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Abstract
Objective Deconvolution is an ill-posed inverse problem that tends to yield non-physiological residue functions R(t) in 
dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). In this study, the use of Bézier curves is proposed 
for obtaining physiologically reasonable residue functions in perfusion MRI.
Materials and methods Cubic Bézier curves were employed, ensuring R(0) = 1, bounded-input, bounded-output stability and 
a non-negative monotonically decreasing solution, resulting in 5 parameters to be optimized. Bézier deconvolution (BzD), 
implemented in a Bayesian framework, was tested by simulation under realistic conditions, including effects of arterial delay 
and dispersion. BzD was also applied to DSC-MRI data from a healthy volunteer.
Results Bézier deconvolution showed robustness to different underlying residue function shapes. Accurate perfusion esti-
mates were observed, except for boxcar residue functions at low signal-to-noise ratio. BzD involving corrections for delay, 
dispersion, and delay with dispersion generally returned accurate results, except for some degree of cerebral blood flow 
(CBF) overestimation at low levels of each effect. Maps of mean transit time and delay were markedly different between 
BzD and block-circulant singular value decomposition (oSVD) deconvolution.
Discussion A novel DSC-MRI deconvolution method based on Bézier curves was implemented and evaluated. BzD pro-
duced physiologically plausible impulse response, without spurious oscillations, with generally less CBF underestimation 
than oSVD.

Keywords Magnetic resonance imaging · Algorithms · Cerebral circulation · Brain/blood supply · Computer simulation

Introduction

The commonly used perfusion-related parameters cerebral 
blood flow (CBF), cerebral blood volume (CBV) and mean 
transit time (MTT) are of value in the assessment of, for 
example, ischemic threshold level and ischemic penumbra 
in stroke [1, 2], as well as for characterization and grading 
of brain tumors [3]. In this context, dynamic susceptibility 

contrast magnetic resonance imaging (DSC-MRI) is a well-
established technique for assessment of parameters related 
to cerebral perfusion and microvasculature [4, 5].

DSC-MRI is based on the injection of contrast agent 
(CA), with subsequent measurement of the MRI signal loss 
during the CA bolus passage through the tissue of interest. 
Quantification of perfusion parameters from DSC-MRI data 
is based on general tracer kinetic theory, assuming that the 
measured tissue concentration time curve (CTC), calculated 
from the signal curve, can be expressed as the convolution 
of the arterial input function (AIF) and the tissue residue 
function scaled with CBF (i.e., the tissue impulse response 
function) [4–6]. Inference of CBF and MTT from DSC-
MRI, thus, requires accurate voxel-wise deconvolution of 
the observed CTC with the measured AIF. Furthermore, the 
shape of the tissue residue function reflects microvascular 
tracer retention and capillary velocity distribution [7, 8], and 
the residue function may contain information about flow het-
erogeneity and tissue oxygen extraction [9].
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Deconvolution is, in general, an ill-posed inverse prob-
lem where slight alterations in the CTC may translate to a 
dramatic influence on the residue function [8]. Furthermore, 
effects on arterial bolus delay and dispersion occurring 
between the site of the AIF measurement and the arterial 
inlet of the tissue of interest need to be considered in the 
deconvolution procedure [10–12]. Ideally, the applied AIF 
should reflect the arterial input to each tissue voxel being 
analyzed, but the AIF is typically sampled in a major artery 
(such as the middle cerebral artery or its branches) to mini-
mize partial volume effects [13]. Numerous deconvolution 
techniques have previously been proposed in the literature 
[e.g. 5, 7, 8, 14, 15]. Fourier techniques are insensitive to 
bolus delay but have been shown to poorly estimate high 
flow rates coupled with noise [5]. The algebraic, model-
independent singular value decomposition (SVD) tech-
nique was shown to be a robust alternative [5], and Wu et al. 
later introduced the delay-insensitive block-circulant SVD 
(oSVD) version [15]. Apart from CBF underestimation in 
many practical situations, a major weakness of SVD-based 
deconvolution methods is the induction of non-physiolog-
ical oscillations in the obtained residue function [5]. Vari-
ous regularization techniques have been adopted to reduce 
these oscillations, for example, SVD with a fixed threshold 
for the singular values, oSVD incorporating an oscillation 
index [15] and Tikhonov regularization [16].

Mouridsen et al. proposed a vascular model (VM) which 
produces smooth residue functions and is believed to provide 
more accurate perfusion estimates than SVD-based methods 
[8]. The VM was implemented in a Bayesian framework 
modeling tracer transit times with a gamma probability 
distribution function. Two parameters (one for shape and 
another for scale) describe the distribution. Consequently, 
the resulting residue functions belong to a restricted family 
of shapes, which may impose restrictions on the applicabil-
ity and versatility of the VM approach.

Mehndiratta et al. introduced a non-parametric control 
point interpolation (CPI) deconvolution method, imple-
mented in a Bayesian framework [7]. With the aid of control 
points, CPI parallels the flexibility in residue function shape 
that is obtained with non-parametric techniques. Impos-
ing constraints on the control points allows discrimina-
tion against non-physiological residue functions. However, 
CPI exhibits some degree of oscillatory behavior and CBF 
overestimation in the case of a boxcar residue function [7]. 
A general cause for concern is that the requirement of the 
residue function to pass through all control points leads to 
a large number of optimisation parameters (23 when using 
twelve control points with correction for arterial delay).

In this work, we propose a non-parametric deconvolu-
tion technique using Bézier curves, referred to as Bézier 

curve deconvolution (BzD). Bézier curves were indepen-
dently developed by de Casteljau and Bézier in 1959–60 
for generation of smooth curves and surfaces for car design 
[17, 18]. Bézier curves are also frequently used in computer 
aided graphics design [19]. The main feature of the approach 
is the use of control polygons where, instead of defining a 
curve using points on it, points near it are used. Contrary to 
CPI, where the curve must pass through all control points, 
a Bézier curve needs only be bounded by the convex hull 
of its control points. The theory and implementation of 
Bézier curve deconvolution is shown, and the concept is 
evaluated using simulated data, including the presence of 
arterial delay and dispersion and different shapes of the tis-
sue residue function. Proof-of-concept in vivo validation 
is accomplished by re-evaluation of DSC-MRI data from a 
healthy volunteer.

Theory

Concentration and tracer kinetic theory

The assumption of a linear relationship between the change 
in transverse relaxation rate ΔR2∗ and concentration C(t) 
implies the following relationship [4, 5]:

where S(t) is the MRI signal at time t and S0 is the baseline 
or pre-CA signal.

The AIF is the arterial concentration of contrast agent 
Ca(t) representing the intravascular tracer delivery to the 
local capillary network. The tissue tracer concentration C(t) 
is proportional to the convolution of Ca(t) with the tissue 
impulse response function, i.e., the tissue residue function 
R scaled by the CBF [20]:

where � is a constant accounting for the difference in 
hematocrit levels between capillaries and large vessels 
and the brain tissue density [21]. Estimation of the product 
CBF ⋅ R(t) via deconvolution provides an estimate of CBF.

MTT can be estimated as the area under the residue func-
tion [22]:

and CBV is given by Eq. 4 [4]:

(1)C(t) ∝ ΔR2∗ = −
1

TE
ln

(

S(t)

S0

)

,

(2)

C(t) = 𝜅 ⋅ CBF ⋅

(

Ca(t)⊗ R(t)
)

= 𝜅 ⋅ CBF ⋅ ∫
t

0

Ca(𝜏) ⋅ R(t − 𝜏)d𝜏,

(3)MTT = ∫
∞

0

R(t)dt,
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Bolus delay and dispersion

With a delay of � between the measured AIF and the true 
AIF at the local tissue inlet, the measured AIF is given by 
C

�

a
(t) = Ca(t − �) , i.e., the AIF shape is retained [15]. Bolus 

dispersion, on the other hand, modifies the shape and ampli-
tude of the AIF and can be described as a convolution with 
a vascular transport function (VTF) [10, 11]. When incor-
porating the effects of bolus delay and dispersion, Eq. 2 can 
be modified as follows:

Bézier curve deconvolution

Consider the Bernstein polynomials of degree n [23]:

where i = 0, 1, 2,… , n and � ∈ [0, 1] . A Bézier curve of the 
nth order is a linear combination of these polynomials:

where Pi is control point i . Expansion for the cubic case 
( n = 3 ) yields

The control points are effectively weights that determine 
the influence of each basis polynomial. Equivalently, each 
point on the Bézier curve is a weighted average of the con-
trol points. According to Eq. 8, the Bézier curve invariably 
begins at P0 and ends at Pn . Intermediate control points need 
not be contained by the curve, but the curve lies wholly 
within the convex hull of the control points. Figure 1 pro-
vides an illustration of this concept using cubic Bézier 
curves with two different distributions of control points. 
The clear difference between the two shapes in Fig. 1a and 
b highlights the versatility of these curves. Figure 1c shows 
the third-order Bernstein polynomials that form the basis for 
the cubic Bézier curves. It is important to note that a Bézier 
curve is fully specified by its control points.

In the context of deconvolution, the Bézier curve repre-
sents the residue function, and the control points constitute 
parameters to be determined from input data as illustrated by 
Fig. 2. Parameter fitting is accomplished by comparison of 

(4)CBV = � ⋅

∫ ∞

0
C(t)dt

∫ ∞

0
Ca(t)dt

.

(5)C(t) = 𝜅 ⋅ CBF ⋅

(

Ca(t − 𝛿)⊗ VTF(t)⊗ R(t)
)

.

(6)Bn
i
(�) =

(

n

i

)

� i(1 − �)n−i,

(7)Bn(�) =

n
∑

i=0

Bn
i
(�) ⋅ Pi,

(8)
B3(�) = (1 − �)3P0 + 3(1 − �)2�P1 + 3(1 − �)�2P2 + �3P3.

the modeled CTC, as depicted in Fig. 2, with the observed 
CTC obtained from the measured DSC-MRI signal [11]. 
BzD assumes a model-based approach to CBF quantifi-
cation but allows a large distribution of residue function 
shapes within the constraints specified in the optimisation 
procedure.

Materials and methods

Implementation

Deconvolution methods were implemented in MATLAB 
using in-house written algorithms. For purposes of com-
parison, block-circulant SVD (oSVD) deconvolution was 
implemented according to Wu et al. [15].

BzD was implemented in a Bayesian framework adopting 
the maximum a posteriori (MAP) approach. The measured 
signal was converted to concentration using Eq. 1. Following 
the approach in [9], it was assumed that measurements of 
concentration over time followed the non-linear observation 
model:

where Yt is the observed concentration at time t , f  represents 
the right-hand side of Eq. 2, � denotes model parameters 
and � is an observational error belonging to a zero-mean 
Gaussian distribution. Instead of evaluating the entire poste-
rior distribution, optimisation was performed by seeking the 
mode. Particularly, the optimal parameters were determined 
by minimizing the negative logarithm of the factorized pos-
terior [24].

Cubic Bézier curves were used throughout this work. 
Higher-order curves were associated with elevated compu-
tational expense without apparent improvement of outcome 
(results not shown). The residue function was forced to obey 
R(0) = 1 by fixing the first control point at P0 = [0, 1] . In 
addition, to ensure bounded-input, bounded-output stabil-
ity, the magnitude of the last control point was fixed at zero 
( P3,y = 0 ). The x-coordinate remained free. A penalty term 

(9)Yt = f
(

Ca,�
)

+ �t,

Fig. 1  Illustration of the concept of Bézier curves. a and b show 
cubic Bézier curves with different control point configurations and c 
shows the corresponding basis polynomials
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was incorporated into the posterior to permit the imposing of 
constraints. The requirements 0 ≤ Pi,y ≤ 1 and 0 ≤ Pi,x ≤ Pn,x 
were enforced to obtain monotonically decreasing, bijec-
tive and positive-valued residue functions. This resulted in 
5 optimisation parameters for the generation of the residue 
function R(t) in the form of a cubic Bézier curve as given 
by Eq. 8. R(t) was initially evaluated with a 10-ms sampling 
interval, then resampled to match the arterial input data (i.e., 
AIF) using cubic spline interpolation. Convolution with the 
measured AIF and scaling with � ⋅ CBF was performed to 
generate a predicted CTC according to Eq. 2.

BzD with delay and dispersion modeling

Delay correction was implemented by shifting the AIF by � 
prior to convolution with the residue function (Eq. 5). For 
dispersion modeling, the gamma dispersion kernel was cho-
sen as the VTF, as suggested by Mehndiratta et al. [11]:

where Γ denotes the gamma function, s determines the 
sharpness of the kernel and p is its time-to-peak. In the limit 
s → ∞ ( p = 0 ), the kernel approaches the Dirac delta func-
tion with no dispersion. Large values of p and small values 
of s correspond to a higher degree of dispersion [11]. The 
VTF was convolved with the (shifted) AIF before convolu-
tion with the residue function (Eq. 5). Arterial delay ( � ) and 
dispersion ( s, p ) were additional parameters to be determined 
in the optimisation.

Prior knowledge

Bayesian analysis allows the incorporation of prior knowl-
edge into parameter estimation, which can aid in preventing 
physiologically implausible solutions. Gaussian distributions 
were chosen for each prior, with mean and standard devia-
tion provided in Table 1. The control points were estimated 
on a linear scale, with a prior that permitted a wide variety of 
residue function shapes. A non-informative prior was chosen 

(10)VTF(t) =
s1+sp

Γ(1 + sp)
⋅ tsp ⋅ e−st,

for CBF, which means setting a standard deviation much 
larger than the prior mean [11]. The prior for delay was 
proportional to the difference in time-to-peak between the 
AIF and measured CTC. Priors for the VTF were adopted 
from Mehndiratta et al. [11]. The algorithm was initialized 
at control points that favored a shape intermediate between 
an exponential and a boxcar residue function, and CBF was 
set to an arbitrary initial value of 1. Delay and dispersion 
parameters were initialized at their prior means.

Simulations

AIF, R(t), S(t) and C(t)

A gamma-variate function was used to simulate an AIF, 
in accordance with previous DSC-MRI simulation studies 
[7–11]:

where t0 = 20 s is  the bolus ar r ival t ime, and 
a = 1, b = 3, c = 1.5 . The AIF was generated over a time 
interval of 200 s to prevent signal truncation for the longest 
MTT simulated in this work (24 s). The sampling interval 
was TR = 1.24 s.

Part of the purpose of this work was to evaluate the 
robustness of BzD to different underlying residue function 
shapes. Hence, residue functions belonging to the following 
family of gamma distributions were chosen [8, 25]:

(11)Ca(t) =

{

0 , t ≤ t0

a(t − t0)
be−(t−t0)∕c , t > t0

Fig. 2  Illustration of Bézier 
curve deconvolution as a non-
linear single-input single-output 
system. The residue function 
obtained as a cubic Bézier curve 
specified by the supplied control 
points is convolved with the 
measured AIF (following delay/
dispersion) to give a predicted 
concentration time curve

Table 1  Prior mean and standard deviations for Bézier curve decon-
volution

Parameter Mean Standard deviation

[P1,x,P1,y,P2,x,P2,y,P3,x] [8, 0.5, 2, 0.2, 15] [8, 1, 4, 1, 100]

CBF [ml/g/s] 0.01 106

Delay � [s] − 5

VTF (s, p) [ln2, ln2] [2, 2]
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where � =
MTT

�
 with MTT = CBV/CBF and � being a shape 

parameter. The case � = 1 corresponds to an exponential 
residue function, �=100 was used for the boxcar case and 
� = 5 represented a sigmoid shape (intermediate between the 
exponential and the boxcar) [25]. The three different shapes 
are depicted in Fig. 3 for MTT = 12 s.

Simulations were performed for a CBV of either 4% 
(~ 4 ml/100 g) or 2% (~ 2 ml/100 g) representing normal 
gray and white matter, respectively [7, 10]. From the CTC 
formed by the convolution of the AIF with the residue func-
tion, signal curves were generated using Eq. 1:

where S0 was set to 100 , TE = 29ms and the constant � was 
adjusted to produce a peak signal drop of 40% at a CBF 
of 60 ml/100 g/min and a CBV of 4% , resembling typical 
values in normal human gray matter [7, 8, 11]. The simu-
lated AIF was also converted to signal Sa(t) using Eq. 13 
but choosing a value of � that resulted in a peak signal drop 
of 60% . Zero-mean Rician noise was added to the signal 
curves, and all simulations were carried out using oSVD 
and BzD at baseline SNRs of 20 and 100 with � in Eq. 2 
set to 1. The oscillation index (OI) for oSVD was fixed at 
0.065 for SNR = 100 and 0.035 for SNR = 20 [8]. Examples 
of the simulated signal data can be found in Supplementary 
Material 1.

No delay, no dispersion

A set of simulations was carried out without any delay or 
dispersion in the simulated AIF, and with the three residue 
function shapes shown in Fig. 3. For CBV = 4% , CBF was 
varied from 10 to 70 ml/100 g/min in 10 ml/100 g/min incre-
ments, and for CBV = 2% , CBF values were simulated in 
the range 5 − 35 ml/100 g/min in 5 ml/100 g/min steps. As 

(12)R(t) = ∫
∞

t

1

��Γ(�)
��−1e−�∕�d�,

(13)S(t) = S0e
−�C(t)TE,

a result, the same MTT range ( 3.43 − 24 s ) was obtained 
for both values of CBV. For each combination of � , CBV, 
CBF and SNR, a total of 1024 CTCs were generated. The 
remainder of this study considered only the exponential resi-
due function shape; this was motivated by the fact that the 
exponential exhibits the challenging feature of lacking an 
initial plateau while still being a standard shape in previous 
simulation studies.

Delay without dispersion

Signal curves were generated after shifting the AIF by 
� = 0, 1, 3 and 6 s relative to the simulated residue function, 
as in [10]. Since these shifts were not integer multiples of 
TR , the AIF was evaluated at a sampling rate of 100 ms, 
shifted and then resampled to TR . This routine was per-
formed for CBV = 4% and CBF in the range 10–70 ml/100 g/
min in 10 ml/100 g/min increments. For each combination 
of � , CBF and SNR, 100 CTCs were formed. Deconvolution 
was performed using oSVD and BzD with delay correction.

Dispersion without delay

Modeling of dispersion in the absence of delay was achieved 
by convolving the simulated AIF with a vascular transport 
function. To avoid using the same VTF as the one in the 
deconvolution model, an exponential dispersion kernel was 
selected:

where � is a time constant for the kernel [11]. Large values 
of � are associated with a higher degree of dispersion and in 
the limit � → 0 , the VTF approaches the Dirac delta func-
tion with zero dispersion. Low, medium and high disper-
sion levels were modeled with � = 1.5, 3.0 and 4.5 , respec-
tively [10, 11]. Simulations included CBV = 4% and CBF 
= 10, 20, 30,… , 70 ml/100 g/min. For each combination of 
dispersion level, CBF and SNR, 100 CTCs were generated, 
with deconvolution being performed using oSVD and BzD 
with dispersion correction.

Dispersion with delay

The simulated AIF was delayed then dispersed as described 
in the two previous sections. Low, medium and high delay 
and dispersion were simulated using the combination of 
parameters [�, �] = [{1 s, 1.5};{3 s, 3.0};{6 s, 4.5}] . Simu-
lations were again performed for the same CBV, CBF 
range and SNR as in the previous two sections, generat-
ing 100 CTCs for each combination of these variables. 

(14)EDK(t) =
1

�
e
−

t

� ,

Fig. 3  Residue functions belonging to the gamma distribution family, 
for MTT = 12 s. Values of � of 1, 5 and 100 represent the exponential, 
sigmoid and boxcar shapes, respectively
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Deconvolution by oSVD and BzD with correction for delay 
and dispersion was employed.

Determination of MTT and rMTT ratios

For each of the three AIF distortions described above (delay, 
dispersion and delay with dispersion), the quality of MTT 
estimates was evaluated using two metrics, i.e., the MTT 
ratio and the rMTT ratio. The MTT ratio was calculated by 
dividing the estimated MTT by the ground truth value. To 
mimic a clinical setting, where relative MTT quantification 
is carried out by normalizing to the MTT in a contralateral 
region of interest (where the AIF is assumed to be non-dis-
torted), the rMTT ratio was introduced [11]. The rMTT ratio 
was, thus, defined as the estimated MTT in the presence of 
a distortion divided by the estimated MTT in the absence of 
that distortion. For example, let MTT0 be the estimated MTT 
at a simulated AIF delay of zero and let MTT� be the MTT 
estimate at an AIF delay of � . The rMTT ratio at the delay 
of � is then given by MTT�∕MTT0.

Accuracy of delay and dispersion parameter estimation

To investigate the performance of the BzD algorithm in the 
estimation of the parameters describing delay and disper-
sion, signal curves were generated after dispersing the AIF 
with the same VTF as used for dispersion correction (gamma 
dispersion kernel) at an SNR of 100, CBV 4% and CBF 
60 ml/100 g/min. Simulations were done at low, medium 
and high delay and dispersion, with 100 CTCs being cre-
ated in each case. Different levels of dispersion were mod-
eled by setting the gamma dispersion kernel parameters 
to 
[

s = 2, p = 1
]

 , 
[

s = 1, p = 3
]

 and 
[

s = 0.5, p = 5
]

 for low, 
medium and high dispersion, respectively [11]. Analysis was 
carried out using BzD as described above. Relative errors 
in the parameters � (delay), p (time-to-peak of the VTF) 
and the sum (� + p) were computed as in [11]. Note that 
both s and p were free in the fitting, but only p was selected 
for accuracy evaluation. The results of this analysis are pre-
sented in Supplementary Materials 4 and 5.

In vivo data

A proof-of-concept evaluation of BzD was performed 
through a re-analysis of previously acquired DSC-MRI data 
from one healthy volunteer [26]. Image acquisition param-
eters for the DSC-MRI experiment are given in [26]. In 
brief, the healthy volunteer was scanned at 3 T and a global 
AIF was sampled from the middle cerebral artery branches 
in the Sylvian fissure region. A prebolus administration of 
a low dose of contrast agent (CA) was used to retrieve a 
venous output function (VOF) from the sagittal sinus prior 
to the main DSC-MRI experiment. After correcting the 

VOF area-under-curve (AUC) for the lower CA dose, a 
subject-specific correction factor for partial volume effects 
was obtained as the ratio AUC(AIF)/AUC(VOF). The same 
correction factor as was used by Knutsson et al. [26] was 
applied in the present study. The OI for oSVD was set to 
0.095 [8] and � in Eq. 2 was set to 0.705 cm3∕g [21]. Whole-
brain CBF and MTT means were computed after exclusion 
of pixels with values above 2.5 times the mean over the 
entire volume as these values were assumed to originate 
from large vessels.

Results

Simulations

No delay, no dispersion

Figure 4 summarizes estimated CBF against true CBF for 
the three different underlying residue function shapes. Each 
point in the plots represents the mean and standard deviation 
from 1024 noise realizations. BzD estimates were consist-
ently closer to the true CBF than the corresponding oSVD 

Fig. 4  Estimated CBF plotted against true CBF for CBV = 4% and 
2%, SNR = 20 and 100 and � = 1, 5 and 100, modeling the expo-
nential, sigmoid and boxcar residue functions shapes, respectively. 
Results are shown for Bézier curve deconvolution and oSVD



797Magnetic Resonance Materials in Physics, Biology and Medicine (2022) 35:791–804 

1 3

estimates for the exponential residue function ( � = 1 ). For 
� = 1 and � = 5 , BzD tended to slightly underestimate high 
CBF values when SNR = 20, for both CBV levels. The BzD 
method exhibited excellent agreement with true CBF val-
ues at SNR = 100. Underestimation of high CBF values by 
BzD was not evident in the boxcar ( � = 100 ) case, with even 
some degree of overestimation being observed at SNR = 100. 
While lower CBF values were generally correctly estimated 
by both methods, oSVD consistently failed to reproduce 
high CBF components (i.e., short MTT). Generally, oSVD 
estimates showed lower variation about their means at low 
SNR than the corresponding estimates with BzD. Supple-
mentary Material 2 shows the corresponding CBF estimates, 
for CBV = 4% and SNR = 20, in the presence of delay and 
dispersion for an underlying exponential residue function.

To obtain a CBF-independent metric to conveniently 
compare BzD and oSVD, the CBF ratio was computed over 
the simulated CBF range for a given � , CBV and SNR. These 
results are presented in Table 2, indicating that BzD outper-
formed oSVD given an exponential residue function and, 
generally, also given a sigmoid shape. For the boxcar residue 
function at SNR = 20, oSVD mean ratios were closer to unity 
than those of BzD. The performances of the two methods for 
boxcar shape and SNR = 100 were comparable.

Examples of residue functions obtained with BzD and 
oSVD are presented in Fig. 5, for SNR = 20, MTT = 4 s 
(CBV = 4%, CBF = 60 ml/100 g/min) and MTT = 12  s 
(CBV = 4%, CBF = 20  ml/100  g/min). BzD produced 
smooth, monotonically decreasing, non-negative residue 
functions that were free of the oscillatory behavior that 
characterized the corresponding oSVD solutions. Moreo-
ver, BzD was in all cases in superior agreement with the 
true underlying residue function compared to oSVD. This 
latter finding is quantified more systematically in Table 3, 
using the root-mean-square error (RMSE) as a measure 
of accuracy of residue function estimation. According to 
Table 3, BzD provided more accurate estimates of residue 
function shape than oSVD in all simulated scenarios. The 
accuracy of residue function shape estimation with BzD 

declined as the underlying shape deviated from an expo-
nential (that is, as � increased); this result is coherent with 
the trend observed for the CBF estimation. Furthermore, 
for a given simulated residue function shape, the accu-
racy was invariably higher for higher CBV (Table 3) and 
for shorter MTT (Fig. 6). 

A visual appreciation of the results in Table 3 is given in 
Fig. 6, which shows the mean residue function fit obtained 

Table 2  Mean CBF ratios obtained with BzD and oSVD for three different residue function shapes, SNR = 20 and 100

The results show the mean and standard deviation of the CBF ratios for the ranges 10 – 70 ml/100 g/min (CBV = 4%) and 5 – 35 ml/100 g/min 
(CBV = 2%)

SNR = 20, CBV = 4% SNR = 100, CBV = 4%

� = 1 � = 5 � = 100 � = 1 � = 5 � = 100

BzD 1.01 ± 0.12 1.05 ± 0.27 1.13 ± 0.27 1.02 ± 0.04 1.06 ± 0.05 1.14 ± 0.09

oSVD 0.69 ± 0.16 0.89 ± 0.20 0.99 ± 0.24 0.80 ± 0.12 1.02 ± 0.11 1.13 ± 0.09

SNR = 20, CBV = 2% SNR = 100, CBV = 2%

BzD 1.06 ± 0.19 1.16 ± 0.38 1.25 ± 0.39 1.03 ± 0.08 1.14 ± 0.22 1.21 ± 0.21

oSVD 0.68 ± 0.19 0.86 ± 0.26 0.95 ± 0.31 0.78 ± 0.13 1.01 ± 0.14 1.13 ± 0.13

Fig. 5  Typical residue functions obtained in simulation with BzD and 
oSVD, using an SNR of 20, and MTTs of 4 s and 12 s, for three dif-
ferent underlying residue function shapes
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Table 3  Root-mean-square errors in residue function shape estimation, showing the mean and standard deviation over the CBF range 
10–70 ml/100 g/min (CBV = 4%) and 5–35 ml/100 g/min (CBV = 2%)

The results are presented for three different underlying residue function shapes, SNR = 20 and SNR = 100 with both oSVD and BzD

SNR = 20, CBV = 4% SNR = 100, CBV = 4%

� = 1 � = 5 � = 100 � = 1 � = 5 � = 100

BzD 0.03 ± 0.02 0.04 ± 0.05 0.06 ± 0.06 0.02 ± 0.01 0.02 ± 0.02 0.04 ± 0.04

oSVD 0.13 ± 0.03 0.12 ± 0.04 0.13 ± 0.04 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02

SNR = 20, CBV = 2% SNR = 100, CBV = 2%

BzD 0.04 ± 0.03 0.06 ± 0.06 0.08 ± 0.07 0.02 ± 0.02 0.03 ± 0.05 0.06 ± 0.06

oSVD 0.19 ± 0.05 0.18 ± 0.06 0.19 ± 0.06 0.10 ± 0.02 0.10 ± 0.03 0.10 ± 0.03

Fig. 6  Mean residue function 
fit estimated with BzD, for 
MTT = 4 s (CBF 60 ml/100 g/
min for a CBV of 4%) and 12 s 
(CBF of 20 ml/100 g/min for a 
CBV of 4%), for SNR = 20 and 
100. The dotted lines represent 
one standard deviation
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with BzD, plus/minus one standard deviation. Results are 
shown for all three simulated shapes, MTT = 4 s (CBV 4%, 
CBF 60 ml/100 g/min) and MTT = 12 s (CBV 4%, CBF 
20 ml/100 g/min), both for SNR = 20 and 100.

Delay without dispersion

The accuracy of MTT estimation with BzD, BzD with delay 
correction and oSVD is summarized in Fig. 7. MTT and 
rMTT ratios were averaged over the range 3.43–24 s cor-
responding to CBF in the range 10–70 ml/100 g/min for a 
CBV of 4% and SNR = 20. The oSVD method overestimated 
MTT but demonstrated consistency over all simulated shifts. 
BzD without delay correction overestimated MTT, with its 
performance diminishing as the delay increased. Excellent 
agreement with true MTT values was achieved with BzD 
including delay correction. The rMTT ratios for oSVD and 
BzD with delay correction were close to unity across all 
simulated delays, consistent with the observed trend in MTT 
ratios. A slight underestimation was seen in the rMTT ratios 

for oSVD. BzD without delay correction displayed a sensi-
tivity to delay, producing successively higher rMTT ratios 
as the delay increased.

Dispersion without delay

The corresponding results for the case of dispersion without 
delay are presented in Fig. 8. MTT overestimation is appar-
ent with oSVD, and the method exhibited a gradual decline 
in performance from low to high dispersion. BzD without 
dispersion correction displayed marked sensitivity to dis-
persion, showing a performance matching that of oSVD at 
all levels of the effect. Incorporation of a VTF into BzD 
drastically improved MTT estimation for low, medium and 
high dispersion, but led, on the other hand, to underestima-
tion of MTT in the absence of this effect. The rMTT ratios 
for both oSVD and BzD with dispersion correction drifted 
further from unity with increasing level of dispersion. The 
performance of oSVD for relative MTT quantification (as 
captured by the rMTT ratios) was higher than that of BzD 

Fig. 7  MTT ratio (left) and 
rMTT ratio (right) for oSVD, 
BzD and BzD with delay cor-
rection. Each bar represents the 
mean and standard deviation 
over MTT estimates for under-
lying CBF values in the range 
[10–70] ml/100 g/min, a CBV 
of 4% and SNR 20

Fig. 8  MTT ratio (left) and 
rMTT ratio (right) for oSVD, 
BzD and BzD with dispersion 
correction. The bars show the 
mean and standard deviation 
over MTT estimates for under-
lying CBF values in the range 
[10–70] ml/100 g/min, a CBV 
of 4% and SNR 20
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with dispersion correction, while BzD without correction 
for dispersion returned the worst results.

Delay and dispersion

Shown in Fig. 9 are the MTT and rMTT ratios for the case of 
delay coupled with dispersion. A rather similar trend to the 
one observed in Fig. 8 (dispersion without delay) is evident. 
BzD without correction for delay or dispersion exhibited 
lower performance when delay was combined with disper-
sion than with dispersion alone. When equipped with cor-
rection for both delay and dispersion, BzD appeared to out-
perform oSVD for absolute estimation and parallel oSVD for 
relative estimation. Finally, note that results similar to those 
shown in Figs. 7, 8, and 9 can be found in Supplementary 
Material 3 for an SNR of 100.

Residue functions with delay and dispersion

Evaluation of the ability to reproduce the residue function 
shape in the presence of delay and dispersion is summarized 
in Fig. 10. The plots show mean estimated residue functions 
for BzD (with and without correction) and oSVD, for the 
cases of high delay without dispersion, high dispersion with-
out delay and high delay and dispersion. In each case, CBV 
was 4%, CBF 60 ml/100 g/min (typical gray matter) and 
SNR 20. The estimated residue function in the presence of 
delay and/or dispersion was characterized by a slower decay 
relative to the simulated shape. BzD with correction for 
delay and/or dispersion brought the resulting residue func-
tion into close agreement with the underlying true shape.

Fig. 9  MTT ratio (left) and 
rMTT ratio (right) for oSVD, 
BzD and BzD with correction 
for both delay and dispersion. 
The results show the mean and 
standard deviation over MTT 
estimates for underlying CBF 
values in the range [10–70] 
ml/100 g/min, a CBV of 4% and 
SNR 20

Fig. 10  Mean residue function fit produced with oSVD, BzD and 
BzD with correction for delay and/or dispersion. The plots were gen-
erated in the presence of high delay without dispersion (left), high 

dispersion without delay (middle) and high delay combined with 
high dispersion (right), at CBV = 4%, CBF = 60  ml/100  g/min and 
SNR = 20
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In vivo data

Parametric maps from the analysis of clinical data with 
oSVD, BzD, BzD with delay correction and BzD with cor-
rection for delay and dispersion are shown in Fig. 11. BzD 
in any of the presented variants produced higher flow esti-
mates than oSVD. The whole-brain CBF means for the four 
methods were: oSVD (42 ± 27), BzD (58 ± 41), BzD + delay 
(100 ± 70) and BzD + delay + VTF (150 ± 100) ml/100 g/
min. Delay correction with BzD led to an increase in the 
calculated CBF and the incorporation of a VTF achieved 
the same effect.

The MTT maps also showed variation among the four 
presented scenarios, with highest values being observed with 
oSVD (4.9 ± 2.8) and BzD (5.3 ± 5.8) s. MTT values for 
BzD methods decreased in the following order: BzD, BzD 
with delay correction (3.2 ± 4.6) s, BzD with delay and dis-
persion correction (1.8 ± 4.2) s. There was some discrepancy 
between oSVD and BzD in the delay estimation, with oSVD 
producing notably higher delay values than both variants of 
BzD shown. Interestingly, BzD with delay correction esti-
mated higher values of delay than the same method incor-
porating a VTF.

Residue function shape estimation in vivo is shown in 
Fig. 12, for the four methods of analysis displayed in Fig. 11. 
The residue functions plotted are means over 4 × 4 pixels in 
two different ROIs. Solutions from oSVD are oscillatory, 
while BzD produces smooth and monotonically decaying 
residue functions. For both ROIs, correction for either delay 
or delay and dispersion results in the same effect. The resi-
due function plots are strongly reminiscent of the results 
presented in Fig. 10.

Discussion

Retrieval of the tissue impulse response function from the 
measured concentration curve and the AIF has been a per-
sistent challenge in DSC-MRI, despite the introduction of a 
number of relevant mathematical methods. Recent studies 
include stable spline deconvolution [27], deconvolution with 
dispersion-compliant bases [28] assessment of the robust-
ness of spatio-temporal deconvolution algorithms [29] as 
well as the introduction of machine learning approaches to 
DSC-MRI perfusion imaging [30]. In the present study, a 
non-parametric deconvolution method using Bézier curves 

Fig. 11  CBF, MTT and delay 
maps from the analysis of 
in vivo DSC-MRI data from a 
healthy volunteer using oSVD, 
BzD, BzD with delay correction 
and BzD with correction for 
both delay and dispersion

Fig. 12  In vivo residue function 
shapes obtained with oSVD, 
BzD and BzD including correc-
tion for dispersion and/or delay. 
The plots reflect mean solutions 
over the 4 × 4 pixel ROIs
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for perfusion quantification in DSC-MRI was presented and 
evaluated.

In the absence of delay and dispersion, Bézier curve 
deconvolution showed obvious robustness to different under-
lying residue function shapes. The method produced accu-
rate perfusion estimates and outperformed oSVD, except in 
the most extreme case (boxcar residue function at an SNR 
of 20). CBF estimates from BzD were accompanied by 
smooth, physiologically plausible tissue residue functions 
that obeyed the fundamental requirements of non-negative 
values and monotonical decrease, and they were, thus, free 
of the oscillations typically seen for SVD-based deconvolu-
tion methods. It is not surprising that BzD exhibited lower 
performance with a boxcar residue function than with the 
sigmoid or exponential shapes. Complete representation 
of such a shape (exhibiting a non-smooth behavior) using 
Bézier curves requires a relatively complex configuration of 
control points, rendering it an unlikely solution when using 
cubic curves. Bézier curves are inherently smooth, and thus, 
they favor smooth functions such as the exponential/sigmoid. 
It is in principle possible to bring the calculated residue 
function into good agreement with the boxcar shape using 
higher-order curves (more control points), but as highlighted 
earlier, this was not within the scope of the current imple-
mentation. Implementations with fourth order curves (results 
not shown) significantly increased computation times, and 
higher-order curves also had adverse effects on the accuracy 
of CBF estimation when combined with correction for delay 
and/or dispersion with an exponential underlying residue 
function. Incorporation of delay and dispersion correction 
was judged to be crucial, while accurate representation of 
a non-smooth residue curve had lower priority, given that 
non-smooth behavior is not physiologically plausible and 
functions resembling the exponential/sigmoid shapes are a 
more reasonable representation of true physiology. However, 
the estimates to the boxcar residue function obtained with 
BzD in this study appear, from visual inspection, to show 
closer agreement with the true shape than those obtained 
with the CPI method by Mehndiratta et al. [7].

BzD including a correction for delay was able to correctly 
reproduce MTT values in the range 3.4–24 s, for shifts of up 
to 6 s. Accurate estimates were also obtained by BzD with 
corrections for dispersion as well as for delay with disper-
sion, except for some degree of underestimation for zero and 
low levels of each effect. Zero dispersion is only achieved 
when the gamma dispersion kernel approaches a delta 
function (i.e., the sharpness parameter s in the VTF must 
approach infinity for a time-to-peak of zero). Convergence 
to these values of the VTF parameters did not occur, giving 
rise to the observed MTT underestimation. Relative quan-
tification results showed comparable performance between 
oSVD and BzD with delay and/or dispersion correction. 
Furthermore, oSVD overestimated MTT at all simulated 

shifts and dispersion levels but demonstrated a consistency 
that emanates from its inherent insensitivity to bolus delay. 
Hence, in the presence of delay and dispersion, for absolute 
perfusion quantification, oSVD parallels BzD when neither 
delay nor dispersion is corrected for. Under the same circum-
stances, BzD with a correction largely outperforms oSVD. 
For relative quantification, BzD with correction and oSVD 
are equally suitable, both surpassing BzD without delay or 
dispersion correction.

BzD without corrections provided smooth residue func-
tions also in the presence of delay and dispersion, but both 
effects being signified by a spread-out solution (slower decay 
of the estimated residue function). Correction for delay and 
dispersion restored the estimated residue function to good 
agreement with the true shape. This result illustrates that 
accurate perfusion estimation with BzD, in the presence of 
delay and dispersion, is accompanied by physiologically 
plausible residue functions.

CBF maps attained from in vivo data were in general cor-
respondence with the trends seen in the simulations, with the 
highest CBF values being estimated with BzD accounting for 
both delay and dispersion effects. Whole-brain mean CBF 
obtained with oSVD and BzD were in harmony with values 
estimated in a previous analysis of the same data [26] and 
with values measured with positron emission tomography 
[31]. However, BzD produced higher blood flow estimates 
with larger variability than oSVD, a result which mirrors 
the findings presented in Table 2. The higher spread in CBF 
estimates with BzD is believed to originate from low CBV 
regions, and we note that a more comprehensive compari-
son between oSVD and BzD might include a larger range 
of CBV values. In future work, application of both oSVD 
and BzD in stroke or cancer patients would also provide a 
more realistic comparison. BzD with delay correction, and 
particularly BzD with correction for both delay and disper-
sion, tended to overestimate CBF. This is to be expected, and 
it implies that low levels of delay and dispersion prevailed 
(cf. Figures 7, 8, 9 and Supplementary Material 5), which 
seems reasonable considering that the DSC-MRI data were 
acquired from a healthy volunteer. Very low levels of dis-
persion might, as observed in the simulations (cf. Figure 9), 
have led to an overestimation of CBF (i.e., an underestima-
tion of MTT) when correcting for both delay and dispersion. 
MTT values followed the inverse of the pattern observed in 
CBF maps, in agreement with the central volume theorem. 
The result is also reasonable when viewing MTT as the area 
under the residue function; simulations established that both 
delay and dispersion correction led to a faster decay of the 
residue function, which is associated with a shorter MTT.

The observation that oSVD produced higher delay esti-
mates than BzD in vivo is likely a consequence of the oscil-
latory nature of the oSVD residue functions coupled with 
the current definition of delay as the time point at which the 
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residue function attains its maximum value. BzD with delay 
correction and BzD with delay and dispersion correction 
exhibited a notable discrepancy in delay estimation in vivo. 
This finding constitutes a practical example of the discus-
sion pertaining to the results in Table S1 (Supplementary 
Material 4), namely that delay and dispersion are corrected 
in combination rather than as individual effects.

BzD also gave smooth residue functions in vivo and the 
effects of delay and dispersion correction reflected those 
observed in the simulations. An additional highlight of the 
in vivo results is the shape variability between the two sam-
pled regions. It can be inferred that BzD is able to reflect 
in vivo residue functions with both fast and slow decay rates.

In conclusion, Bézier curve deconvolution bears substan-
tial promise for perfusion quantification in DSC-MRI. It is a 
robust, non-parametric deconvolution technique that gener-
ally provides more accurate perfusion estimates than oSVD, 
along with realistically smooth residue functions. The power 
of the algorithm lies in its employment of the intrinsically 
smooth Bézier curves, the small number of parameters that 
require optimisation, and the ability to incorporate appro-
priate prior knowledge into the deconvolution process. We 
envision Bézier curve deconvolution to be of clinical value 
in the investigation of patients with cerebrovascular dis-
eases, where dispersion effects are known to corrupt oSVD-
based estimates of perfusion-related parameters [7, 10]. For 
instance, more reliable perfusion estimates obtained with 
the proposed approach can enable improved delineation of 
the salvageable ischemic penumbra in stroke patients. Fur-
thermore, the availability of physiologically plausible resi-
due functions opens an important avenue of research into 
the diagnostic potential of the residue function shape, for 
example, for assessment of cerebral oxygen extraction [9].
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