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Abstract
Objectives  To investigate the effect of compressed SENSE (CS), an acceleration technique combining parallel imaging and 
compressed sensing, on potential bias and precision of brain volumetry and evaluate it in the context of normative brain 
volumetry.
Materials and methods  In total, 171 scans from scan-rescan experiments on three healthy subjects were analyzed. Each 
subject received 3D-T1-weighted brain MRI scans at increasing degrees of acceleration (CS-factor = 1/4/8/12/16/20/32). 
Single-scan acquisition times ranged from 00:41 min (CS-factor = 32) to 21:52 min (CS-factor = 1). Brain segmentation and 
volumetry was performed using two different software tools: md.brain, a proprietary software based on voxel-based mor-
phometry, and FreeSurfer, an open-source software based on surface-based morphometry. Four sub-volumes were analyzed: 
brain parenchyma (BP), total gray matter, total white matter, and cerebrospinal fluid (CSF). Coefficient of variation (CoV) 
of the repeated measurements as a measure of intra-subject reliability was calculated. Intraclass correlation coefficient (ICC) 
with regard to increasing CS-factor was calculated as another measure of reliability. Noise-to-contrast ratio as a measure of 
image quality was calculated for each dataset to analyze the association between acceleration factor, noise and volumetric 
brain measurements.
Results  For all sub-volumes, there is a systematic bias proportional to the CS-factor which is dependent on the utilized 
software and subvolume. Measured volumes deviated significantly from the reference standard (CS-factor = 1), e.g. rang-
ing from 1 to 13% for BP. The CS-induced systematic bias is driven by increased image noise. Except for CSF, reliability 
of brain volumetry remains high, demonstrated by low CoV (< 1% for CS-factor up to 20) and good to excellent ICC for 
CS-factor up to 12.
Conclusion  CS-acceleration has a systematic biasing effect on volumetric brain measurements.

Keywords  Brain · Magnetic resonance imaging · Acceleration · Systematic bias
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AP	� Anterior–posterior direction
BP	� Brain parenchyma (combined gray and white 

matter)
CoV	� Coefficient of variation
CS	� Compressed SENSE
CS-factor	� Compressed SENSE reduction factor
CSF	� Cerebrospinal fluid
FH	� Feet-head direction
FS	� FreeSurfer segmentation and volumetry tool
GM	� Gray matter
GRAPPA	� Generalized autocalibrating partially parallel 

acquisition
ICC	� Intraclass correlation coefficient
ICC1,i	� ICC between CS-factors 1 and i
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IRB	� Institutional review board
MDB	� Md.brain segmentation and volumetry tool
ml	� Milliliter
MRI	� Magnetic resonance imaging
NBV	� Normative brain volumetry
NCR	� Noise-to-contrast-ratio
PI	� Parallel imaging
R	� Pearson correlation coefficient
RL	� Right-left direction
SD	� Standard deviation
SENSE	� Sensitivity encoding
SPM	� Statistical parametric mapping
T	� Tesla
T1w	� T1-weighted
TE	� Time of echo
TFE	� Turbo field echo
TR	� Time of repetition
VBM	� Voxel-based morphometry
WM	� White matter

Introduction

Thanks to technical advances in the recent years, whole-
brain segmentation and volumetry can be performed fully 
automated and MRI-based brain volumetry is increasingly 
used in the clinical setting [1].

Its application has great potential to support disease diag-
nosis, improve the understanding of pathomechanisms, track 
disease progression and monitor treatment effects [2]. In 
addition to mere visual image evaluation, it has the potential 
to deliver a more precise and objective evaluation of patients 
with neurodegenerative diseases in clinical practice. One 
important application is normative brain volumetry (NBV), 
which compares measured volumes of different brain struc-
tures to an age- and gender-adjusted healthy cohort to reveal 
deviations from normal volumes. Recently, NBV has been 
shown to improve diagnostic accuracy of neurodegenerative 
atrophy patterns as well as interrater reliability for detec-
tion and differential diagnosis of neurodegenerative diseases 
[3–6]. It is of note that brain volumetry has a far broader 
range of applications, such as in the investigation of brain 
development [7].

Whole brain volumetry is usually based on high-quality 
three-dimensional T1-weighted magnetization-prepared 
rapid gradient-echo sequences (MPRAGE) [8]. The neces-
sity to encode a large number of k-space lines as well as the 
preceding inversion time (TI), necessary for the T1-weighted 
contrast, results in long scan times at low acceleration fac-
tors. This might be problematic for widespread clinical 
adoption considering the increasing workloads and notori-
ously tight schedules in radiological departments and prac-
tices [9]. The long scan times also increase the susceptibility 

for motion artifacts leading to reduced image quality and 
accuracy of brain volumetry.

Recent advances on the acquisition side, such as com-
pressed SENSE (CS), GRAPPA or Wave-CAIPI, aim at 
significantly reducing scan times [10–13]. CS represents a 
combination of the parallel imaging (PI) technique SENSE 
[14] and compressed sensing [15, 16]. Through the applica-
tion of sparsity constraints and k-space undersampling, a 
substantial image acquisition acceleration can be achieved. 
It was recently shown that the implementation of CS into 
clinical practice of neuroimaging leads to decreased scan 
times at preserved visual image quality [17, 18]. Volumet-
ric brain MRI using ultrafast magnetization-prepared rapid 
gradient-echo (MP-RAGE) sequences has been evaluated 
recently. The authors used Wave-Controlled Aliasing in Par-
allel Imaging (Wave-CAIPI; Siemens) for acquisition accel-
eration and reported low intra-individual variability as well 
as comparable morphometric estimates between accelerated 
and non-accelerated scans [19, 20].

However, it is unknown whether accelerated acquisition 
through CS impacts whole-brain volumetric measurements. 
Therefore, the aim of our study was to evaluate the effect of 
CS on brain volumetry and objective image quality using 
well-controlled test–retest data from three healthy individu-
als. Two brain volumetry tools were applied to cover distinct 
morphometry approaches to evaluate the influence of CS on 
measured brain volumes in surface-based morphometry and 
voxel-based morphometry.

Materials and methods

Study subjects

Three healthy subjects (1 female, 2 males; age 27–31 years) 
were recruited for this study and gave informed written 
consent. The study was approved by the local institutional 
review board (IRB). Each subject underwent three consecu-
tive MRI scans of the brain on different days within a seven-
day period. To minimize changes in brain volume depend-
ing on the time of day, all scans were performed between 
06:00 a.m. and 08:00 a.m. Each MRI scan followed the same 
protocol as specified below.

MRI protocol

Imaging was performed on a 3 T MRI scanner (Philips 
Ingenia, Philips, Best, The Netherlands) using a 32-channel 
head coil.

CS with increasing degrees of k-space undersampling 
was used for image acquisition acceleration. The degree of 
acceleration is expressed by the compressed SENSE reduc-
tion factor (CS-factor). Each imaging dataset was inspected 
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visually by a radiologist to assure the absence of severe 
motion artifacts.

The MRI protocol consisted of a three-dimensional 
T1-weighted turbo field echo sequence (3D-T1w-TFE) which 
was performed at increasing CS-factors of 1 (no accelera-
tion), 4, 8, 12, 16, 20 and 32. For CS-factor = 1, the sequence 
was performed once per scan date, resulting in a total of 
three identical measurements per subject. For each CS-factor 
≥ 4, the sequence was performed three times per scan date, 
resulting in a total of nine identical measurements per sub-
ject. Thus, in total, 171 3D-T1w datasets were acquired.

The acquisition times for each CS-factor are dis-
played in Table  1. The total exam time per scan date 
was 62 min. The other sequence parameters were as fol-
lows: acquired voxel size, 1 × 1 × 1 mm3; field of view, 
250 mm × 250 mm × 180 mm (feet-head × anterior–poste-
rior × right-left; FH × AP × RL); TR, 600 ms; TE = 28 ms; 
acquisition plane, sagittal.

Image and data analysis

Based on the acquired 3D-T1w-TFE datasets, cortical recon-
struction and volumetric segmentation was performed with 
two different processing tools:

	 (i)	 The commercially available and CE-certified soft-
ware-tool md.brain v1.1.1 (mediaire GmbH, Berlin, 
Germany). The software performs a segmentation of 
different brain regions based on voxel-based mor-
phometry (VBM) and statistical parametric mapping 
(SPM) and then determines their volumes [21–24]. 
Throughout the remainder of this article, this pro-
cessing tool will be referred to as MDB.

	 (ii)	 FreeSurfer image analysis suite v6.0, which is docu-
mented and freely available for download online [25, 
26]. The software performs a segmentation of differ-
ent brain regions based on surface-based morpho-
metry according to Fischl et al. [27, 28]. Seven of 
the 27 datasets that were acquired at CS-factor = 32 
could not be analyzed with FS due to insufficient 
image quality. The most likely reason is the failed 
convergence of the internal optimization algorithm of 
the FS software that uses a set of high-quality refer-
ence MRI volumes. Throughout the remainder of this 
article, this processing tool will be referred to as FS.

The following sub-volumes were analyzed: brain paren-
chyma (equal to combined total gray and white matter vol-
ume; BP), total gray matter (GM), total white matter (WM), 
and cerebrospinal fluid (CSF).

Mean and standard deviation (SD) of the repeated meas-
urements were calculated for each CS-factor and subvolume. 
The coefficient of variation (CoV) as a measure of intra-
subject reliability was calculated as CoV = SD/mean.

Intra-class correlation (ICC) was calculated as another 
measure of reliability with respect to CS-factor. Because of 
the presence of systematic bias, we chose ICC(C,1) accord-
ing to the McGraw and Wong notation [29] as the appropri-
ate type of ICC [30]. For each software package and each of 
the four analyzed brain volumes (BP, WM, GM and CSF), 
ICC was calculated pairwise to assess reliability between 
measurements at CS = 1 and CS = 4, 8, 12, 16, 20 and 32, 
respectively, using the following notation: ICC1,4, ICC1,8, 
etc.

The linear relationship between the applied CS-factor 
and the measured brain volume was assessed by calculating 
Pearson correlation coefficient R for both software tools and 
each subvolume.

Noise-to-contrast ratio (NCR) as a measure of image 
quality was calculated for each acquired dataset using the 
CAT12 toolbox by measuring the local standard deviation 
in the optimized WM segment scaled by the minimum tissue 
contrast [31].

To assess within-session and across-session reproducibil-
ity and the potential averaging effects of within-session data, 
for each CS-factor > 1, we calculated mean and SD within 
a single session (3 repeated scans per session) and across 
sessions (mean of each session for 3 sessions), respectively.

Statistical analysis

Mean volumes calculated for different CS-factors were com-
pared using paired two-sided t tests with Bonferroni correc-
tion to address multiple comparisons. Cohen’s d as measure 
of effect size was calculated for significant values of relevant 
comparisons.

Outliers of the volume measures were detected using the 
Grubbs test and removed [32]. All statistical tests were per-
formed at a significance level α = 0.05. Statistical analyses 
were performed using MATLAB (The MathWorks, Natick, 
USA).

Table 1   Acquisition times (in minutes and seconds) of the applied 3D-T1w-TFE sequence for each CS-factor

CS compressed SENSE

CS-factor 1 4 8 12 16 20 32

Acquisition time 21:52 05:18 02:41 01:49 01:22 01:05 00:41
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Results

Measured brain volumes

Representative axial brain images of WM, GM and CSF at 
increasing CS-factors of one of the subjects are shown in 
Fig. 1. Supplementary Figures 2a (MDB) and 2b (FS) dis-
play representative axial and coronal segmentation overlays 
of WM, GM and CSF at increasing CS-factors of one of 
the subjects. From this figure, it can be appreciated visually 
how the increasing CS-factor affects the segmentations at 
the interfaces of the three compartments, in particular for 
CS-factors ≥ 20.

Mean and standard deviation of the absolute volumes 
were calculated for MDB (Fig.  2a) and FS (Fig.  2b). 

The analyzed volumes are displayed as a function of the 
employed CS-factor for each of the three subjects. Calcu-
lated volumes relative to the volume at CS-factor = 1 are 
shown as mean across all subjects in Fig. 3a.

For all analyzed sub-volumes and each subject, there is 
a systematic bias proportional to the employed CS-factor. 
Degree and direction of the bias are dependent on the uti-
lized processing tool as well as the analyzed sub-volume.

MDB‑based volumetry

For WM, the calculated volumes increase with increasing 
CS-factor. For all other sub-volumes, the calculated volumes 
decrease with increasing CS-factor (Fig. 3a). Combining 
the measured relative volumes of all subjects, the observed 

Fig. 1   Sample axial recon-
structions of the acquired 
3D-T1-weighted brain images at 
increasing CS-factors of one of 
the subjects (enlarged view of 
the image center below each full 
FOV image). CS compressed 
SENSE
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a

b

Fig. 2   MDB-based (a, upper row) and FS-based (b, lower row) 
mean ± 2SD of absolute segmented volumes of the three examined 
subjects as a function of CS-factor. CS compressed SENSE, MDB 

md.brain segmentation and volumetry tool, FS FreeSurfer segmenta-
tion and volumetry tool, BP brain parenchyma, WM white matter, GM 
gray matter, CSF cerebrospinal fluid, SD standard deviation

a

b

Fig. 3   Segmented volumes relative to the volume at CS-factor = 1, as 
a function of CS-factor (a, upper row) and NCR (b, lower row). Each 
subject is represented by a dot (MDB) or cross (FS) and the median 
across the three subjects is represented by a solid (MDB) or dashed 

(FS) line. NCR noise-to-contrast ratio, MDB md.brain segmentation 
and volumetry tool, FS FreeSurfer segmentation and volumetry tool, 
BP brain parenchyma, WM white matter, GM gray matter, CSF cer-
ebrospinal fluid, CS compressed SENSE
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differences between consecutive CS-factors (CS-factor = 1 
vs. 4, 4 vs. 8, etc.) were significant (p < 0.05) for all subvol-
umes except for the difference between CS-factors 4 and 8 
in BP (Tables 2, 3). The effect size assessed by Cohen’s d 
was larger for MDB than for FS (Tables 3, 5). 

FS‑based volumetry

For CSF, the calculated volumes increase with increasing 
CS-factor. For all other subvolumes, the calculated vol-
umes decrease with increasing CS-factor (Fig. 3a). Com-
bining the measured relative volumes of all subjects, the 

observed differences between consecutive CS-factors were 
all significant (p < 0.05) for CS-factors ≥ 4 for all subvol-
umes (Tables 4, 5).

Noise level analysis

To obtain a quantitative measure of image quality, we cal-
culated NCR, which increases with more noise added to the 
images. Pearson correlation coefficient of the CS-factor and 
the NCR revealed a strong linear correlation (R2 = 0.98; see 
also Suppl. Fig. 1). NCR and the mean of the calculated rela-
tive volumes across subjects also showed strong linear cor-
relations which were higher for MDB-based volumes (NCR 

Table 2   MDB-based volumes relative to CS-factor = 1, mean and SD across all subjects

Relative volumes were calculated individually for each subject
CS compressed SENSE, SD standard deviation, MDB md.brain segmentation and volumetry tool, BP brain parenchyma, WM white matter, GM 
gray matter, CSF cerebrospinal fluid

CS-factor 4 8 12 16 20 32

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

BP 0.9939 0.0114 0.9944 0.0139 0.9817 0.0223 0.9691 0.0286 0.9611 0.0334 0.9318 0.0443
GM 1.0082 0.0077 1.0234 0.0105 1.0297 0.0125 1.0426 0.0148 1.0573 0.0162 1.0892 0.0229
WM 0.9855 0.0142 0.9773 0.0164 0.9534 0.0285 0.9257 0.0375 0.9044 0.0438 0.8391 0.0571
CSF 0.9811 0.0125 0.9703 0.0121 0.9463 0.0239 0.9190 0.0328 0.8981 0.0398 0.8414 0.0532

Table 3   Comparison between MDB-based relative volumes between consecutive CS-factors (1 vs. 4, 4 vs. 8, etc.) across all subjects: p-values of 
paired t tests, Cohen’s d as measure of effect size

CS compressed SENSE, MDB md.brain segmentation and volumetry tool, BP brain parenchyma, WM white matter, GM gray matter, CSF cer-
ebrospinal fluid
*Marks significant difference to volume at consecutive CS-factor (p < 0.05)

CS-factors 1 vs. 4 4 vs. 8 8 vs. 12 12 vs. 16 16 vs. 20 20 vs. 32

p d p d p d p d p d p d

BP 0.010 0.53 0.591 – < 0.001* 1.28 < 0.001* 1.38 0.001 0.75 < 0.001* 2.33
GM < 0.001* − 1.07 < 0.001* − 2.99 < 0.001* − 1.14 < 0.001* − 2.54 < 0.001* − 2.18 < 0.001* − 3.88
WM < 0.001* 1.03 < 0.001* 1.75 < 0.001* 1.76 < 0.001* 2.12 < 0.001* 1.45 < 0.001* 4.03
CSF < 0.001* 1.51 < 0.001* 3.14 < 0.001* 1.82 < 0.001* 2.56 < 0.001* 1.77 < 0.001* 3.61

Table 4   FS-based volumes relative to CS-factor = 1, mean and SD across all subjects

Relative volumes were calculated individually for each subject
CS compressed SENSE, SD standard deviation, FS FreeSurfer segmentation and volumetry tool, BP brain parenchyma, WM white matter, GM 
gray matter, CSF cerebrospinal fluid

CS-factor 4 8 12 16 20 32

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

BP 0.9997 0.0056 0.9956 0.0050 0.9849 0.0071 0.9770 0.0144 0.9683 0.0100 0.9133 0.0356
GM 0.9990 0.0035 0.9962 0.0062 0.9910 0.0064 0.9834 0.0127 0.9775 0.0082 0.9149 0.0248
WM 1.0004 0.0078 0.9954 0.0073 0.9790 0.0116 0.9677 0.0193 0.9551 0.0196 0.8993 0.0556
CSF 0.9657 0.0668 1.0128 0.0885 1.0886 0.1134 1.2417 0.1853 1.3358 0.1527 1.7707 0.3727
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vs. BP: R2 = 0.98, NCR vs. WM: R2 = 0.98, NCR vs. GM: 
R2 = 0.98, NCR vs. CSF: R2 = 0.98) than for FS-based vol-
umes (NCR vs. BP: R2 = 0.81, NCR vs. WM: R2 = 0.80, NCR 
vs. GM: R2 = 0.94, NCR vs. CSF: R2 = 0.94), as visualized 
in Fig. 3b. This suggests that for MDB-based volumetry, the 
observed systematic CS-factor-dependent bias can be almost 
completely explained by the noise level increase induced by 
CS-acceleration. Analogously, for FS-based volumetry, the 
observed systematic CS-factor-dependent bias can, at least in 
large part, be explained by the noise level increase induced 
by CS-acceleration.

Additional analyses of smaller subcortical gray matter 
volumes of interest (pallidum, putamen, caudate and thala-
mus) resulted in higher CoV values compared to the ana-
lyzed whole-brain volumes BP, WM, GM and CSF (Sup-
plementary Table 5).

Reliability

Except for the FS-based measurements at CS-factor = 32, the 
narrow error bars in Fig. 2 give a good visual indication of 

the fairly low CoV. A CoV < 5% is considered acceptable 
[33]. Reliability assessed by ICC is considered to be poor 
(< 0.50), moderate (0.50–0.75), good (0.75–0.90) or excel-
lent (> 0.90) [34].

MDB‑based volumetry

For each CS-factor, the CoV of the repeatedly measured 
volumes was < 1% across all subjects and subvolumes 
(Table 6).1 Reliability assessed by ICC was good to excel-
lent across all subvolumes up to CS-factor = 12 (Table 7).

FS‑based volumetry

For each CS-factor < 32 and subvolumes BP, WM and GM, 
the CoV of the repeatedly measured volumes was < 1% 
across all subjects and subvolumes except for BP and GM 

Table 5   Comparison between FS-based relative volumes between consecutive CS-factors (CS = 1 vs. CS = 4, CS = 4 vs. CS = 8, etc.) across all 
subjects: p-values of paired t tests, Cohen’s d as a measure of effect size

CS compressed SENSE, FS FreeSurfer segmentation and volumetry tool, BP brain parenchyma, WM white matter, GM gray matter, CSF cer-
ebrospinal fluid
*Marks significant difference to volume at subsequent CS-factor (p < 0.05)

CS-factors 1 vs. 4 4 vs. 8 8 vs. 12 12 vs. 16 16 vs. 20 20 vs. 32

p d p d p d p d p d p d

BP 0.805 – 0.0031* 0.63 < 0.001* 2.46 0.0047* 0.60 0.0016* 0.68 < 0.001* 1.85
GM 0.159 – 0.0148* 0.50 < 0.001* 0.74 0.0043* 0.60 0.0129* 0.51 < 0.001* 2.41
WM 0.780 – 0.0279* 0.45 < 0.001* 2.14 < 0.001* 0.73 0.0013* 0.69 < 0.001* 1.41
CSF 0.013* 0.51 < 0.001* − 0.54 0.001* − 0.71 < 0.001* − 0.90 0.0151* − 0.50 < 0.001* − 1.19

Table 6   Coefficients of 
variation (CoV) in % of 
the MDB-based repeated 
volumetric measurements

CS compressed SENSE, MDB md.brain segmentation and volumetry tool, BP brain parenchyma, WM 
white matter, GM gray matter, CSF cerebrospinal fluid

CS-factor 1 4 8 12 16 20 32

BP Subject 1 0.58 0.47 0.39 0.48 0.51 0.39 0.29
Subject 2 0.13 0.64 0.48 0.55 0.47 0.49 0.47
Subject 3 0.20 0.50 0.49 0.52 0.63 0.53 0.63

WM Subject 1 0.12 0.40 0.37 0.30 0.44 0.43 0.20
Subject 2 0.14 0.62 0.52 0.56 0.51 0.56 0.82
Subject 3 0.33 0.56 0.43 0.54 0.69 0.60 0.54

GM Subject 1 0.88 0.54 0.45 0.66 0.68 0.73 0.48
Subject 2 0.22 0.74 0.52 0.58 0.55 0.50 0.32
Subject 3 0.50 0.48 0.60 0.58 0.74 0.77 0.86

CSF Subject 1 0.88 0.53 0.41 0.77 0.69 0.84 0.37
Subject 2 0.29 0.54 0.43 0.42 0.49 0.43 0.37
Subject 3 0.61 0.19 0.33 0.28 0.43 0.50 0.63

1  One of the nine measurements at CS-factor = 16 in subject 2 was 
detected as an outlier and excluded from the calculation of the CoV.
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at CS-factor = 16 in subject 2 (Table 8) 1. For CS-factor = 32, 
the repeatedly measured volumes showed significantly 
higher CoVs of up to 7% for subvolumes BP, WM and GM. 
For CSF, the CoVs were even higher and reached up to 
16% for CS-factor < 32 and up to 25% for CS-factor = 32 
(Table 7). Reliability assessed by ICC was good to excellent 
across all subvolumes up to CS-factor = 12 except for CSF 
which only showed a moderate reliability at CS-factor = 12 
(Table 9).  

Within‑session and across‑session reproducibility

Mean and SD of the estimated brain volumes within a single 
session and across sessions for MDB and FS, respectively, 
can be found in the supplementary material. The results indi-
cate that, except for CS-factors > 16 and for the FS-based 
measurements of CSF, reproducibility is comparable when 
assessed across sessions as compared to within a single 
session.

Discussion

In our study, we showed that MRI acquisition accelera-
tion via Compressed SENSE (CS) has a systematic bias 
effect on volumetric brain measurements which correlate 
strongly with image noise levels. This bias effect alters 
tissue quantification depending on the software used and 
analyzed subvolume. The present study is among the first 
to link a systematic volumetric bias of brain tissue with 
state of the art MR image acceleration techniques. The 
precision of the volumetric brain measurements remains 
high, even at a relatively high degree of acceleration.

For both software tools used, MDB and FS, we showed 
a systematic bias of the volumetric brain measurements 
proportional to the employed CS-factor. For both software 
tools and all analyzed subvolumes, this bias shows a strong 
linear behavior what was confirmed by linear correlation 
analysis (R > 0.95, p < 0.01). This translates into increas-
ing WM volumes for MDB and increasing CSF volumes 
for FS (Fig. 3). Considerable differences in intracranial 
tissue segmentation between SPM/CAT12 and FS are 
well known and have been demonstrated before. In par-
ticular, pronounced differences regarding inter-method and 
intra-method segmentations [35] as well as a dependence 
of inter-method variations in calculated volumes on the 
analyzed brain compartment [36] have been reported. In 
a recent study by Palumbo et al., the authors showed a 
systematic oversegmentation of GM volume by CAT12 
compared to FS [37]. This systematic difference in tis-
sue classification between voxel-based morphometry and 
surface-based morphometry may be the reason for differ-
ences in absolute tissue volumes between MDB and FS.

Previous studies on parallel imaging techniques and 
brain volumes did not find a corresponding relationship 
investigating brain volumetry in healthy adults and demen-
tia patients [38, 39]. However, these previous studies only 
investigated the effect of PI on volumetric brain meas-
urements without additional compressed sensing. In our 
study, imaging data acquisition and processing was per-
formed with NBV as the intended clinical application, i.e. 
for comparison of brain volumes with a normal cohort. 
For the rating of atrophy in dementia patients, providing 
additional quantitative information, for example, in the 
form of deviation maps or volume percentile curves, was 
shown to have a beneficial effect on diagnostic accuracy 
[4, 5]. Although precise percentage cut-off values have not 
been defined, volumes below the fifth percentile or below 
two standard deviations are usually considered pathologic 
[4, 5]. Knowing about systematic, CS-dependent tissue 
classification could lead to a more individual adjustment 
of these conventions for pathologic tissue atrophy, e.g. 
by means of a scaling factor. Since we demonstrated that 
the found systematic bias can vary across brain regions 
and the utilized analysis software, it may be reasonable to 
derive specific scaling factors depending on the respective 
setting. The alternative approach of matching CS-factors 
within the control cohort to the patient undergoing NBV 
evaluation seems not feasible since these cohorts are usu-
ally fixed.

NCR was calculated as quantitative measure of image 
quality and increased with the degree of acceleration as 
evidenced by the strong linear correlation with CS-factor. 
NCR and the calculated relative volumes also showed a 
strong linear correlation. This indicates that for MDB-
based volumetry, and almost to the same extent for FS-
based volumetry, the observed systematic bias is driven by 
the noise level increase induced by CS-acceleration. Fur-
thermore, the enlarged views in Fig. 1 suggest that noise is 
more pronounced towards the image center (Fig. 1). Ana-
lyzing smaller subcortical regions of interest, we found 
less reliable results compared to whole-brain volumes BP, 
WM, GM and CSF. This supports the hypothesis of a non-
uniform noise distribution with increased noise levels in 
the central regions. Previous studies about the relation-
ship between image noise and measured brain volumes 
are scarce. In a reliability study of MRI measurements, 
Maclaren et al. [40] did not find any correlation between 
lateral ventricle volumes and image noise. However, the 
range of observed image noise was considerably nar-
rower than in the previous study since the used sequences 
were not modified along the repeated measurements. The 
increased NCR is most likely the primary cause of the 
found CS-dependent systematic bias. Therefore, future 
investigations applying different denoising strategies to 
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Table 7   Pairwise ICC to assess 
reliability between CS-factor = 1 
and CS-factor = 4, 8, 12, 16, 20, 
32, respectively, for MDB

ICC intra-class correlation coefficient, ICC1,i ICC between CS-factors 1 and I, CS compressed SENSE, 
MDB md.brain software tool, BP brain parenchyma, WM white matter, GM gray matter, CSF cerebrospinal 
fluid

MDB ICC1,4 ICC1,8 ICC1,12 ICC1,16 ICC1,20 ICC1,32

BP 0.9150 0.8760 0.7691 0.7027 0.6429 0.5412
WM 0.9758 0.9395 0.9187 0.8936 0.8762 0.7945
GM 0.9212 0.8948 0.7628 0.6880 0.6048 0.4747
CSF 0.9855 0.9841 0.9312 0.8613 0.7922 0.6356

Table 8   Coefficients of varia-
tion (CoV) in % of the FS-based 
repeated volumetric measure-
ments

CS compressed SENSE, FS FreeSurfer segmentation and volumetry tool, BP brain parenchyma, WM 
white matter, GM gray matter, CSF cerebrospinal fluid

CS-factor 1 4 8 12 16 20 32

BP Subject 1 0.30 0.64 0.46 0.76 0.65 0.69 4.45
Subject 2 0.58 0.33 0.27 0.37 1.33 0.44 0.72
Subject 3 0.31 0.46 0.41 0.71 0.52 0.77 2.44

WM Subject 1 0.26 0.33 0.45 0.65 0.65 0.58 2.54
Subject 2 0.17 0.21 0.36 0.38 0.90 0.53 1.44
Subject 3 0.47 0.36 0.58 0.57 0.55 0.80 3.73

GM Subject 1 0.34 0.97 0.68 0.95 0.83 0.88 6.75
Subject 2 0.89 0.38 0.44 0.42 1.93 0.70 0.72
Subject 3 0.83 0.67 0.70 0.99 0.60 0.91 1.74

CSF Subject 1 7.80 8.15 4.76 8.68 10.53 11.77 24.47
Subject 2 4.47 5.19 6.24 3.15 14.89 8.88 7.68
Subject 3 3.58 5.30 9.67 9.36 7.09 4.15 14.45

Table 9   Pairwise ICC to assess 
reliability between CS-factor = 1 
and CS-factor = 4, 8, 12, 16, 20, 
32, respectively, for FS

ICC intra-class correlation coefficient, ICC1,i ICC between CS-factors 1 and I, CS compressed SENSE, 
FS FreeSurfer software tool, BP brain parenchyma, WM white matter, GM gray matter, CSF cerebrospinal 
fluid

FS ICC1,4 ICC1,8 ICC1,12 ICC1,16 ICC1,20 ICC1,32

BP 0.9996 0.9994 0.9987 0.9932 0.9940 0.9187
WM 0.9998 0.9992 0.9992 0.9968 0.9980 0.9946
GM 0.9993 0.9986 0.9928 0.9797 0.9661 0.6894
CSF 0.9550 0.8501 0.7233 0.6369 0.7014 0.3418

the acquired MRI data prior to volumetric measurements 
could be a way to potentially reduce the biasing effect.

Except for FS-based volumetry of CSF, we have shown 
acceptable intra-subject reliability of the measured brain 
volumes using two different software tools. Interestingly, 
this holds true even for high acceleration factors up to 
CS-factor = 20. In 2009, Lindholm et al. analyzed intra-
subject reliability of brain volumetry accelerated by the PI 
technique GRAPPA. The reported CoVs for GM and WM 
have a comparable range (0.4–1.6%) as the values found in 
our study [38]. One potential explanation for the preserved 

precision of measured brain volumes could be that the 
shortened acquisition time and associated reduction of 
motion artifacts compensates for the increased noise level 
at higher CS-factors. The low intrinsic measurement vari-
ability of CS-accelerated volumetric brain measurements 
found in our study can be considered a prerequisite for its 
application. Of note, no pre-processing for longitudinal 
brain volume evaluation was performed, since we focused 
on a single timepoint NBV scenario. This means that 
the observed CoV could potentially be reduced through 
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optimized preprocessing steps for longitudinal brain vol-
ume assessment.

The present study is not without limitations. First, we only 
included three young healthy subjects. To validate our results 
in clinically relevant patient groups, further studies with a 
higher number of subjects, a broader age range and subjects 
suffering from neurodegenerative diseases are necessary. 
Additionally, these patients might be more prone to motion 
artifacts. Second, our study was primarily designed for the 
analysis of CS-acceleration in the context of NBV and not for 
the assessment of volume changes over time. To evaluate the 
impact on longitudinal brain volume analysis, a different study 
design and data processing would be needed. Third, for certain 
subvolumes, the found systematic bias shows marked differ-
ences between MDB and FS which cannot be explained in 
detail. To better comprehend the mechanism behind these dif-
ferences, further investigations into the algorithms of the two 
software tools would be required but were beyond the scope 
of this study. Finally, the noise distribution of the imaging 
data was only assessed by visual inspection and the analysis 
of smaller subcortical volumes of interest in comparison to 
whole-brain volumes. Future studies should consider perform-
ing additional measurements on a uniform phantom image to 
improve the spatial characterization of image noise with regard 
to increasing acceleration factors.

Conclusion

We found that CS-accelerated MRI poses a systematic bias 
on measured brain volumes with differential effects on tissue 
classes depending on the volumetry pipeline used, at mostly 
preserved measurement precision. This bias effect leading to 
impaired accuracies of volume estimations is mostly explained 
by increasing image noise and should be taken into account 
when comparing brain volumes with external databases.
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