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Abstract

Object The objective of this study is the identification of

metabolites by means of 1H high resolution magic angle

spinning nuclear magnetic resonance (1H HR MAS NMR)

spectroscopy and the evaluation of their applicability in

distinguishing between healthy and degenerated disc

tissues.

Materials and methods Differences between the meta-

bolic profiles of healthy and degenerated disc tissues were

studied by means of 1H HR MAS NMR. Analysis was

performed for 81 disc tissue samples (control samples

n = 21, degenerated disc tissue samples n = 60). Twenty

six metabolites (amino acids, carbohydrates, and alcohols)

were identified and quantified.

Results The results indicate that the metabolic profile of

degenerated discs is characterized by the presence of

2-propanol and the absence of scyllo-inositol and taurine.

The concentrations of 2-propanol and lactate increase with

age.

Conclusion PCA analysis of ex vivo 1H HR MAS NMR

data revealed the occurrence of two groups: healthy and

degenerative disc tissues. The effects of insufficient

nutrient supply of discs, leading to their degeneration and

back pain, are discussed.

Keywords Disc degeneration � Metabolic profile �
Metabolomics � Quantitative HR MAS NMR � 2-Propanol

Abbreviations

Ac Acetate

Ala Alanine

Asp Aspartate

AF Annulus fibrosus

ADH Alcohol dehydrogenase

ATP Adenosine-50-triphosphate

Cit Citrate

CoA Coenzyme A

COSY Correlation spectroscopy

Cr Creatine

CT Computed tomography

GAG Glycosaminoglycans

Glc Glucose

Gly Glycine

His Histidine

Hyp Hydroxyproline

HR MAS High-resolution magic angle spinning

Ile Isoleucine

IPA 2-Propanol

IVDD Intervertebral disc degeneration

Lac Lactate

Leu Leucine

Lys Lysine

N-acetyl peak Chondroitin sulfate

NAD? Nicotinamide adenine dinucleotide

NP Nucleus pulposus

MI myo-Inositol

MMPs Matrix metalloproteinases
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MRI Magnetic resonance imaging

MRS Magnetic resonance spectroscopy

PBS Phosphate buffered saline

PCA Principal component analysis

PG Proteoglycans

Phe Phenyloalanine

SD Standard deviation

SI scyllo-Inositol

Suc Succinate

Tau Taurine

TCA Tricarboxylic acid cycle

TOCSY Total correlation spectroscopy

TSP Trimethylsilyltetradeuteropropionic acid

Tyr Tyrosine

U Uracil

Val Valine

Introduction

Intervertebral disc degeneration (IVDD) is a common

clinical problem whose pathogenesis is still not very well

understood. However, it is known that IVDD causes bio-

chemical and morphological changes in the structure of the

disc, leading to the deterioration of the biomechanical

function of the joint and low back pain [1–4]. Disc

degeneration may result from mechanical trauma [3, 5],

patient age, familial predisposition [5, 6], and an imbalance

between anabolic and catabolic processes [7]. A healthy

disc consists of three elements: the nucleus pulposus (NP),

the annulus fibrosus (AF), and endplates separating the

nucleus from the adjacent vertebral bone [1]. The central

region of the nucleus pulposus is highly hydrated and acts

as a hydraulic cushion to withstand the forces of com-

pression and torsion. The annulus fibrosus prevents the

nucleus pulposus from herniating or leaking out of the disc

by hydraulically sealing the nucleus and evenly distributing

any pressure and force imposed on the intervertebral disc.

Radiography, discography, computed tomography (CT),

and magnetic resonance imaging (MRI) are used to diag-

nose disc degeneration [8–13]. Interpreting the results of

imaging is difficult and complicated because discs are

composed of several subtissues (nucleus, annulus, end-

plate) and there is poor correlation between morphological

findings, spinal biomechanics, and patient symptoms [3,

14–17].

High resolution magic angle spinning (HR MAS) 1H

NMR spectroscopy is a nondestructive technique that has

been applied to characterize the composition of various

intact human cancer tissues, such as breast [18, 19], brain

[20, 21], prostate [22–24], lung [25], and colon [26]

cancers. This technique has also been applied to determine

the biomarkers of disc degeneration. Keshari et al. [1–3]

observed changes in the chemical composition of discs,

especially increased levels of unbound hydroxyproline and

glycine, associated with collagen breakdown. They noticed

a decrease in the concentration of proteoglycans correlated

with degeneration and suggested that lactate, collagen, and

proteoglycan may serve as metabolic markers in discogenic

back pain.

A synergic combination of NMR spectroscopy and

chemometric techniques offers a useful tool for the iden-

tification of markers of degenerative disc disease.

The purpose of this study is the determination of disc

metabolites in order to evaluate their applicability in the

diagnosis of intervertebral disc degeneration by means of
1H HR MAS NMR. We hope that in the near future HR

MAS NMR ex vivo studies of metabolic profiles combined

with in vivo studies using MRI scanners (MRS) may

become part of a new diagnostic protocol.

Materials and methods

Disc tissue samples

Analysis was performed for 81 disc tissue samples (control

samples n = 21, degenerated disc tissue samples n = 60).

Tissue samples were harvested from 60 patients who

underwent intervertebral disc surgery at the WAM Uni-

versity Hospital, Central Veteran Hospital of the Medical

University of Łódź, Poland. The reference samples origi-

nated from non-degenerated discs after mechanical trauma

(n = 20) and from a post-mortem section (n = 1). This

project was approved by the local ethics committee

(Approval No. RNN/355/12/KB). The patients were diag-

nosed on the basis of CT and MRI. The specimens were

collected during classic microdiscectomy from the cervical

and lumbar spinal regions. After standard preparation of

the operation field, intervertebral disc exposure was per-

formed using microsurgery. The annulus fibrosus was

fenestrated under the operating microscope and a

3 mm 9 3 mm specimen was taken. The harvested frag-

ment was denoted as annulus. Afterwards, tissue was har-

vested from the deeper layers of the intervertebral disc and

denoted as nucleus. For each patient, annulus fibrosus and

nucleus pulposus samples were analyzed by means of 1H

HR MAS NMR. Analysis was performed on the following

lumbar (L) and cervical (C) intervertebral discs: L1/L2

(n = 2), L2/L3 (n = 2), L3/L4 (n = 3), L4/L5 (n = 20),

L5/S1 (n = 30), C2/C3 (n = 2), C5/C6 (n = 12), and C6/

C7 (n = 10).

All tissue samples were placed on ice after surgery for

15 min and then stored at -80 �C until HR MAS analysis
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within 1 week. All samples were treated in the same way.

No changes in 1H NMR spectra were observed after 7 days

in storage at -80 �C temperature. Prior to HR MAS ana-

lysis, all samples were cut to fit the 4 mm zirconium HR

MAS rotor (a total sample volume of 50 lL). Samples

weighed 37.29 mg on average (range 5.31–60.49 mg). The

mean age of the patients was 46.5 ± 13.7 (SD) years

(range 16–78 years).

HR MAS experiments

All spectra were acquired using a Bruker Avance II Plus

16.4 T spectrometer (BrukerBioSpin, Germany) operating

atan 1H frequency (700.08 MHz). The instrument was

equipped with a 4 mm 1H/13C HR MAS probe with the

gradient aligned along the magic angle axis. Samples were

spun at 6 kHz to keep rotation sidebands out of the acqui-

sition window. All experiments were conducted at nomi-

nally 25 �C for 20 min, to avoid the TCA cycle metabolites

such as succinate, citrate, and oxaloacetate formation.

Changes of the concentration of the other metabolites were

not observed during this short time. At lower temperatures

(5 and 15 �C) the resolution of the 1H spectra was changed

for the worse. Phosphate-buffered saline (PBS 0.1 M, pH

7.4, 30 lL) made with deuterium oxide and containing

3.8 mM TSP (sodium-30-trimethylsilylpropionate-2,2,3,3-

d4) was added to the each sample. A Carr–Purcell–Mei-

boom–Gill (CPMGpr, Bruker) spin-echo sequence [27] was

applied with a delay of 1 ms, repeated 140 times. Spectra

were recorded with 1.5 s water presaturation during the

relaxation delay, and a calibrated 90� pulse was applied for

128 scans, collecting 64 K data points over a spectral width

of 14,097 Hz. The repetition time of 10.32 s, including a

relaxation delay of 8 s, was calculated as 7T1, which had the

longest relaxation time to ensure complete magnetization

recovery. An exponential line broadening of 0.30 Hz was

applied to raw data prior to Fourier transformation. The TSP

peak at 0 ppm was used as a chemical shift standard and a

linear baseline correction was applied. Homonuclear corre-

lated spectra (COSY) and total correlation spectroscopy

(TOCSY) experiments were performed on selected samples

to aid peak identification. Homonuclear correlated spectra

(COSY) were acquired using a standard pulse sequence [28].

Spectra were recorded with acquisition of 16 transients for

each of the 512 increments with 2 K data points. TOCSY

was acquired using a standard pulse sequence [29]. Mixing

time was 80 ms. In spectra recorded for 20 min, only cor-

relations for highly concentrated metabolites were observed.

Quantification of metabolites in disc samples

Quantitative analysis was performed for the spectral

regions from 0.8 to 4.65, from 5.0 to 8.2, and the region

corresponding to TSP (from 0.1 to -0.1 ppm). The signal

of water (4.66–5.0) was not analyzed. All spectral regions

were individually corrected using a fifth-order baseline

function. Molar metabolite concentrations were calculated

from the equation:

½MET� ¼ AMET

ATSP

� HTSP

HMET

� nTSP

msample

;

where AMET and ATSP are areas of metabolite and TSP

signals, respectively; HMET and HTSP are the numbers of

protons per metabolite and TSP signals; nTSP is the number

of moles the TSP signal represents, and msample is the

weight of the sample in the MAS rotor.

Statistical analysis

Statistical analysis was performed using AMIX 3.9.14

(Bruker, Germany). The variation of the data was explored

by principal component analysis (PCA), with NP spectra

being more suitable for this type of analysis. The spectral

region from 3.29 to 4.05 of spin-echo 1H NMR spectra was

chosen as input data for PCA analysis. Linear combinations

of metabolites that explain most of the overall variance in

the data set were calculated by means of PCA. Baseline

offset was corrected, and the selected spectral region was

mean-normalized to arrive at the total area for each sample.

Results

HR MAS NMR spectroscopy makes it possible to deter-

mine metabolite concentrations in intact tissues. Sample

preparation for HR MAS is simpler than analysis of

extracts, which requires sample homogenization and stan-

dardization for each metabolite. The extraction process is

laborious, time-consuming, and destructive [30].

Representative ex vivo 1H HR MASNMR spectra of

healthy and degenerated disc tissues are shown in Fig. 1.

Assignment of metabolite resonances was based on ana-

lysis of one dimensional 1H, two dimensional correlation

spectroscopy (COSY), and total correlation spectroscopy

(TOCSY) NMR spectra. The collected data were compared

with those from the literature [25] and with the spectra of

metabolites recorded on a Bruker Avance II Plus700 MHz

spectrometer. The1H HR MAS NMR spectra for nucleus

pulposus and annulus fibrosus specimens were very similar

(see Figure SM1 in supplementary material). In the HR

MAS spectra of disc tissues, signals of five groups of

compounds were observed. The main metabolites charac-

terizing disc tissues are labeled in Fig. 1 and the pool of

metabolites is reported in Table 1. The largest group con-

sisted of 12 amino acids, which were derived from protein

cores and were also formed by collagen breakdown. The
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second group of compounds was comprised of carboxylic

acids and their derivatives, mainly lactic acid, citric acid,

formate, acetate, and acetone. Moreover, some carbohy-

drates (mainly a- and b-glucose and chondroitin sulfate)

and pyrimidine derivatives (e.g. uracil) were found in the

spectra of disc tissues. Alcohols, such as myo-inositol,

scyllo-inositol, and 2-propanol, were also identified. In the

case of 2-propanol, the possibility of its exogenous origin

was checked at every step from surgery to HR MAS

measurements, but it was deemed possible for 2-propanol

to have been introduced into disc tissue samples as a result

of its antiseptic use. The patients were being administered

pain relief and non-steroidal anti-inflammatory drugs, but

2-propanol was not found to be a component or metabolite

of those drugs. Resonances of 2-propanol was observed due

to good resolution of 1H NMR spectra and confirmed by

COSY/TOCSY experiments (see Figure SM3–SM4 in

supplementary materials). The unassigned signal at

1.2 ppm reported earlier [2] probably corresponds to

2-propanol, but was not recognized in poorly resolved

spectra.

The presented study revealed that in degenerated disc

samples, the concentrations of 2-propanol and lactate in the

nucleus pulposus and the annulus fibrosus increase signif-

icantly with age, whereas the concentrations of other

metabolites do not change significantly with age. As an

example, alanine was shown in Figs. 2 and 3. The con-

centrations of these compounds are elevated in degenerated

discs, particularly in patients above the age of 45. Linear

curve fitting (0–45 and 45–90) was performed to reveal the

age effect on concentrations of 2-propanol and lactate. For

annulus fibrosous the slope of the curve increased from

0.095 to 0.31 for 2-propanol, and from 0.093 to 0.18 for

lactate. For the nucleus pulposus analogue correlation

showed an increase of the curve slope from 0.019 to 0.27

for 2-propanol, and from 0.089 to 0.18 for lactate. There is

no correlation between age and concentration of lactate in

control samples. These correlations are presented in detail

in Figures SM5–SM9 in the supplementary materials.

Metabolic changes in degenerative disc disease were

also observed based on analysis of the main components of

intervertebral discs: proteoglycans and glycosaminogly-

cans. The degradation of proteoglycans was observed in 1H

HR MAS spectra as an increase in amino acid levels,

mainly glycine, hydroxyproline, isoleucine, leucine, and

valine. These relationships are shown in Fig. 4. Due to the

decomposition of glycosaminoglycans (mainly chondroitin

sulfate), the intensity of the N-acetyl peak in the proton

spectra of the nucleus pulposus and the annulus fibrosus

decreased with patient age.

Principal component analysis

PCA explains the variance in structure of a set of variables

through linear combinations of the variables (principal

components, PCs). The obtained PCA score plot distin-

guished between degenerated disc tissue samples and

healthy tissues, based on selected signals of protons

detected by 1H HR MAS NMR. Analysis of the scores of

PC1 versus PC2 versus PC3 (describing 96.06 % of total

variation) led to two distinct groups. One consists of

degenerated disc samples, while the other one is healthy

disc samples. The metabolic profile of the healthy samples

is characterized by the absence of 2-propanol and the

Fig. 1 Representative ex vivo
1H HR MAS NMR spectra of a

healthy disc (a), and of a

degenerated disc for the

aliphatic (b) and aromatic

(c) regions of the spectrum
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Table 1 Metabolites assigned in HR MAS spectra of disc tissues, their diagnostic 1H signals, chemical shifts (dH) and multiplicities

Assignment number Metabolite Assignment 1H multiplicity dH, ppm

1 Acetate CH3 s 1.93

2 Acetone CH3 s 2.23

3 Alanine CH3 d 1.48

CH q 3.78

4 Aspartate b-CH2 dd, dd 2.67, 2.81

a-CH dd 3.91

5 Chondroitin sulfate N-acetyl s 2.05

6 Citric acid CH2 d 2.54

CH2 d 2.66

7 Creatine CH3 s 3.03

CH2 s 3.93

8 Fatty acids CH3 t 0.90

(CH2)n m 1.29

CH2–CH2–CO q 1.55

9 Formate s 8.45

10 Glycine a-CH2 s 3.55

11 a-Glucose C4H 3.40

C2H dd 3.54

C3H dd 3.71

C6H 3.83

C5H 3.85

C1H d 5.23

12 b-Glucose C2H dd 3.24

C4H 3.41

C5H dd 3.46

C3H t 3.49

C6H t 3.76

C60H dd 3.90

C1H d 4.64

13 Histidine C2H, ring s 7.05

C4H,ring s 7.75

14 Hydroxyproline b-CH m 2.13

b0-CH m 2.36

d-CH dt 3.35

d0-CH dd 3.42

a-CH dd 4.26

c-CH t 4.67

15 Isoleucine d-CH3 t 0.94

c-CH3 d 1.01

c-CH2 m 1.27–1.47

b-CH m 1.98

a-CH d 3.67

16 Lactate CH3 d 1.33

CH q 4.11

17 Leucine d-CH3 d 0.96

d-CH3 d 0.97

c-CH m 1.70

b-CH2 m 1.72

Magn Reson Mater Phy (2015) 28:173–183 177

123



presence of scyllo-inositol and taurine at the

3.29–4.05 ppm level. Moreover, a higher level of glycine

and lower concentrations of myo-inositol, creatine, and

glucose were observed in degenerated discs than in healthy

tissues. A PCA score plot based on the spin-echo spectra of

60 samples is shown in Fig. 5.

Discussion

Intervertebral disc cells play an integral and vital role in

maintaining disc health and function. The composition and

degradation of IVD tissue is controlled by the cells,

because they synthesize the extracellular matrix of the

discs as well as matrix metalloproteinases (MMPs), which

are responsible for matrix breakdown [31]. Healthy tissues

are characterized by a balance between matrix production

and degradation. When this balance is disrupted, the disc

matrix can be changed. Alteration in disc cell metabolism

may lead to changes in disc structure and composition.

Nutrient and oxygen diffusion across the IVD matrix,

soluble regulators of cell function, genetic influences,

ageing, and mechanical load are known to be major factors

affecting disc function [32].

NMR spectra of non-degenerated and degenerated disc

tissues revealed that they had different metabolic profiles.

In particular, taurine and scyllo-inositol were observed only

in healthy disc tissues, whereas myo-inositol was found

only in small amounts in degenerated discs. myo-Inositol

and scyllo-inositol are important osmolytes responsible for

Table 1 continued

Assignment number Metabolite Assignment 1H multiplicity dH, ppm

a-CH m 3.74

18 Lysine d-CH2 m 1.41

c-CH2 m 1.67

b-CH2 m 1.70

e-CH2 t 3.02

a-CH t 3.77

19 myo-Inositol C5H t 3.27

C1H, C3H dd 3.53

C4H, C6H t 3.62

C2H t 4.06

20 Phenylalanine b-CH dd 3.21

a-CH dd 3.97

C2H, C6H, ring m 7.33

C4H, ring m 7.38

C3H, C5H, ring m 7.43

21 2-Propanol CH3 d 1.17

CH sp 4.02

22 scyllo-Inositol CH s 3.35

23 Taurine S-CH2 t 3.29

N-CH2 t 3.43

24 Tyrosine b-CH dd 3.20

b0-CH dd 3.05

a-CH dd 3.94

C3H, C5H, ring d 6.91

C2H, C6H, ring d 7.19

25 Uracil 5-CH, ring d 5.80

6-CH, ring d 7.53

26 Valine c-CH3 d 1.00

c-CH3 d 1.04

b-CH m 2.27

a-CH d 3.61

Notation: s singlet, d dublet, dd dublet of dublets, t triplet, dt dublet of triplets, sp septet, q quartet, m multiplet
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the regulation of long term hypoosmotic and hyperosmotic

stress. They ensure osmotic equilibrium between cells and

the surrounding tissues. Changes in the concentrations of

these three metabolites may indicate an imbalance in the

osmolyte function of discs in degenerative diseases. myo-

Inositol is crucial for the optimal functioning of neurons,

and alteration of its concentration leads to disturbances in

the physiological properties of nerves [33]. Taurine plays

an important role in short-term hypoosmotic stress [34–36].

It also serves as a neurotransmitter in the brain, an anti-

oxidant, and a facilitator in the transport of ions such as

sodium, calcium, potassium, and magnesium. Taurine

deficiency has been observed in a variety of diseases

[37–39].

Fig. 2 Relationship between

patient age and the

concentrations of 2-propanol,

lactate, and alanine in the

annulus fibrosus of degenerated

discs

Fig. 3 Relationship between

age and the concentrations of

2-propanol, lactate, and alanine

in the nucleus pulposus of

degenerated discs
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In addition, a lower concentration of creatine and ele-

vated concentrations of glycine and hydroxyproline were

observed in degenerated discs. Increased concentrations of

glycine and hydroxyproline in degenerated discs have been

observed previously, and have been associated with col-

lagen breakdown [1–3]. Lower concentrations of creatine

in degenerated discs might result from disturbed cell

energy metabolism. Creatine plays a pivotal role in the

energy metabolism of cells. This amino acid acts as an

‘‘ATP shuttle,’’ carrying ATP to the sites where it is uti-

lized [40].

The observed elevated 2-propanol level may originate

from a deficiency of disc nutrition. During anaerobic gly-

colysis, disc cells obtain their energy in the form of

Fig. 4 Concentrations of metabolites in degenerated discs and the control group. Other metabolites are reported as Supplementary material in

Tables SM1–SM3 and Figure SM2

Fig. 5 A score plot of PC1

versus PC2 versus PC3 and a

loading plot of PC1 from PCA

of spin-echo spectra from

patients diagnosed with

intervertebral disc degeneration

(circles) and from healthy

samples (squares)
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adenosine triphosphate (ATP), which is produced during

quantitative conversion of glucose to lactic acid. An

accumulation of lactic acid in the tissues causes acidifi-

cation (pH \ 6.4), which may lead to cell death. Further-

more, low glucose concentrations (below 0.5 mM)

persisting for more than approximately 3 days may also

result in cell death [41, 42]. Under slightly less acidic

conditions (pH \ 6.8), the rate of matrix production

decreases while the rate of matrix degradation remains

unchanged, causing an imbalance favoring matrix break-

down [43]. The lower pH resulting from increased lactic

acid levels enhances the enzymatic activity of metallo-

proteinases, which in turn causes the degradation of col-

lagen into its amino acid constituents [44]. The

intervertebral disc is the largest avascular tissue in the

body, and thus nutritional supply to disc tissue may occur

either by diffusion of small molecules such as glucose or

by convection of larger molecules [45–47]. Dehydration

and the related disc degeneration cause changes in disc

structure and may constrain the transport of nutrients. A

lack of sufficient cellular nutrition may lead to new ways of

glucose delivery, for instance, by fatty acid metabolism.

The main product of this metabolism is acetyl-CoA, which

is precipitated under certain conditions such as starvation,

chronic alcoholism, or high fat intake. Acetoacetate is

formed by coupling two molecules of acetyl-CoA, which

then undergo spontaneous decarboxylation to acetone.

Acetone in the presence of elevated NADH/NAD? ratios in

reactions catalyzed by alcohol dehydrogenase is reduced to

2-propanol [48].

The presence of 2-propanol has been reported previ-

ously in diabetic ketoacidosis, hypothermia [49], starva-

tion, dehydration, chronic ethanol use [50], breast cancer

[51], and in exhaled breath from smokers [52].

Conclusion

HR MAS analysis of intervertebral discs provided new

insights into the degenerative disease process. PCA of

ex vivo 1H HR MAS NMR data distinguished between two

groups: healthy and degenerated disc tissues. Our results

indicate that the metabolic profile of degenerated discs is

characterized by the presence of 2-propanol and the

absence of scyllo-inositol and taurine. Moreover, a

decrease in creatine and myo-inositol concentrations was

observed in degenerated discs. The concentrations of

2-propanol and lactate increase with age.
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