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Abstract
Objective To simulate the magnetic and electric fields produced by RF coil geometries commonly used at low field. Based 
on these simulations, the specific absorption rate (SAR) efficiency can be derived to ensure safe operation even when using 
short RF pulses and high duty cycles.
Methods Electromagnetic simulations were performed at four different field strengths between 0.05 and 0.1 T, correspond-
ing to the lower and upper limits of current point-of-care (POC) neuroimaging systems. Transmit magnetic and electric 
fields, as well as transmit efficiency and SAR efficiency were simulated. The effects of a close-fitting shield on the EM fields 
were also assessed. SAR calculations were performed as a function of RF pulse length in turbo-spin echo (TSE) sequences.
Results Simulations of RF coil characteristics and  B1

+ transmit efficiencies agreed well with corresponding experimentally 
determined parameters. Overall, the SAR efficiency was, as expected, higher at the lower frequencies studied, and many 
orders of magnitude greater than at conventional clinical field strengths. The tight-fitting transmit coil results in the highest 
SAR in the nose and skull, which are not thermally sensitive tissues. The calculated SAR efficiencies showed that only when 
180° refocusing pulses of duration ~ 10 ms are used for TSE sequences does SAR need to be carefully considered.
Conclusion This work presents a comprehensive overview of the transmit and SAR efficiencies for RF coils used for POC 
MRI neuroimaging. While SAR is not a problem for conventional sequences, the values derived here should be useful for 
RF intensive sequences such as T1ρ, and also demonstrate that if very short RF pulses are required then SAR calculations 
should be performed.

Keywords Low field MRI · Specific absorption rate · Transmit efficiency · Electromagnetic simulations · Point-of-care 
MRI

Introduction

The development of low-field point-of-care (POC) MRI sys-
tems has grown significantly in recent years [1, 2], with both 
academic and commercial groups active in this endeavor 
[3–21]. Many in vivo studies using POC systems have been 
performed on C- or H-shaped permanent magnet arrange-
ments, either using a commercial Hyperfine unit [3–7, 12] 
or custom-built research systems [20, 21]. The other major 
geometry used for in vivo POC studies is Halbach-based, 

either with an inbuilt gradient [8, 9, 11] or a homogene-
ous field [14, 17–19, 22]. Field strengths vary from ~ 0.05 to 
0.1 T for these types of POC neuroimaging systems.

Under conditions in which tissue conductivity is fre-
quency independent, and the RF skin depth is large com-
pared to the dimensions of the object, then the specific 
absorption rate (SAR) scales as the square of the frequency 
[23], and so the SAR at 50–100 mT is many hundreds of 
times lower than at 1.5 T, for example. Indeed, most pub-
lications simply state that SAR is much less or even not a 
problem at low field. However, in practice, there are limit-
ing issues, based on the geometry of POC systems, which 
may reduce this factor of many hundreds. Due to limited 
space, the RF transmit coils are typically tight fitting around 
the head, which means that the strong local electric fields 
very close to the coil conductors can penetrate into the skull. 
Most RF coils are variations on a solenoidal geometry, 
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which produces relatively high conservative electric fields. 
While this effect can be reduced by increasing the diam-
eter of the RF coil, the limited space within POC systems 
means that the gap between the RF coil and RF shield would 
then become extremely small, significantly decreasing the 
transmit efficiency of the coil and requiring more power to 
be supplied, as well as decreasing the signal-to-noise ratio 
(SNR). An additional factor is that the  B0 homogeneity over 
the brain in POC systems is many orders of magnitude lower 
than for conventional whole body superconducting clinical 
magnets, and, therefore, shorter RF pulses are typically 
required to excite the relatively large bandwidth of the pro-
ton resonances: shorter pulses require higher  B1

+ strength 
for a given tip angle, and this results in an increased SAR. 
Even considering all of these factors, SAR is still much less 
than at clinical field strengths, but given that one of the 
advantages of low field is that high  B1

+ fields can be used, 
for example, to produce long echo trains in turbo-spin echo 
(TSE) sequences with full 180° refocusing pulses, as well 
as high power pulses for magnetization transfer (MT) and 
spin-lock (T1ρ) contrast, it is important to have quantitative 
measures of SAR even at low field.

A few studies on SAR at low fields have been reported. 
Hayden et al. [24] performed an experimental study to esti-
mate the average SAR over the body over a frequency range 
of 30 kHz to 1.25 MHz. They used a technique in which 
body losses were estimated via changes in the quality (Q) 
factor of the RF coil when the volunteer was positioned 
inside [25, 26]. They specifically considered the case of a 
linearly polarized time-varying  B1

+ field applied normal to 
the sagittal plane of the human body. Their results showed 
that the average SAR, as predicted, scaled as the square of 
the frequency over this frequency range. As they noted, their 
measurements estimate average SAR rather than localized 
measurements. Van Speybroek et al. [18] performed numeri-
cal simulations based on the analytical equations derived by 
Bottomley et al. for perfectly uniform excitation fields [27], 
and showed how the SAR varies with inter-pulse time and 
pulse length in TSE sequences.

In this paper, we performed electromagnetic (EM) sim-
ulations at four different fields 47 mT (2.0 MHz), 64 mT 
(2.7 MHz) relevant to Hyperfine systems, 75 mT (3.2 MHz) 
and 100 mT (4.3 MHz), using two different RF coil geome-
tries, a semi-elliptical helix [28] and a circular saddle geom-
etry, both designed for adult neuroimaging. Both coils were 
designed to be very close fitting to the head, as is the practi-
cal case for the limited space available on POC systems. The 
parameters characterized were the transmit magnetic field 
efficiency  (B1

+ per square root Watt input power), transmit 
electric field for the same input power, SAR (both 1 g aver-
aged and 10 g averaged), and SAR efficiency  (B1

+ divided 
by the square root of the maximum SAR). Experimental  B1

+ 
maps were acquired to compare with simulation results. In 

addition, the effects of an RF shield were quantified in terms 
of transmit efficiency and SAR efficiency. Finally, we also 
computed 10 g and whole head SAR for TSE sequence with 
different scan parameters.

Materials and methods

Electromagnetic simulations

Electromagnetic (EM) simulations were performed in CST 
Microwave Studio (CST GmbH, Darmstadt, Germany). 
Two RF coils were simulated. The first was a semi-elliptical 
helix, consisting of 15 turns of copper wire of 1.5 mm diam-
eter, with one capacitive segmentation halfway along the 
wire length. The coil was tuned to its respective Larmor 
frequency using a lumped capacitor (Ct) positioned at the 
mid-turn and matched to 50 Ω using a single capacitor (Cm) 
at the input port in series with an ideal voltage source. The 
coil had dimensions 180 mm width, 240 mm height, and 
170 mm depth. For simulations to determine the effect of 
the RF shield, the shield was 300 mm in diameter with a 
length of 350 mm and a copper thickness of 60 mm. The sec-
ond coil was a saddle geometry with 200 mm diameter and 
180 mm length, consisting of three turns of 1.5 mm diameter 
copper wire and one capacitive segmentation at the centre. A 
virtual 34-year-old male model, Duke, from the IT IS Virtual 
Family was positioned inside the RF coil and only the head 
was included in this simulation [29]. The center of the pineal 
gland was taken as the center of the brain. With respect to 
this point, the centre of the coil is 15 mm toward the bottom 
of the head and 25 mm toward the front of the head. These 
displacements correspond to the physical situation in our 
Halbach array system. Figure 1 shows the setups for the EM 
simulations for the two different RF coil geometries with 
model inside. The head model has an isotropic resolution of 
1 mm × 1 mm × 1 mm and contains 196 × 310 × 176 voxel 
elements. This model is categorized into more than 40 dif-
ferent tissue types with 25 dielectric property values. To 
simplify the number of dielectric properties in the model, 
the same electric conductivity and permittivity were con-
sidered for tissues in the same category (see supplementary 
Table 1), which led to 18 different dielectric values for the 
tissues; for example the eye, sclera, cornea, and vitreous 
were considered to have the same EM properties. To accel-
erate the simulation by reducing number of mesh cells, only 
the head part of model was considered in simulation (if the 
torso is also included then results showed a very small differ-
ence of ~ 4%). Electric and open boundary conditions were 
set in all directions, and the computations were ended at an 
accuracy of − 40 dB. The time domain solver was used with 
1,960,000 hexahedral mesh elements and 1 W input power 
was considered for all simulations.
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Although conductivity varies very little over the fre-
quency range considered here [24], the large variation in 
efficiency of dielectric relaxation mechanisms at low fre-
quencies means that the relative permittivity does change 
significantly, with higher values at lower frequencies 
[30]. Table 1 lists the relevant parameters for the main 
brain constituents (white matter, gray matter and cerebro-
spinal fluid) used in the simulations.

For each field strength, the coil reflection coefficient 
(S11),  B1

+field, E field, SAR  (SAR1g) averaged over 1 g 
of tissue, SAR  (SAR10g) averaged over 10 g of tissue, 
transmit efficiency and SAR efficiency were calculated.

Experimental B1
+ mapping

In order to validate the simulation data, a  B1
+ map from 

the semi-elliptical helix coil was acquired at 47 mT and 
compared with simulation data at the same frequency. The 
magnet, gradient and RF coil system have been extensively 
described in the literature [14, 22]. A three-dimensional 
double angle mapping (DAM) method was used [31] with 
two 3D gradient echo (GRE) sequences with flip angles 
of 60° and 120°, TR/TE 500  ms/6  ms, field-of-view 
200 × 200 × 200  mm3, ≈ 3 × 3 × 3  mm3 spatial resolution, 
acquisition bandwidth 50 kHz over FOV, and RF pulse 
duration 100 µs. The  B1

+ maps were calculated on a pixel-
by-pixel basis from the corresponding tip angle (α) maps 
using the formula:

where S1 and S2 are the signal intensity of images acquired 
60° and 120°, respectively, and � is the RF pulse duration 
time. The data were acquired from a head phantom filled 
with copper sulphate doped water with T1 ≈ 140 ms.

(1)� = cos−1
(

S2

2S1

)

= �B
+

1
�,

Fig. 1  Schematics of the simulated semi-elliptical helix coil, a and saddle coil, b with sagittal, coronal, and transverse cross-sections of the 
human head model

Table 1  Parameters used in the electromagnetic simulations [30]

Magnetic field strength (mT) 47 63.5 75 100
Larmor frequency of 1H (MHz) 2 2.72 3.19 4.25
Permittivity
 White matter 341 297 278 248
 Gray matter 656 586 552 492
 CSF 109 109 109 109

Conductivity (S/m)
 White matter 0.112 0.117 0.12 0.127
 Gray matter 0.18 0.19 0.2 0.27
 CSF 2 2 2 2
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Results

Comparison of simulated and experimental RF coil 
characteristics

Simulated  S11 reflection coefficients of the semi-elliptical 
spiral RF coils at the four different frequencies are shown 
in Fig. 2, which shows almost 99% of the power transmit-
ted to the coil. Simulations were compared with experi-
mental measurements for the coil at 47 mT, showing good 
agreement.

Simulations of magnetic and electric fields

Figure 3 shows the simulated  B1
+ efficiency (microTesla per 

square root Watt input power) and electric field (Volts/metre 
per square root Watt input power) for the semi-elliptical spi-
ral coil for the four different frequencies. The  B1

+ efficiency 
patterns show the expected high homogeneity throughout the 
brain region, with higher values very close to the conductor 
surfaces and a gradual drop-off in the head-foot direction at 
the end of the coil. The transmit efficiency drops as a func-
tion of frequency, but the relative distribution is almost same 
over all frequencies. Normalized difference maps shows only 
a 3% spatial variation between the maps obtained at 47 mT 
and 100 mT. In terms of the electric field, the pattern is 
also similar across all frequencies (only 1% difference in 

the spatial distribution), with the absolute values increasing 
with frequency.

Comparison of simulated and experimental transmit 
magnetic fields

Figure 4 shows the measured and simulated  B1
+ maps in 

three orthogonal planes at 47 mT. The one-dimensional pro-
jection plots show reasonable agreement between the experi-
mental and simulation data, with a slightly sharper drop-off 
in the head–foot direction seen in the experimental data.

Simulations of SAR and SAR efficiency

Figure 5 shows simulated  SAR10g and  SAR10g efficiencies at 
the four different field strengths (corresponding figures for 
 SAR1g can be found in the supplementary material). There 
are regions of elevated SAR very close to the conductors of 
the RF coil, but even these values are low compared to those 
found at clinical field strengths. As expected the highest 
SAR efficiency is in the centre of the brain, where the E field 
is lowest, and the SAR efficiency decreases with frequency. 
The values of SAR efficiency, in the several hundreds of 
microtesla per square root Watts/kg, can be contrasted with 
typical values reported at 7 T of only 1–2 microtesla per 
square root Watts/kg [32].

Fig. 2  Simulated S11 at four 
field strengths (frequencies) 
showing reflection coefficients 
less than − 30 dB. a Compari-
son between simulated S11 and 
measured S11
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Simulated SAR for TSE sequences

TSE sequence with a large number of echoes and full 180◦ 
refocusing pulses can be run at low field because of the 
lower SAR. Using the equations outlined in Bottomley [27] 
and used in similar calculations by Van Speybroeck [18], the 
SAR can be expressed as:

where �1 and �2 represent the excitation and refocusing tip 
angles, � the gyromagnetic ratio, τ the pulse duration, TR 
the repetition time, and ETL the echo train length, which is 
equal to the number of refocusing pulses. The SAR and B+

1
 

from previously shown simulations were used as the inputs 
to equation [2]. In this case, SARTSE was computed for all 

(2)
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frequencies over the region with the highest  SAR10g, as 
denoted by the blue arrow in Fig. 5. The results of this com-
putation are shown in Table 2 for different RF pulse dura-
tions. These calculations assumed a TR of 300 ms, which 
is approximately the T1 of brain tissue at these frequencies. 
In addition, the “worst-case” average SAR over whole head 
using an ETL of 128 was computed as 1.1, 2.2, 3.3, and 6.8 
W/kg at 47 mT, 63.5 mT, 75 mT, and 100 mT, respectively.

In the particular case of neuroimaging on our 47 mT sys-
tem, we note that the input power required for a 100 ms 90° 
RF pulse is almost exactly 1 W, and so the values in the table 
can be used directly.
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Fig. 3  a Simulated transmit efficiency  (B1
+ per square root input 

power) in three central planes in the head model. The axial plane was 
positioned at the centre of the brain slightly above the eyes. b Cor-
responding electric field distributions calculated per square root input 

power. c, d difference between the normalized map of 47 mT and 100 
mT in percent (each map is normalized with respect to its maximum 
value)
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Effect of the RF shield

As mentioned previously, the compact nature of head scan-
ners means that the conductors of the RF coil are very close 
to the inner Faraday shield, and this results in a loss in the 
transmit efficiency due to the redistribution of the  B1

+ field 
between the shield and RF coil [33]. Simulations were per-
formed using an unshielded coil and one with a circular RF 
shield with diameter 300 mm, i.e., a 30 mm gap to the RF 
coil in the long elliptical axis, and a 60 mm distance in the 
short elliptical axis. Figure 6 shows that the  B1

+ efficiency is 
reduced by approximately 25% by the presence of the shield. 
However, there are negligible changes in the SAR efficiency.

Comparisons with saddle coil geometry

Another coil geometry which has occasionally been used for 
low-field imaging is a saddle or birdcage coil [34]. Although 

the sensitivity of such coils, which are necessarily operated 
in linear mode, is lower than that of a solenoid, they are also 
less sensitive to external noise, and having low inductance 
also have lower conservative electric fields. Figure 7 shows 
the simulated transmit efficiency, electric field,  SAR10g 
and  SAR10g efficiency for the coil at the highest frequency 
(4.25 MHz) in this study. The results show a much lower 
transmit efficiency than the semi-elliptical spiral coil, as 
expected, but similar SAR efficiency.

Discussion

This work has simulated a number of different parameters 
for POC MRI systems with magnet strength ≤ 100 mT fields 
in a human head model, with values agreeing well with 
selected experimentally measured parameters. Although not 
explicitly covered in this paper, the results of the simulations 

Fig. 4  a A comparison between 
simulated and measured 
transmit efficiency in three 
central planes. b Phantom and 
constructed coil. c, d The corre-
sponding 1D plots in the sagittal 
and coronal planes
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also allow an accurate estimate of the SNR achievable using 
such coils based on the principle of reciprocity [35].

In this low-frequency regime, the electric field and the 
SAR are highest toward the outside of the head, with a 
very low value near the centre of the head. The areas of 
maximum SAR appeared in regions that were very close 

to the coil conductors such as the nose and skull, which 
are not considered to be thermally sensitive structures. 
These SAR “hot spots” could be minimized by increasing 
the diameter of the RF coil, but this would also reduce the 
transmit efficiency due to the presence of mirror currents 
on the shield.

Fig. 5  a 10 g-averaged SAR map per 1 W of coil input power through 
the slices in orthogonal planes which contain the highest SAR values. 
b SAR efficiencies corresponding to each 10 g-averaged SAR map on 

the left. c, d Difference between the normalized map of 47mT and 
100 mT in percent (each map normalized to its maximum)

Table 2  SAR estimation 
for TSE sequence based on 
10 g-averaged SAR map with 
different 180° pulse durations 
and ETLs

Pulse length τ = 10 µs τ = 100 µs τ = 1000 µs

ETL 8 32 128 8 32 128 8 32 128

SAR (W/kg)
 100 mT 0.62 2.50 10.30 0.06 0.25 1.0 0.006 0.03 0.10
 75 mT 0.35 1.41 5.89 0.03 0.14 0.59 0.004 0.01 0.06
 63.5 mT 0.25 1.16 4.66 0.02 0.12 0.47 0.003 0.01 0.05
 47 mT 0.13 0.52 2.91 0.01 0.05 0.29 0.001 0.005 0.03
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As expected, the SAR efficiency in this frequency range 
is orders of magnitude higher than that at clinical field 
strengths. This confirms the common statements that SAR 
concerns can be essentially ignored for most POC MRI 
systems. However, even in this very low-frequency regime, 
there are limits, for example, in the application to TSE 
sequences using very short 180° pulses and long echo train 
lengths. Table 2 results shows in case of using very short RF 
pulses the SAR does need to be considered carefully.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10334- 023- 01073-3.
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