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Abstract
Objective Diffusional kurtosis imaging (DKI) extends diffusion tensor imaging (DTI), characterizing non-Gaussian diffusion 
effects but requires longer acquisition times. To ensure the robustness of DKI parameters, data acquisition ordering should 
be optimized allowing for scan interruptions or shortening. Three methodologies were used to examine how reduced diffu-
sion MRI scans impact DKI histogram-metrics: 1) the electrostatic repulsion model  (OptEEM); 2) spherical codes  (OptSC); 
3) random  (RandomTRUNC).
Materials and methods Pre-acquired diffusion multi-shell data from 14 female healthy volunteers (29±5 years) were used 
to generate reordered data. For each strategy, subsets containing different amounts of the full dataset were generated. The 
subsampling effects were assessed on histogram-based DKI metrics from tract-based spatial statistics (TBSS) skeletonized 
maps. To evaluate each subsampling method on simulated data at different SNRs and the influence of subsampling on in vivo 
data, we used a 3-way and 2-way repeated measures ANOVA, respectively.
Results Simulations showed that subsampling had different effects depending on DKI parameter, with fractional anisotropy 
the most stable (up to 5% error) and radial kurtosis the least stable (up to 26% error).  RandomTRUNC performed the worst 
while the others showed comparable results. Furthermore, the impact of subsampling varied across distinct histogram char-
acteristics, the peak value the least affected  (OptEEM: up to 5% error;  OptSC: up to 7% error) and peak height  (OptEEM: up to 
8% error;  OptSC: up to 11% error) the most affected.
Conclusion The impact of truncation depends on specific histogram-based DKI metrics. The use of a strategy for optimizing 
the acquisition order is advisable to improve DKI robustness to exam interruptions.
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Introduction

Diffusion magnetic resonance imaging (dMRI) is an imaging 
modality that provides sensitive biomarkers of brain micro-
structural properties. Due to its clinically feasible acquisition 
times, diffusion tensor imaging (DTI) is still the most used 
dMRI technique [1, 2]. The diffusion tensor can be estimated 
from data comprising at least a single non-zero b-value and 
a minimum of six gradient directions (single-shell) together 
with at least one acquisition with no diffusion-weighting 
[3, 4]. However, as DTI fails to characterize non-Gaussian 
diffusion effects, an extension of DTI was proposed—the 
diffusional kurtosis imaging (DKI) [5]. In addition to all 
standard DTI parameters, DKI provides diffusional kur-
tosis parameters that quantify the degree of non-Gaussian 
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diffusion—which were shown to provide unique informa-
tion of tissue microstructural properties in both healthy and 
pathologic conditions [5–10]. To properly estimate the full 
DTI and DKI tensors, several b-values (multi-shell) and a 
higher number of gradient directions must be sampled: a 
minimum of 2 non-zero b-values (or shells) and at least 15 
non-collinear directions per shell, together with one acquisi-
tion with no diffusion-weighting. This comes at the cost of 
inherently increased acquisition times [11, 12].

In the context of clinical practice and research scenarios, 
finding a balance between the design of acquisition schemes 
and patient comfort is often challenging, particularly when 
studying patients suffering from pathologies that impact their 
tolerance to MRI scanning (e.g., stroke, cancer, neurodegen-
erative diseases, migraine), and even more when performing 
longitudinal (multi-session) studies with strict time limita-
tions. To provide an example, let us consider the possible 
constraints of a two-sessions study with migraine patients in 
which we aim to acquire a multi-shell dMRI sequence within 
an hour-long multimodal MRI protocol, when patients are 
experiencing symptoms (headache, nausea, photophobia, 
etc)—session A and without symptoms—session B. The 
current scenario requires a fundamental trade-off between 
protocol duration, data collection and patients’ tolerance, 
especially during session A. If patients’ tolerance permits 
and there are no time restrictions, it would be preferable to 
use a complete protocol. However, in cases when an inter-
ruption in the acquisitions is necessary, a shortened protocol 
should be carefully considered to optimize the collection of 
information and ensure cross-exam comparability. Hence, it 
is important to ensure that an abbreviated protocol, if applied 
in one of the sessions, remains compatible with full proto-
cols in subsequent or previous sessions for the same subject. 
Therefore, it is particularly important to design acquisition 
schemes that still produce precise and accurate DKI param-
eter estimates if the acquisitions need to be interrupted 
[13–19]. It was suggested for clinical use that the optimal 
sampling scheme for kurtosis estimates should include three 
shells: 0, 1000, and 2000 s/mm2; and at least 20 gradient 
directions per shell [20, 21]. It was also reported that DKI 
parameters are less dependent on the number of acquired 
b-values when the maximum b-value is held constant [22, 
23]; however, they can be more influenced by the number of 
sampled diffusion orientations [17, 21].

After data collection, several additional processing steps 
may also have an impact on the accuracy of estimated 
parameters when using incomplete scans. To assess white 
matter (WM) microstructural alterations, researchers employ 
region-of-interest (ROI) analysis for local assessment or 
compute histogram-based metrics across the brain for a more 
comprehensive evaluation. Both approaches have demon-
strated their value in detecting differences between groups 
and relationships with clinical variables. Nevertheless, these 

analyses may considerably be influenced by different diffu-
sion MRI acquisition parameters, such as the exact diffu-
sion gradient directions and b-values used [14]. This concern 
becomes particularly pertinent when dealing with diffusion 
MRI datasets from incomplete scans, as the acquired acqui-
sition parameters may not uniformly cover their parameter 
domain. However, this issue can be mitigated by optimizing 
the acquisition parameter sampling and ordering [13, 16–18, 
24, 25].

The state-of-the-art techniques for generating gradient 
directions for multi-shell acquisitions typically follow the 
generalization of the bipolar electrostatic repulsion model 
(considering all individual gradient directions and their 
negative)—electrostatic repulsion model (EEM) [19, 26]. 
The ordering by which the selected gradient directions are 
acquired can then be optimized using brute-force search 
to find a global optimum that reduces the impact of data 
truncation in case data acquisition is interrupted [13, 15, 
27]. While this model was introduced with the implicit 
aim of maximizing the angular distance between sampled 
directions, the typical electrostatic energy cost function is 
influenced by angular distance but does not explicitly meas-
ure it [28]. Other approaches were proposed to generate or 
subsample sampling schemes based on the maximization 
of the angular resolution between samples (i.e., spherical 
codes) [29]. While both approaches for generating sampling 
schemes were proven to perform similarly in terms e.g., of 
angular error of the reconstructed fibre directions in WM 
[19, 29], their impact on DKI parameters and associated 
distribution characteristics (e.g., median, histogram peak 
height, width, and values) have not been fully explored.

In this study, we aim to evaluate a strategy for choos-
ing and ordering a subset of gradients in DKI acquisitions, 
from a complete protocol that was previously optimized to 
balance scan duration, parameter estimation accuracy, and 
cross-session comparability. The impact of truncating dMRI 
data from different ordering strategies are investigated on 
histogram-based DKI metrics.

Methods

All participants gave written informed consent in accord-
ance with the Declaration of Helsinki after the study was 
approved by the local Ethics Committee.

dMRI sampling scheme and subsampling strategies

We started by generating an optimized multi-shell sam-
pling scheme using the gen_scheme script from MRTrix 
(mrtrix.org) considering a protocol comprising: 3 diffu-
sion-shells (uniformly distributed over the sphere) with 
b = 400, 1000, 2000 s/mm2 along 32, 32, 60 gradient 
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directions, respectively; and 8 non-diffusion-weighted vol-
umes. Although the original sampling scheme included a 3 
b-values (3 shells), our analysis is focused on the gradient 
directions for b = 1000, 2000 s/mm2 and eight b = 0 s/mm2 
repetitions to assess the impact of scan interruptions in the 
higher b-values typically acquire for DKI reconstruction. 
All the experiments for these selected b-values are used as 
the reference complete (full) scheme for both simulations 
and in-vivo data collection. We then tested three different 
approaches for shortening the protocol (Fig. 1). The first 
method  (OptEEM) would correspond to direct truncation 
of the original scheme, since the gen_scheme script incre-
mentally adds new volumes using a brute-force approach 
to optimize the order of the gradient directions—the aim is 
to achieve a uniform distribution over the sphere as evalu-
ated by the bipolar EEM. This is done while keeping the 
same relative proportion of directions for each shell in 
case the acquisition is interrupted (equivalent to truncat-
ing the original full-length scheme). The two other tested 
approaches would require that the diffusion scheme would 
first be reordered prior to being used for scanning, when 
truncation could occur. The  OptSC method directly maxi-
mizes the smallest angle difference between two sample 
locations on the unit sphere, i.e., the covering radius that 
measures the angular resolution (contrarily to EEM). In this 
study, we consider an initial sampling scheme optimized by 
the conventionally used EEM model followed by the selec-
tion of specific gradients based on the maximization of the 

angular resolution. Finally, for a reference, we also consider 
an approach in which the original full scheme is randomly 
shuffled and then truncated the data  (RandomTRUNC). To 
generate the sampling schemes corresponding to reducing 
the number of samples per shell using the  OptSC method [26, 
29], we use the code available at (https:// diffu sionm ritool. 
github. io/ demos/ demo_ separ ate_ HCPQ3 90x3_ 30x3. html). 
It should be noted that the  OptSC sampling scheme for each 
subset is obtained sequentially (for example, the sampling 
scheme generated by reducing 5% is utilized as an input to 
get the sampling scheme equivalent to excluding 10% of the 
number of samples and so on). The idea is that the diffusion 
volumes that would be removed for each subsampling level 
would have been acquired last if the previous subsampling 
level had been applied instead. Finally, we generate six opti-
mal data subsets using both methods by excluding 5, 10, 20, 
30, 40 or 50% of the number of volumes per shell (Table 1, 
Fig. 1).

Simulations

To aid in the interpretation of the in vivo results, we also 
evaluate the impact of each subsampling method on the esti-
mation of each diffusion parameter derived from diffusion-
tensor (i.e., fractional anisotropy (FA), mean diffusivity 
(MD), axial diffusivity (AD), and radial diffusivity (RD) 
maps), and kurtosis-tensor, (i.e., mean kurtosis (MK), axial 
kurtosis (AK), and radial kurtosis (RK) maps), we firstly 

Fig. 1  The subsampling process is shown schematically. Based on 
the electrostatic repulsion model [28], the optimal sampling scheme 
was first designed to comprise three shells (b = 400  s/mm2, b = 
1000 s/mm2 (blue), b = 2000 s/mm2 (yellow)) spread equally around 
the sphere along 32, 32, and 60 gradient directions; and 8b0s (red). 
Although the original sampling scheme included 3 b-values, we 
focused on b = 1000, 2000 s/mm2 shells to evaluate DKI parameters. 
This diagram depicts the procedure for discarding 5% (subset95) of 
the total number of volumes per shell (represented by X) using three 

different strategies, applied to the current full-length protocol (1) 
 OptEEM (subsamples the original scheme by removing volumes from 
the end of it); (2)  OptSC (subsamples the original scheme by maxi-
mizing the angular resolution, which results in removing gradient 
directions across the sampling scheme – in a real scenario, these 
volumes would have been at the end of the full protocol); and (3) 
 RandomTRUNC (randomly shuffles the initially optimized scheme and 
applies truncation)

https://diffusionmritool.github.io/demos/demo_separate_HCPQ390x3_30x3.html
https://diffusionmritool.github.io/demos/demo_separate_HCPQ390x3_30x3.html
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perform Monte-Carlo simulations of a single-voxel which 
are representative of WM voxels. Rician noise is introduced 
to the synthetic diffusion-weighted signals to achieve differ-
ent signal-to-noise (SNR) levels (SNR=10, 20, 30, 40, 50) in 
the b0 volumes. To demonstrate ground truth convergence, a 
higher SNR level (SNR=1000) is employed as a reference. 
The signals are generated based on the same ground truth 
values of the diffusion and kurtosis tensors used in previous 
studies [30, 31] which represent tissue as a mixture of two 
fibers crossing at 60 degrees. For each fiber, two tensors 
are considered to represent intra- and extra-cellular environ-
ments with equal fractions. For the intra-cellular component, 
the AD and RD are set to 1.4×10−3  mm2/s and 0.1×10−3 
 mm2/s, respectively. The corresponding diffusivities for the 
extra-cellular compartment are set to 2.0×10−3  mm2/s and 
0.5×10−3  mm2/s. This is implemented as exemplified in 
voxel case 4 at https:// github. com/ dipy/ dipy- dki- paper/ blob/ 
master/ Figur es_ simul ations_ noise_ free. ipynb [31]. Diffu-
sion-weighted signals are simulated for the gradient direc-
tions of b = 1000, 2000 s/mm2 and eight b = 0 s/mm2 images 
repetitions according to the reference full scheme (i.e., total 
of 100 volumes). Then the synthetic signals for each derived 
subset are obtained by using the three subsampling meth-
ods to extract the corresponding reduced gradient schemes 
from the original full-length scheme. These simulations are 
implemented in Python using tools from diffusion imaging 
in Python (DIPY) package [30, 32]. The experiments are 
repeated for 100 different diffusion-tensor orientations and 
100 noise instances for each tensor orientation (i.e., total of 
10000 simulation instances). The code used to generate the 
simulations performed in this paper is available at https:// 
github. com/ LaSEEB/ dMRI- subsa mpling_ sims. git. Then we 
use DESIGNER [33] to perform constrained tensor fitting by 
restricting all apparent directional kurtosis to positive val-
ues, which is more robust when applied to low SNR images.

Finally, a 3-way repeated-measures ANOVA is performed 
to compare the effects of each subsampling method at dif-
ferent SNR conditions and on each diffusion parameter. 
The analyses are carried out using the JASP software (ver-
sion 0.16.1.0) with the following within-subjects factors: 

(1) Method  (OptEEM;  OptSC and  RandomTRUNC); (2) Sub-
set (full, subset95, subset90, subset80, subset70, subset60, 
subset50); and (3) SNR varied from 10 to 50. When inter-
actions between Method and Subset and/or SNR are iden-
tified as being statistically significant, a post-hoc analysis 
is performed to identify significant pairwise comparisons 
by applying paired t-tests. Bonferroni correction is used to 
account for multiple comparisons and significant effects are 
considered for adjusted P<0.05.

Human brain data

A group of 14 healthy women (29 ± 5 years) was recruited 
to undergo MRI scanning using the full multi-shell sam-
pling scheme protocol, as part of an ongoing study focused 
on episodic migraine, including longitudinal evaluations of 
both groups. Whole-brain multi-shell dMRI images were 
obtained using a 3T Siemens Vida scanner with a 64-chan-
nel radio-frequency receive head coil using 2D echo-planar 
imaging (EPI) sequence: TR/TE=6800/89 ms, 66 contiguous 
slices in-plane GRAPPA factor 2, simultaneous multi-slice 
(SMS) factor 3, 2 mm isotropic resolution. Additionally, we 
also acquired 3 volumes with opposite phase-encoding to 
correct b0-related distortions.

The original fully sampled datasets were pre-processed 
using the DESIGNER pipeline [33]. Firstly, denoising [34], 
Gibbs ringing correction [35]; and Rician bias correction 
[36] were performed using MRTrix tools [27]. Secondly, 
FSL was employed for B0-related and eddy-current geo-
metric distortions, as well as motion [37–39]; and thirdly 
bias field correction was performed with -ants option using 
MRTrix. Then, the subsets were generated using Python 
from the pre-processed diffusion MRI data to improve 
computational efficiency, given that pre-processing inde-
pendently after generating the subsets has shown reduced 
impact (data not shown). Since our simulations had revealed 
that  RandomTRUNC performed worse than  OptEEM and  OptSC, 
in vivo subsets were only produced for these two techniques. 
For each dataset and corresponding subsets, DKI fitting was 
performed using the unconstrained DESIGNER’s DKI fit-
ting to derive maps for 7 parameters: FA, MD, AD, RD, MK, 
AK and RK, since this fitting strategy was shown to produce 
more robust estimates for the SNR levels for typical in vivo 
diffusion MRI data [33]. For each level of subsampling and 
diffusion parameter, skeletonised maps were computed using 
FSL’s tract-based spatial statistics (TBSS) standard pipeline 
[40], where the mean WM skeleton was thresholded at 0.3 
[41].

Normalized histograms (number of bins: 1000; divided by 
the total number of voxels and bin width) of each diffusion 
parameter were computed across skeletonized maps using 
R (r-project.org/) to evaluate the effects of subsampling 
[41]. Then, we extracted from each histogram the following 

Table 1  Description of the total 
number of gradient directions 
acquired per shell (b=1000, 
and b=2000 s/mm2), for the 
complete (full) dataset and 
derived subsets (each dataset 
includes 8 non-diffusion 
volumes)

Dataset b = 1000 
s/mm2

b = 
2000 s/
mm2

Full 32 60
Subset95 30 57
Subset90 29 54
Subset80 26 48
Subset70 22 42
Subset60 19 36
Subset50 16 30

https://github.com/dipy/dipy-dki-paper/blob/master/Figures_simulations_noise_free.ipynb
https://github.com/dipy/dipy-dki-paper/blob/master/Figures_simulations_noise_free.ipynb
https://github.com/LaSEEB/dMRI-subsampling_sims.git
https://github.com/LaSEEB/dMRI-subsampling_sims.git
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characteristics: median, peak height, peak value, and peak 
width (difference between 95th and 5th percentiles [42]). 
Finally, to test the effects of Method  (OptEEM,  OptSC, and 
 RandomTRUNC) and Subsampling (full, subset95, subset90, 
subset80, subset70, subset60, subset50) on each diffusion 
parameter and metric, we used a 2-way repeated measures 
ANOVA (Bonferroni correction, P<0.05), on JASP (jasp-
stats.org/).

Results

Simulations

Figures 2 and 3 show the median and interquartile ranges of 
the different diffusion (i.e., FA, MD, RD and AD) and kurto-
sis (i.e., MK, AK and RK) parameters, respectively, derived 
using the three subsampling methods:  OptEEM;  OptSC and 
 RandomTRUNC, as a function of SNR. The simulations 

demonstrate that subsampling has a significant impact on all 
diffusion and kurtosis parameters depending on the subsam-
pling method, percentage of discarded volumes and level of 
SNR. Particularly, Figs. 2 and 3 show that the median values 
of estimated diffusion and kurtosis parameters deviate from 
their corresponding ground truth values as SNR decreases, 
likely due to Rician noise biases. Analogous behavior is 
observed for SNR 40 and 50, but not shown for simplic-
ity. To inspect the effects of subsampling independently to 
Rician biases, the relative error computed as the differences 
between the metric derived from each subset and the full 
dataset are also shown in Supplementary Figs. S1 and S2.

Table 2 displays an overview of the statistically sig-
nificant results from the post-hoc analyses, in comparison 
with the fully sampled metrics to assess the influence of 
the method and subsampling percentage. Table S1 shows 
the corresponding relative difference error (in percentage) 
for all diffusion parameters and subsampling methods at 
a common SNR of 20 (Supplementary Material). For all 

Fig. 2  Median and interquartile range of DKI diffusion parameters 
derived from simulated signals are displayed as a function of SNR. 
Median and interquartile range (over repetitions) of FA, MD, AD and 
RD parameters obtained from the full and subsampled data (subset95; 
subset90; subset80; subset70; subset60; and subset50) using the fol-

lowing methods:  OptEEM (in red),  OptSC (in blue), and  RandomTRUNC 
(in green), shown for multiple SNR levels (snr10; snr20; snr30; and 
snr1000); corresponding ground truth values are shown by a dashed 
blue line
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Fig. 3  Median and interquartile range of DKI kurtosis parameters 
derived from simulated signals are displayed as a function of SNR. 
Median and interquartile range of MK, AK and RK parameters 
obtained from the full and subsampled data (subset95; subset90; 
subset80; subset70; subset60; and subset50) using the following 

methods:  OptEEM (in red),  OptSC (in blue), and  RandomTRUNC (in 
green) are shown for multiple SNR levels (snr10; snr20; snr30; and 
snr1000); corresponding ground truth values are shown by a dashed 
blue line

Table 2  Summary of the pairwise comparisons between metrics 
extracted from subsampled and fully sampled data. Statistically sig-
nificant differences are highlighted by the arrows in the blue cells. For 
example, this table shows that FA estimates decreased compared to 
the fully sampled protocol when the data was subsampled with  OptSC 
and only 50% of the data (subset50) was used at noise levels rang-
ing from 20 to 50. Although FA values were similarly underestimated 
(↓) by  OptEEM, there was a significant difference between subset50 

and subset60 and the fully sampled protocol, at noise levels ranging 
from 20 to 40. Finally, at SNR values ranging from 10 to 50, the non-
optimized sampling method  (RandomTRUNC) revealed greater sensi-
tivity to subsampling (subset50, subset60, and subset70). Method = 
 OptEEM,  OptSC,  RandomTRUNC; Subsampling = subset95, subset90, 
subset80, subset70, subset60, subset50; SNR = 10, 20, 30, 40, 50, 
1000; ↑ Overestimated; ↓ Underestimated.
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diffusion parameters, three-way ANOVA results reveal sig-
nificant main effects of: Method, Subsampling, and SNR (P 
< 0.001). Furthermore, significant interactions between all 
factors are also found (P < 0.001). We observe that as the 
level of subsampling increased and the SNR level decreased, 
more biased estimates are produced for all methods. How-
ever, the different diffusion and kurtosis parameters are 
affected differently. Overall, the subsampling level has the 
least influence on FA estimates across all SNR levels and 
methods.

From these results, we can observe that FA values are 
underestimated in specific conditions. For instance, when 
using  OptSC and keeping only 50% of the data, FA is under-
estimated at SNR levels ranging from 20 to 30 (Figs. 2, 3, 
and Table 2). FA is also underestimated within the same 
SNR range, when using  OptEEM and subsampling over 40%. 
On the other hand, when  RandomTRUNC method (non-opti-
mized) is considered, we found that the FA is already biased 
for subsampling exceeded 30%, for all the SNRs considered.

Regarding MD, we observe consistent increases as 
the number of discarded volumes increased for all meth-
ods (Figs. 2 and 3). Specifically, our statistical analysis in 
Table 2 reveals biased estimates for subsampling levels over 
10%  (OptEEM; SNR: 10–50), 30%  (OptSC; SNR: 10–50), 
and 10%  (RandomTRUNC; SNR: 10–50). The bias is greatly 
increased when  RandomTRUNC is used, 4%, relative to when 
the  OptSC and  OptEEM estimation methods are employed: 
1.9% and 2%, respectively (SNR=20; subsampling of 50%). 
Moreover, AD and RD are overestimated compared to the 
full-length scheme for subsampling over 30%  (OptSC; SNR: 
10–50); and over 20% for both  OptEEM and  RandomTRUNC 
(SNR: 10–50).

Compared to diffusion parameters, kurtosis parameters 
exhibit a greater dependence on the subsampling level and 
SNR (Figs. 2 and 3). Subsampling just 10% of data (sub-
set90) is shown to be enough to produce overestimated MK 
estimates when using  OptSC and  RandomTRUNC, whereas 
removing merely 5% of the data (subset95) already affects 
the estimates when using  OptEEM (Table 2). A large bias is 
observed with respect to the fully sampled data when MK 
values are estimated from 50% of the data (subset50) using 
 RandomTRUNC 11% compared to 8% when using  OptSC and 
7% when using  OptEEM (SNR=20).

Human brain data

Figure 4 shows the skeletonised DKI parameter maps 
derived from full, subset70 and subset50 datasets of a rep-
resentative subject, while Fig. 5 shows overlaid histograms 
for the most impacted DKI parameter by data subsampled 
(i.e., RK) for the full dataset and data subsets—left, right 
for  OptEEM and  OptSC subsampling methods, respectively. 

The overlaid histograms of FA, MD, AD, RD, MK, and 
AK are shown in Supplementary Figures S3-S8. For the 
full dataset and its subsets, boxplots of histogram char-
acteristics for the diffusion and kurtosis parameters com-
puted across subjects are shown in Figs. 6 and 7, respec-
tively. These figures show that data subsampling can affect 
most of the histogram-based DKI metrics characteristics. 
Indeed, our results indicate that significant main effect of 
subsampling effects all histogram-based DKI metrics are 
present with exception for FA peak height, FA peak value; 
AD peak value; and RD peak height (as also supported by 
supplementary information Table S2). In fact, for such 
metrics, we found no significant main effect of Method, 
indicating that these metrics are robust to both subsam-
pling level and method (Supplementary Table S2). On the 
other hand, all histogram metrics for kurtosis parameters 
show a main effect of subsampling, being, therefore, more 
susceptible to subsampling bias than the histogram metrics 
for diffusion parameters.

Regarding the different sampling methods, several 
histogram-based DKI metrics showed a significant main 
effect of Method, namely: FA median and peak width; MD 
median, peak height and peak width; AD and RD median; 
MK median and peak value; AK median and peak height; 
and RK peak height (see Supplementary Table S2). A 
larger number of significant effects of the subsampling 
method could be detected for the diffusion parameters 
compared to the kurtosis parameters. Moreover, we also 
found significant interactions for the following histogram-
based DKI metrics: FA and MD median and peak width; 
AD median and peak height; RD median, peak width and 
peak value; MK median and peak value; AK median; 
and RK peak height and peak width. This implies that 
the effect of subsampling depends on the method applied, 
particularly for certain histogram-based DKI metrics. In 
contrast to our simulations, post hoc pairwise compari-
sons reveal that  OptSC provided more biased estimates for 
most measures than  OptEEM. Remarkably, we found that all 
histogram characteristics for FA are fairly stable regard-
less of the method and subsampling percentage. Indeed, 
subsampling had no effect on FA peak height or peak 
value, regardless of the method. Despite not being statis-
tically significant after multiple comparison correction, 
we observe a tendency in FA median and peak width for 
decrease when comparing the fully sampled and subsam-
pled data. Nonetheless, for all histogram characteristics 
for FA, their values deviate from the values of the fully 
sampled data by up to a maximum 5% error (see Table S3 
in Supplementary Material). The magnitude of deviations 
from the fully sampled data reference are summarized for 
all histogram characteristic, diffusion parameters and sam-
pling methods in Tables S3-S9 (Supplementary Material).
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Discussion

DKI has shown to be more sensitive than the conventional 
DTI to brain microstructural alterations in several conditions 
(e.g., brain development and aging [8, 43], mild traumatic 
injury [44–46] or ischemic stroke [47, 48]. DKI typically 
requires, however, longer acquisition times than DTI, mak-
ing this technique more prone to possible scan interruptions. 
While techniques are used to minimize the impact of using 
incomplete acquired data in diffusion MRI by optimizing 
the acquisition parameter sampling and ordering [13], their 
specific implications on the properties of histogram distri-
butions from DKI parameters have been poorly explored. 
In this study, the impact of data subsampling on the esti-
mates of histogram metrics extracted from DKI parameters 
using different methods is evaluated in both simulations and 
empirical human brain datasets.

Numerical simulations are first used to evaluate the sen-
sitivity of different DKI parameters to subsampling per-
centage and methods at different SNR levels. Our simula-
tions suggest that the absolute biases in DKI diffusion and 
kurtosis parameters increase with the level of subsampling 
and with decreasing SNR. As the SNR increases, the values 
obtained for all diffusion parameters approach the ground-
truth value and the impact of subsampling is reduced. For 
a typical SNR of 20, kurtosis parameters reveal lower reli-
ability with increasing levels of subsampling, presenting 
larger percentage biases compared to diffusion parameters. 
This effect is expected given that the estimation of kurtosis 
parameters is known to be more sensitive to noise than for 
the estimation of diffusion parameters [14, 23, 49], which 
could cost in spatial resolution for DKI [50]. However, these 
simulations showed that by shortening the acquisition by 30 
% (subset70) most of the errors are under 10% for all DKI 
parameters and methods.

Main findings

Our simulations also confirmed that subsampling diffusion 
MRI data by using  OptEEM and  OptSC is preferable to ran-
domly selecting gradient directions over the sphere. This 
result is in line with previous studies showing that methods 
for optimal acquisition ordering led to improved DTI and 
q-ball imaging reconstructions in partially acquired diffusion 
MRI data [13, 19, 24, 25]. Here, this effect is shown for the 
first time for DKI parameter estimates. Our simulations also 

reveal that  OptSC may produce less biased DKI estimates 
than  OptEEM.

Then, we evaluated the subsampling effects on in vivo 
data by extracting histogram-based DKI metrics from skel-
etonized diffusion and kurtosis parameters: median, peak 
height, peak width, and peak value. Our results reveal that 
subsampling effects may have different effects on distinct 
histogram characteristics. For instance, while the median, 
peak width, and value of FA histograms are shown to be 
relatively stable across subsampling levels, its peak width 
show a much larger dependence with the subsampling levels.

Regarding the subsampling effect across different DKI 
parameters, our in vivo results are in line with the results 
from simulations. For example, the profiles of FA median 
and peak width changes as function of the subsampling level 
presents a pattern analogous to the FA median and inter-
quartile range differences across different subsampling levels 
observed in the simulation (i.e., decrease with subsampling 
level). Results for the diffusion parameters (FA, MD, AD, 
and RD) extracted from DKI are also consistent with previ-
ous research. As in Hutchinson et al. [14], we observed a 
minimal dependency of FA with data subsampling [14]. For 
a typical SNR value of 20, the FA extracted from the simu-
lated signal exhibited a significant bias, with a maximum 
inaccuracy of 3% for subsets keeping 70, 60, and 50% of the 
data. This supports previous reports showing that at least 20 
distinct sampling directions (see Table 1) are required for a 
robust diffusion anisotropic estimate of anisotropy [15]. For 
the other diffusion parameters (MD, AD, and RD), biases 
observed for lower subsampling degrees (c.f. Table 2) are 
consistent with studies demonstrating that a larger number 
of directions is required to produce accurate estimates when 
these are not uniformly sampling the unit sphere [15].

Regarding the kurtosis parameters (MK, AK, and RK), 
results from in vivo data confirms that these parameters are 
more prone to the degree of data subsampling than their 
diffusion counterparts (MD, AD, RD), with RK being the 
least stable parameter. Despite this, our in vivo results shows 
that most of histogram characteristic for DKI metrics are 
relatively stable for up to 10–20% of data subsampling when 
 OptEEM and  OptSC subsampling methods are used. These 
results encourage, therefore, the use of acquisitions schemes 
with optimal acquisition ordering for DKI reconstruction 
as well as the use of histogram-based analysis in studies 
in which data acquisitions are prone to scan interruptions. 
While we do not expect reordering approaches to be able 
to mitigate the impact of motion in patient populations 
more likely to exhibit occasional random motion leading 
to rejection of individual volumes, our results suggest that 
kurtosis parameters would be more affected by data sub-
sampling resulting from outlier rejection. Given this, the 
biases reported here probably represent the lower bounds 
for motion impact corresponding to the best-case scenarios 

Fig. 4  Examples of axial slices showing skeletonised DTI (FA, 
MD, AD and RD) and DKI (MK, AK and RK) maps obtained from 
the fully sampled data (on the left) and two different subsampling 
approaches  (OptEEM and  OptSC) for two representative subsampling 
levels (subset70 and subset50). MD, AD and RD maps are in  mm2s−1

◂
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of the least––damaging data rejection, further investigations 
would be required to confirm this hypothesis.

Limitations and future studies

When comparing simulations and in vivo results, it is impor-
tant to bear in mind that the variance observed has different 
sources—while the variance in simulations only reflects the 
impact of noise, variance in the boxplots for the human data 
also captures biologic differences across subjects. Further-
more, the histograms were extracted from the TBSS skeleton 
built for this specific sample. As the skeleton aims to char-
acterize the center of the major white matter pathways, and 
its construction involves a search along a wider region, this 
may potentially explain why the in vivo FA median values 
were very stable across all considered subsampling levels.

In addition to the technical difficulties that can arise 
when scanning patients, it is also important to devise 
strategies to prevent the loss of the entire dataset or miti-
gate the impact of acquiring incomplete data [51]. It is 

necessary to find a trade-off between having an optimal 
temporal sequence of spaced-out distribution of gradient 
orientations and having a relatively fast acquisition. The 
specific scenarios must be determined a priori to select 
more effectively the subsets in post processing. Our find-
ings indicate that using an optimization scheme for select-
ing (and ordering) gradient directions performs better than 
random, with no clear differences between the two sub-
sampling methods tested. It is possible that this choice 
must be made while taking further data analysis processes 
into account. Therefore, when planning a novel research 
design (e.g., multi-session studies) it is crucial to take into 
account numerous significant factors beyond the chosen 
experimental protocol. Here we investigated the impact 
on: (1) different DKI parameters (FA, MD, MK, AD, AK, 
RD, and RK); and (2) different distribution characteristics 
(median, peak value, peak height, and peak width). Other 
forms of analysis (e.g., roi-based, voxelwise) may need a 
different number of volumes to obtain robust estimates and 
so should also be investigated in future research.

Fig. 5  Illustrative examples 
of overlapping whole-brain 
histograms derived from fully 
and subsampled RK maps using 
both methods:  OptEEM (in red) 
and  OptSC (in blue); black lines 
highlight the histogram-based 
metrics (median and peak 
width). Each row corresponds to 
a different subject
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Fig. 6  Boxplots showing the distributions of FA, MD, AD and RD 
maps histogram-metrics: median, peak height, peak width and peak 
value; which were obtained from the full and corresponding subsam-

pled data (subset95; subset90; subset80; subset70; subset60; and sub-
set50) using both methods:  OptEEM (in red) vs  OptSC (in blue). Met-
rics showing significant interactions are highlighted by yellow boxes

Fig. 7  Boxplots showing the distributions of MK, AK and RK maps 
histogram-metrics: median, peak height, peak width and peak value; 
which were obtained from the full and corresponding subsampled 

data (subset95; subset90; subset80; subset70; subset60; and subset50) 
using both methods:  OptEEM (in red) vs  OptSC (in blue). Metrics 
showing significant interactions are highlighted by yellow boxes
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The generalisability of these results is subject to certain 
limitations. For instance, the selection of only female vol-
unteers for this study resulted from the fact that the data was 
collected as part of a larger ongoing project that aimed to 
investigate white matter structure changes in female men-
strual migraine patients when compared to gender-matched 
healthy controls. Although an interaction between sex and 
subsampling is not anticipated, future studies could evalu-
ate a less homogeneous sample. Moreover, in this study, we 
only examined diffusion data from a typical DKI acquisi-
tion schemes of two-shells (b-values of 1000 and 2000 s/
mm2) [20, 21]; however, in future studies we expect that 
our results could be generalized to other DKI schemes with 
different set of b-values. For instance, in future work, in 
addition to higher b-value, it could be useful to also consider 
lower b-values that better captures the effects of free-water 
in the brain [52]. Another factor that was not considered in 
this study is the number of bins used to compute the his-
togram (for example, using less bins to compute the histo-
grams might result in more stable metrics to subsampling, 
however, it might be insufficient to capture enough informa-
tion to differentiate between groups). One other aspect that 
should also be addressed in future is to obtain in vivo data 
from a sampling scheme that was originally produced using 
SC and compare both subsampling strategies, as the fact that 
we started from a sampling scheme optimized using EEM is 
likely to impact the performance of the SC method. On the 
other hand, our study can also be expanded to other diffusion 
models beyond DKI. The inherent complexity of the model 
in any approach requires the collection of a sufficient num-
ber of diffusion-weighted volumes to ensure that sufficient 
information is obtained for fitting the model [14].

Conclusion

In this study, we evaluated the effects of data subsampling 
in DKI parameters and respective metrics extracted from 
histogram-based analysis. By comparing three different sub-
sampling strategies  (OptEEM;  OptSC; and  RandomTRUNC), we 
demonstrated that the DKI estimates obtained from opti-
mized subsampling strategies  (OptEEM and  OptSC) were 
less susceptible to errors in comparison to the alternative 
non-optimized scheme  (RandomTRUNC). Overall, the sub-
sampling showed greater effect on kurtosis parameters com-
pared to diffusion parameters and the degree of bias showed 
to depend not only by the subsampling percentage and 
subsampling method but also on the data SNR. Although 
our simulations demonstrated that kurtosis parameters are 
more susceptible to biases than diffusion parameters, the 
in vivo findings indicate that most of the histogram char-
acteristics for kurtosis parameters remain relatively stable 
even with data subsampling of up to 10–20% when optimal 

subsampling methods are employed. Consequently, this 
study suggests the suitability of using acquisition schemes 
with optimal acquisition ordering for DKI reconstruction 
and employing histogram-based analysis in studies where 
data acquisitions may be susceptible to scan interruptions.
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