per minute (conspe-
cific + heterospecific songs) in the vicinity of active nests,
(3) subset: number of heterospecific singing events per min-
ute, (4) subset: number of conspecific singing events per
minute, (5) number of neighboring nests in a 35 m radius
of the focal nest (we selected this cut-off as it could have
overlapped with the 25 m audible recording range of the
GoPro recordings), (6) vegetation canopy cover (% cover),
(7) ground cover (%), (8) tree height (m), (9) nesting height
(m), and (10) breeding status (nest building, incubation,
chick feeding). In terms of nesting outcome, we analyzed
variables in relation to whether the nest was depredated or
not, but only for the nests recorded in 2020 as this informa-
tion is not available for 2022 (the field work ended before
nesting outcome was known).

To test our predictions, we used linear mixed models with
the package ‘Ime4’ (Bates et al. 2015) and ‘arm’ (Gelman
2011). The distribution of the residuals and the models’
assumptions were tested and assessed visually using the
package ‘DHARMa’ (Hartig 2021). For every prediction,
we first conducted a general model without the species dis-
tinction and a second model where species was considered
separately. First, we explored the general pattern for a dif-
ference between younger and older males regardless of the
species. Next, we tested if there is a difference in this effect
between the species.

We used a pseudo-Bayesian framework with non-inform-
ative priors using the packages ‘arm’ (Hilbe 2009; Gelman
2011) and ‘Ime4’ (Bates et al. 2015). For every linear mixed
model (package ‘Ime4’), the restricted maximum-likelihood
estimation method was applied. In each model, we applied
the function ‘sim’ and carried out 10,000 simulations to
obtain the posterior distribution of every estimate, the mean
value and the 95% credible interval (CrI) (Korner-Nievergelt
2015). Crls provide information about uncertainty around
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the estimates. We considered an effect to be statistically
meaningful when the 95% Crl did not overlap with zero. A
threshold of 5% is equivalent to the significance level in a
frequentist framework (i.e. p-value of 0.05; Korner-Niev-
ergelt 2015). For depredation, the response variable was
binary (0 =no predation event, 1 =nest depredated) and
modeled with a binomial distribution using the logit-link
function.

Male age and heterospecific singing activity

To analyze whether older males build nests in sites with
more heterospecific singing activity, we used two linear-
mixed-effect models (REML fit). In both, the response vari-
able was the number of heterospecific songs per minute.
In the first model, the explanatory variables were the total
number of nests within 35 m (proxy for nesting density) and
male age. In the second model, the explanatory variables
were the total number of nests within 35 m, the male age
and the interaction between male age and species. In both
models, Nest ID was included as a random factor to account
for repeated measures in a same nest and breeding status to
account for the variance across different breeding stages.

Male age and conspecific singing activity

To analyze the converse of our predicted association between
male age and the number of heterospecific neighbors, we
tested if younger males have nest sites with more conspe-
cific neighbors and more conspecific singing activity (and
hence, likely, more conspecific competition). We used the
same approach as above. Namely, two linear-mixed-effect
models (REML fit) with the response variable ‘number of
conspecific singing events per minute’. In the first model, the
explanatory variables were the male age, the total number
of nests within 35 m (proxy for nesting density) and their
interaction. In the second model, the explanatory variables
were the total number of nests within 35 m and the male
age in interaction with species. In both models, Nest ID was
included as a random factor to account for repeated measures
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Fig.3 Heterospecific singing a
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of the same nest and breeding status to account for differ-
ences the breeding phase. Here, the residual diagnostics in
both models showed slight (but still acceptable) deviation
in one assumption (slight deviation in residual vs. predicted
quantiles) that could probably be overcome with larger sam-
ple sizes. In 2022, the onset of singing activity occurred
later in the season and singing activity was lower, likely
because rainfall was lower in 2022 than in 2020 (Floreana
data: mean rainfall Feb 2022 =2.3 mm; mean historic rain-
fall Feb=104.1 mm; https://www.galapagosvitalsigns.org);
also, there were many zero values for conspecific song in
2022 compared with 2020 though heterospecific song activ-
ity had few zero values in either year.

Effect of male age on nest site vegetation characteristics

Before assessing if vegetation characteristics of nest sites
differed between older and younger males, we first per-
formed a spearman correlation test among all the vegetation
variables that we measured: canopy cover, ground cover, tree
height and nesting height (Figure S1). We used a Spearman
correlation because the different variables were not nor-
mally distributed and the distribution ‘types’ varied signifi-
cantly among each other. Ground cover and canopy covered
were highly correlated among each other (rho=— 0.491,
p<0.001), and this was also the case between tree height
and nest height (rh0=0.783, p <0.001). Because of this and
because previous research identified an association between
canopy cover and nesting height on nesting success in this
system, we used these two variables in the models to test
the association between male age and nest site vegetation
characteristics.

The degree of association between male age and nest site
canopy cover and nesting height was estimated using one
linear model per variable. Each model had male age and
species as explanatory variables, and their interaction.

Effect of number of singing events (general song-activity)
and nest site vegetation on predation outcome

We used binary logistic regression with nest predation out-
come (0=not depredated, 1 =depredated) as the binary-
dependent variable against total number of songs per min-
ute, nesting height, and nest site canopy cover as predictor
variables.

Results
Male age and heterospecific singing activity

Older males had significantly more heterospecific sing-
ing activity near the nest (n=55, Mean estimate [95%
Crl]=2.088 [0.447, 3.714], Table S1a) compared to younger
males (Fig. 3). This pattern was strongest in Small Ground
Finches (Mean effect size [95% CrI]=2.14 [0.14, 4.19];
n=233), and weak in Small Tree Finches (Mean effect size
[95% CrI]=0.53 [—- 2.31, 3.38]; n=22; Table S1). The num-
ber of nesting neighbors did not influence the heterospecific
singing activity in the territory; neither did the breeding
status during which the nesting territories were recorded
(Table S1).
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Male age and conspecific singing activity

There was no evidence that the level of conspecific singing
activity within 25 m radius of a male’s nest changed with
male age (Fig. 4). This also held true when accounting for
both species separately in the statistical model (Mean effect
size [95% Crl] for small ground finch=— 0.35 [- 2.01,
1.31], and for small tree finches=— 0.91 [— 2.54, 0.69)).
Rather, the overall number of neighbors was associated with
the number of conspecific singing events (n=55, Mean esti-
mate [95% Crl] =1.738 [0.024, 3.470], Table S2).

Effect of male age on nest site vegetation
characteristics

We tested if nesting height and canopy cover at the nest site
was associated with male age. We found the same pattern
in both species. The nesting height did not vary in relation
to male age (Fig. 5, Mean Slope [95%CrI] for small ground
finches=— 0.07 [— 0.45, 0.32], for small tree finches =0.06
[— 0.32, 0.45], Table S). Regarding vegetation, older male
small tree finches nested in areas with significantly more
vegetation cover (Fig. 5, Mean slope [95%Crl] =6.33 [1.72,
11.07], Table S3). Male small ground finches did as well
(note the large mean effect size), but with a modest statisti-
cal support (Fig. 5, Mean Slope [95%Crl]=3.32 [— 1.42,
8.11], Table S3).
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Effect of number of singing events (general
song-activity) and nest site vegetation on predation
outcome

We know nesting outcome with certainty for 32 nests (24
Small ground finches and 8 small tree finches). Using binary
logistic regression analysis, there was no effect of average
number of songs per minute on nest predation (r=0.09,
N=32, p=0.847), and no association with nesting height
(r=0.528, p=0.324), but more concealed nests had less
predation (r=— 0.38, p=0.036, Fig. 6) and, specifically,
older males had less predation (r=— 0.18, p=0.047). The
percentage of depredated nests was comparable between
small tree finches (2/8, 25%) and Small Ground Finches
(5724, 21%).

Discussion

The main aim of this study was to test if nest site characteris-
tics, such as vegetation cover and the acoustic neighborhood,
differed across male age in two Darwin’s finches: the small
tree finch and the small ground finch. As predicted, older
males built nests in areas with more vegetation concealment
and these nests had less predation. Neither song activity near
the nest or nesting height predicted nest predation. A novel
finding of this study is that nest sites of older males were
exposed to more heterospecific singing activity, and hence
such nest sites can be described as occurring in a richer
acoustic neighborhood.

The nest sites of younger and older males differed in
several ways, and more research is needed to examine the
mechanisms for these patterns. Younger males nested in
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Fig.5 Relationship between
age and nest site characteristics.
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between age and canopy cover
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small (circles) tree finches. A
statistical support larger than
95% (i.e. p<0.05 in a frequen-
tist framework) can be inter-
preted if a Crl does not overlap
zero. Note the large mean effect
size of age and canopy cover
for small ground finches. Here,
the probability of the effect size
being larger than zero is 91.2%,
equivalent to a frequentist ‘p’
of 0.09
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areas with more conspecific neighbors, and older males
nested in areas with more heterospecific neighbors, with
more vegetation cover surrounding the nest. Perhaps older
males outcompete younger males for access to preferred
habitat. In support of this idea, we have observed male
take-overs of nests, and in all cases, older (B5) males sup-
planted and usurped younger (BO, B1) males from nests
they had built (Kleindorfer et al. 2021b). Because older
males also have larger badge size (the extent of black
plumage on the crown and chin), it is possible that badge

25

°$
50
Canopy Cover [%]

size (rather than age per se) predicts the outcome of ago-
nistic interactions, as has been shown in other systems
(Olsson 1994). While younger male Darwin’s finches may
occasionally build a nest in an area with dense vegeta-
tion cover that also has many heterospecific neighbors,
these nests could subsequently be usurped by older males.
Younger males may have a preference for the same nest
sites as older males but cannot exercise their choice as they
are outcompeted by older males. It remains to be tested if
younger males actively avoid areas with older males to
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reduce the probability of nest usurpation and/or paternity
loss through cuckoldry.

Our finding that vegetation cover was associated with
lower predation risk adds to a body of evidence linking
reduced visual conspicuousness of nests with reduced nest
predation (Martin and Roper 1988; Colombelli-Négrel and
Kleindorfer 2009). On Floreana Island, there are five nest
predators of Darwin’s finch nesting contents: introduced
Rat (Rattus rattus), introduced House Mouse (Mus muscu-
lus), introduced Cat (Felis catus), introduced Smooth-billed
Ani (Crotophaga ani), and endemic Short-eared Owl (Asio
flammeus galapagoensis). The number of rats and owls has
increased across the past decade (Kleindorfer, unpublished
data), not least because owls feed on the ever-increasing rat
population. Rats are olfactory hunters that are more common
predators at nests closer to the ground and owls are visual
hunters that are more common predators at nests higher in
the canopy (Kleindorfer et al. 2021b). In a previous study,
we showed that nests at intermediate heights sustained the
most larvae from the introduced Avian Vampire Fly (Klein-
dorfer et al. 2016; 2021b), which is the biggest risk factor for
the survival of Darwin’s finches (Kleindorfer and Dudaniec
2016; Fessl et al. 2018; McNew and Clayton 2018). There-
fore, it is perhaps not surprising that we did not find an
effect of nesting height on predation outcome in this study.
Future research should explore effects of male age on nest-
ing success and number of vampire flies after the planned
predator eradication and predator translocation on Floreana
Island managed by the Galapagos National Park Directorate
(GNPD). In regard to vegetation cover and biodiversity, our
study builds on previous research that found greater bio-
diversity in areas with greater vegetation diversity (Lantz
et al. 2011; Weisshaupt et al. 2011; La Sorte et al. 2020;
Geladi et al. 2021), and more bird species in areas with more
canopy cover (kirk and Hobson 2001) or vegetation coverage
(La Sorte et al. 2020). Our study is also in accordance with
previous studies on Santa Cruz island that measured less
predation at more concealed nests built by older Darwin’s
finch males (Kleindorfer 2007a; Wappl et al. 2020; Heyer
et al. 2021).

We acknowledge this is an observational study that aimed
to explore whether the acoustic neighborhood of males dif-
fered in relation to their age class. Possibly the most novel
implication of this study is the finding that offspring of older
males were exposed to a richer acoustic neighborhood than
offspring of younger males. How such an acoustic neighbor-
hood with more heterospecific singing birds might influ-
ence neural development (Rivera et al. 2019; Schroeder and
Remage-Healey 2021), gene expression (Antonson et al.
2021), tutor preference (Williams 1990), attention (Soha
and Marler 2000; Chen et al. 2016), social learning strat-
egy (Farine et al. 2015) or other vocal production learning
pathways (Katsis et al. 2018, 2021; Mariette et al. 2021)
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remains to be explored. Darwin’s finches are capable of spe-
cies recognition of song (Ratcliffe and Grant 1995), with
reduced response to experimental broadcast of local song
versus heterospecific song or foreign dialects (Colombelli-
Négrel and Kleindorfer 2021). Perhaps early-life exposure
to different song types influences the magnitude of song dis-
crimination, or the efficacy of song transmission from father
to son, which remains to be tested.

It is possible that younger males return to natal sites,
or sites that look and sound like their natal site, based on
vegetation and acoustic cues. Similar processes have been
described for habitat imprinting, for example in cuckoos
(Teuschl et al. 1998). In a review of the phenomenon of
natal habitat preference induction (NHPI), Davis and Stamps
(2004) found evidence for NHPI across a broad range of
animal taxa. Our study provides a complementary perspec-
tive by raising the possibility that acoustic habitat imprinting
may play a role in systems with early-life vocal production
learning. The findings raise new research questions about
mechanisms of nest site selection using acoustic cues, and
ontogenetic consequences of different sound exposure for
development and sound preference. In the Darwin’s finch
system, older males build display nests in areas with more
vegetation cover, males compete for access to these nest
sites, females select these nests and males, and offspring
are—Ilikely as a by-product—exposed to a richer heterospe-
cific neighborhood. A rich acoustic neighborhood, even if it
is ‘only’ a by-product of other preferences shaping nest site
selection, could have significant impact on offspring devel-
opment, which future research could explore.

In summary, there is some evidence presented here that
older Darwin’s finches of the Galapagos Islands build nests
in areas that may be considered local biodiversity hotspots,
because they have more vegetation cover and more hetero-
specific singing neighbors. While the larger badge size of
older males could predict occupation of such (potentially)
preferred habitats, little research has been done into the pos-
sible effects of natal acoustic neighborhood on individual
learning strategy, vocal phenotype, or fitness of offspring
growing up in those nests. During this Anthropocene era
(Lewis and Maslin 2015), when both human activity and
infrastructure, and noise and light pollution, are increas-
ingly impacting wildlife, this study provides an example of
baseline variance in nest site characteristics in areas without
a large human sound footprint. With the observations pre-
sented in this study, we hope to spark research interest into
consequences of early-life acoustic exposure for develop-
ment and fitness in vocal production learning species.
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