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Abstract Biophysical models that describe the outcome

of white matter diffusion MRI experiments have various

degrees of complexity. While the simplest models assume

equal-sized and parallel axons, more elaborate ones may

include distributions of axon diameters and axonal orien-

tation dispersions. These microstructural features can be

inferred from diffusion-weighted signal attenuation curves

by solving an inverse problem, validated in several Monte

Carlo simulation studies. Model development has been

paralleled by microscopy studies of the microstructure of

excised and fixed nerves, confirming that axon diameter

estimates from diffusion measurements agree with those

from microscopy. However, results obtained in vivo are

less conclusive. For example, the amount of slowly dif-

fusing water is lower than expected, and the diffusion-

encoded signal is apparently insensitive to diffusion time

variations, contrary to what may be expected. Recent

understandings of the resolution limit in diffusion MRI, the

rate of water exchange, and the presence of microscopic

axonal undulation and axonal orientation dispersions may,

however, explain such apparent contradictions. Knowledge

of the effects of biophysical mechanisms on water diffu-

sion in tissue can be used to predict the outcome of dif-

fusion tensor imaging (DTI) and of diffusion kurtosis

imaging (DKI) studies. Alterations of DTI or DKI param-

eters found in studies of pathologies such as ischemic

stroke can thus be compared with those predicted by

modelling. Observations in agreement with the predictions

strengthen the credibility of biophysical models; those in

disagreement could provide clues of how to improve them.

DKI is particularly suited for this purpose; it is performed

using higher b-values than DTI, and thus carries more

information about the tissue microstructure. The purpose of

this review is to provide an update on the current under-

standing of how various properties of the tissue micro-

structure and the rate of water exchange between

microenvironments are reflected in diffusion MRI mea-

surements. We focus on the use of biophysical models for

extracting tissue-specific parameters from data obtained

with single PGSE sequences on clinical MRI scanners, but

results obtained with animal MRI scanners are also con-

sidered. While modelling of white matter is the central

theme, experiments on model systems that highlight

important aspects of the biophysical models are also

reviewed.
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ADC Apparent diffusion coefficient

MD Mean diffusivity

FA Fraction anisotropy
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List of symbols related to the diffusion MRI experiment

g, n, d, D Amplitude, direction and duration of diffusion

encoding gradients, and the time between their

leading edges

td Diffusion time

b, q The magnitude of diffusion encoding, with

b = (2pq)2�td
List of model symbols, used with subscripts j

Sj Intensity of diffusion encoded signal

fj Signal fraction

Dj ADC of a component

RDj Radial diffusivity, i.e. ADC in the direction

perpendicular to a nerve

ADj Axial diffusivity, i.e. ADC in the direction parallel

with a nerve

RSj Radial MRI signal intensity, i.e. S obtained with

diffusion encoding in a direction perpendicular to

the nerve

Subscripts j

r/h Restricted/hindered diffusion component

f/s Fast/slow diffusion component

Other model symbols

d Axon diameter

g Ratio between inner and outer axon

diameter

Dintra Intracellular or intra-axonal diffusion

coefficient

Dbulk Diffusion coefficient of the bulk

medium

u, h, w Direction of the nerve, specified by

polar and azimuthal angles

a, b Symbols relating d and D to d and

Dintra

k, si Exchange rate and intracellular

exchange time

Pd Diffusional membrane permeability

A/V Area to volume ratio

k Tortuosity of the extracellular space

vextra, vaxon, vmyelin Volume fractions of the extracellular,

intra-axonal and myelin spaces,

respectively

w, L Width of nodes of Ranvier, and

internode length

Introduction

The diffusion MRI experiment uses magnetic field gradi-

ents to label spins, as described pedagogically elsewhere

[1, 2]. The most common design of the experiment is based

on the pulsed-gradient spin-echo (PGSE) sequence,

introduced by Stejskal and Tanner in 1965 [3]. Today,

diffusion MRI is widely used in both neuroscience and for

clinical applications, but already in 1965 Stejskal realised

the technique’s potential for studying tissue: ‘‘living cells

form a class of colloidal particles which should exhibit

restricted diffusion of the substances confined within the

cell walls’’ [4]. In addition to conventional experiments

using a single pair of diffusion encoding gradients, the use

of double gradient pairs for microstructural imaging has

also been suggested [5, 6]. Such double pulsed-field gra-

dient (d-PFG) experiments were later employed for

investigations of microscopic anisotropy [7–10], estimation

of compartment sizes [10, 11], and increasing the sensi-

tivity to water exchange [12, 13]. Investigations using

oscillating gradient waveforms represent another class of

diffusion experiments, capable of exploring diffusion at

very short diffusion times [14–17]. Non-conventional gra-

dient waveforms have also been investigated [18].

Inferring information about the microstructure of tissue

from the diffusion MRI experiment is an inverse problem,

where models of the outcome of the experiment are fitted to

the data acquired. The models describe the diffusion-

weighted signal S for some experimental parameters, given

the model parameters. Biophysical models of diffusion in

white matter express S directly in terms of model param-

eters capturing tissue properties such as the axon diameter

d and the fraction of water restricted in the intra-axonal

space fr. Accurate quantification of the tissue properties

requires the diffusion MRI experiment to be repeated

several times with maximally varying experimental set-

tings. This is typically achieved by the use of low- and

high-diffusion sensitisation (high b-values), and long and

short diffusion times [19]. Examples of biophysical models

are the CHARMED and AxCaliber models [20, 21], and

other similar models [19, 22, 23]. Phenomenological

models, such as the diffusion tensor model used in diffu-

sion tensor imaging (DTI) [24], kurtosis or generalized

tensor model [25] used in diffusion kurtosis imaging (DKI)

[26, 27], the stretched exponential model [28], and the

ADC distribution model [29] also exist. Phenomenological

models may show a high sensitivity for detecting altera-

tions in the characteristics of the water diffusion, but do not

assign the alterations to specific features of the tissue

microstructure without further assumptions [30]. In addi-

tion to the phenomenological models, model-free approa-

ches such as q-space analysis also exist, but they may be

too sensitive to variations in experimental parameters to be

useful in the analysis of data acquired with clinical MRI

scanners [31, 32]. Given that the assumptions used when

deriving biophysical models are valid, these models have

the potential to increase the specificity of diffusion MRI by

assigning alterations in the water diffusion characteristics

to specific features of the tissue microstructure.

346 Magn Reson Mater Phy (2013) 26:345–370

123



Modelling of water diffusion in tissue requires knowl-

edge of the various microscopic environments in which the

water molecules are located (Fig. 1a), since the properties

of those environments impact the diffusion-encoded MRI

signal. The glial cells are the most numerous cell type in

the human brain, but these cells are small and thus con-

stitute less than half of the human brain volume [33, 34].

For modelling of white matter diffusion, the most impor-

tant structure is instead the axon [35]. The majority of

vertebrate axons with diameters above 0.2 lm are mye-

linated, i.e., surrounded by a fatty sheath, although

unmyelinated axons may have diameters of up to 1.8 lm

[33]. In the human corpus callosum and other structures in

the brain, most myelinated axons have diameters below

3 lm [36, 37]. Axons in the spinal cord and in peripheral

nerves are generally larger than in the brain. For example,

axons are between 3 and 9 lm wide in the mouse sciatic

nerve [38], compared to 0.2 and 1.0 lm in the mouse

corpus callosum [39]. Axons are also characterized by the

ratio between their diameter and the outer diameter of the

myelin sheath (g-ratio; Fig. 1b). The value of g is normally

in the range 0.5–0.9, but varies as a function of age [33, 40,

41]. A value of exp(-�) & 0.6 is optimal from a elec-

trical conduction perspective [42]. Another important

structural feature of axons are the so-called nodes of

Ranvier, at which the axonal membrane (axolemma) is

exposed to the extracellular space at gaps that are

0.8–1.1 lm wide (Fig. 1) [43]. The distance between the

nodes (L) is between 100 lm and 2 mm, and increases with

the axon diameter. Functionally, myelination, increased

diameters and longer internode distances all contribute to

increased signal transmission velocities in the axons [41,

42, 44], at the expense of the amount of energy required per

transmission [45]. Finally, some axons display a wave-like

undulating course, which allow nerves to stretch during

motion, such as eye movement and locomotion, without

being damaged [46]. Axonal undulation is found generally

in extra-cranial white matter, but is also present intracra-

nially, for example, in the optic nerve [47, 48].

Water-channel proteins, so called aquaporins (AQP),

represent another factor that may influence water diffusion

in brain tissue [49]. These proteins are embedded in the cell

membranes, increasing their permeability to water. The

function of AQP in the healthy brain is only partially

Fig. 1 Drawing of the cell components in neural tissue (a) and

myelin sheath structure (b), modified from Edgar and Griffiths [33].

a The cell body of the neuron, mainly found in grey matter, is also

called the soma, from which several short dendrites and a one long

axon extend. Some axons are encapsulated by myelin sheaths, which

wrap around the axon like a balloon around a stick. The sheaths are

extensions of oligodendrocytes. These generally form myelin sheaths

around several axons. Narrow regions that are called nodes of Ranvier

separate the sheaths. At these nodes, the axon membrane is exposed to

the extracellular space. The segment between two nodes is called an

internode. White matter also contains star-shaped glial cells called

astrocytes. These support axons, for instance by regulating the

extracellular ion concentration. b The ratio between the axon

diameter d and the total axon diameter including the myelin is given

by the g ratio. A small space exists between the axolemma and the

inner part of the myelin sheath, called the periaxonal space, which is

approximately 15 nm wide and filled with extracellular fluid
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understood [50], but the channels are known to control

water movement into and out of the brain in cells located at

the border between brain parenchyma and major fluid

compartments. They also facilitate astrocyte migration and

alter neuronal activity. The expression of AQP can be

altered in disease, for example, in brain oedema where the

astrocytic AQP expression is upregulated. Tumours that

upregulate AQP expression may also be more aggressive

and it has been proposed that AQP inhibitors may slow

tumour growth [50]. Aquaporins are thus attractive targets

for the development of novel drug therapies [51]. Methods

capable of detecting and quantifying alterations of the

membrane permeability may thus find clinical use.

Understandably, neural tissue is more complex than

what can be captured in relatively simple biophysical

models. Estimates of biophysical model parameters should

thus be compared to estimates acquired using gold-stan-

dard techniques. Obtaining reliable information regarding

the three-dimensional structure of tissue and the membrane

permeability in live tissue is difficult, however. Simula-

tions and numerical methods provide an alternative for

investigation of model performance in well-controlled

conditions. Such understanding improves the interpretation

of experiments performed in vivo or in excised nerves and

cell suspensions. The purpose of this review is to provide

an overview of the various components used to build bio-

physical models of diffusion in white matter, and to review

their applicability based on simulation studies. Agreement

and disagreement between model predictions and results

obtained in model systems such as excised nerves and cell

suspensions are also discussed. Finally, the implications of

the topics discussed are considered for in vivo measure-

ments and the clinically relevant application of ischaemic

stroke.

Model construction and simulation-based validation

The goal of this section is to describe models that predict

the diffusion-encoded signal in white matter. We start from

the very minimal model of diffusion in white matter, and

gradually extend the model to include effects of variable

axon diameter, axon diameter distribution, orientation

dispersion and compartmental exchange. The biological

rationale for each extension is provided, along with results

from simulation studies that characterize the accuracy and

precision in estimates obtained with the models.

The three experimental parameters that control the dif-

fusion weighting in a PGSE experiment are the duration

and time between the onset of the diffusion-encoding

gradients, denoted d and D, respectively, and the magnetic

field gradient g. Together, these parameters define the

wave-vector q according to q = (c/2p)dg, where c is the

gyromagnetic ratio. The diffusion-sensitisation factor b is

given by b = (2pq)2�td, where q = |q| and the diffusion

time td is defined by td = D - d/3, assuming that the rise

times of the gradients are much shorter than d. We will use

the variables b, td and d as the experimental parameters

relevant for the model outcomes, although other triplets,

such as q, D, and d, would work equally well.

The very minimal model

Biophysical modelling of diffusion in white matter start by

describing the MR signal by two components, of which one

has hindered diffusion (subscript h) and the other restricted

diffusion (subscript r), according to [20]

S ¼ S0 fhSh þ frSrð Þ; ð1Þ

where fh and fr = 1 - fh are the signal fractions of the

hindered and restricted components, respectively. Under

the idealised conditions present in simulations, these

components represent extracellular and intracellular

water. In complex neural tissue, this assignment may

only be conditionally valid, as will be discussed. Also note

that the signal fractions denote the relative water

populations after considering effects of potentially

differing longitudinal and transversal relaxation rates in

the components. The signal of Sh and Sr in Eq. 1 is given by

Sh ¼ exp �b Dhð Þ and Sr ¼ exp �bDrð Þ: ð2Þ

This model thus contains four parameters : S0, fr, Dh and

Dr. Without further assumptions, this model is identical to

the biexponential model [52, 53]. Note that Dh and Dr are

not bulk diffusion coefficients, but rather apparent diffu-

sion coefficients (ADCs) that are influenced by the exper-

imental parameters and properties of the tissue.

To model the anisotropic diffusion in white matter [54],

we assume that the diffusion coefficient in white matter is

cylindrically symmetric along the main axis of the nerve

[22], represented by the vector u. We may thus decompose

Dh and Dr into axial and radial diffusivities, denoted

ADh/RDh for the hindered component and ADr/RDr for the

restricted component. The decomposition is identical for the

hindered and restricted component, and given by [20]

Dh=r ¼ ðn�uÞ2ADh=r þ ð1� ðn�uÞ2ÞRDh=r; ð3Þ

where n is the diffusion encoding direction and u is

specified by polar and azimuthal angles h and w. In order to

specify the very minimal model of diffusion in white

matter, we make two assumptions. First, we assume that

the axial diffusivity is identical in both components

(ADh = ADr = AD), and that it is independent of d and td.

Secondly, we note that under experimental conditions with

limited gradient amplitudes, RDr & 0 for small axon

diameters [55]. Equation 1 now provides the MRI signal
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S using six model parameters: S0, fr, h, w, AD and RDh. For

experiments performed with diffusion encoding perpen-

dicular to the nerve (n � u = 0), the model can be simpli-

fied so that it describe the radial signal attenuation curve

RS using only three model parameters: S0, fr, and RDh, i.e.

RS = S0(fr ? [1 - fr] exp[-b RDh]). In isotropic tissue,

this model for RS also describes S in any direction.

This highly simplistic model of diffusion in white matter

is based on the recognition that it is the organisation of cell

membranes around axons that mainly determines the dif-

fusivity in white matter [35]. Features of white matter that

are less relevant to the model include, for example, the

neurofilaments in the axonal cytoplasm [56]. Internal sus-

ceptibility-induced gradients are also negligible [57]. The

very minimal model neglects water in glial cells, which is

assumed to be either in fast exchange with the extracellular

space and thus a part of the hindered fraction [49], or to

represent a negligible fraction of the total MR signal.

Despite its simplicity, the very minimal model provides

valuable insights; for example, it predicts that RD obtained

in DTI is sensitive to the axon density according to [55, 58]

RD � 1� frð ÞRDh; ð4Þ

when assuming that the axon density correlates with fr. This

relation is also valid to describe the mean diffusivity (MD)

in isotropic tissue such as many tumours, which has led to

the use of MD as a proxy for the cellularity of tumours [59].

The compartment model and the resolution limit

The very minimal model can be expanded to include the

axon diameter d, by modelling RDr as a function of the

axon diameter, d, and the intra-axonal diffusion coefficient,

Dintra, as well as the experimental parameters d and td. In

the analysis of restricted diffusion, it is informative to

define two dimension-less variables a and b according to

a ¼ 4dDintra=d2; b ¼ 4DDintra=d2: ð5Þ

The value of RDr can now be calculated by using the

approximation of a Gaussian phase distribution (GPD) [60–

62], according to

RDr a; bð Þ ¼ k2 a; bð Þd2=2td: ð6Þ

For diffusion restricted to a cylinder and with gradients

applied perpendicular to the main axis of the cylinder,

k2(a, b) is given by [63, 64]

k2 a;bð Þ ¼
X1

m¼1

2aam� 2þ 2e�aam þ 2� eaam � e�aamð Þe�bam

a2a3
m am� 1ð Þ

ð7Þ

where am is defined by J0ða1=2
m Þ ¼ 0, so that (am)1/2 are the

roots of the derivative of the Bessel function of the first

kind and order one. Other expressions are available for

diffusion restricted by parallel planes or a sphere [64].

The variable Dintra in Eq. 5 is often assumed to be scalar

(i.e., isotropic intra-axonal diffusion), with a value equal to

AD or fixed to a value obtained from the literature. This

model thereby describes RS using four model parameters:

S0, fr, RDh, and d, and will here on be denoted as the

compartment model. A similar model was called the min-

imal model of white matter diffusion by Zhang et al. [65].

The reason for Dintra not being included as a free model

parameter here is that its value is difficult to measure

directly, since RDr only approaches Dintra when td ? 0.

However, RDr \\ Dintra under most experimental condi-

tions when performing diffusion MRI on neural tissue.

There is a lower limit that we call the resolution limit

dmin, below which the axon diameter is difficult to estimate

accurately. The appearance of the resolution limit is evi-

dent in q-space analysis [31, 32, 66], but it appears also in

model-based analysis. Alexander et al. [67] compared the

accuracy of axon diameter estimates from acquisition

protocols optimised for an animal and a clinical MRI

scanner, featuring gradient systems with gmax = 140 and

60 mT/m, respectively. The study did not explicitly eval-

uate the value of dmin, but it can be approximated from the

results presented to 2.5 and 3.5 lm for the protocols

optimised for the animal and human system, respectively.

Nilsson et al. [68] similarly showed that axon diameter

estimates are accurate only above 4–5 lm, based on results

from Monte Carlo simulations performed for a protocol

designed for a system with gmax = 100 mT/m. The inac-

curate axon diameter estimates are caused by the quick

approach of RDr to zero as d decreases and a increases

(Fig. 2). For example, RDr & 0.01 lm2/ms for d = 4 lm,

d = 10 ms, and D = 20 ms. In q-space analysis, the

resolution limit is inversely proportional to the maximum

Fig. 2 The value of RDr quickly approaches zero as a increase. The

graph illustrates Eq. 6 for various combinations of a and b in Eq. 5

for d = 4 lm, Dintra = 2 lm2/ms, and varying values of d and D, so

that a = 1 corresponds to d = 2 ms. The maximum value of a is

determined by dmax = D - trf, here with trf = 4 ms. In practice,

values of RDr below approximately 0.02 lm2/ms may be difficult to

distinguish from RDr = 0
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q-value [66]. Reducing the resolution limit requires higher

values of gmax, which permits qmax to increase and a to

decrease, which according to Lätt et al. [32] gives

dmin � gmax
-1/3. For model-based analysis, however, the res-

olution limit scales according to dmin � gmax
-1/2, i.e., model-

based analysis put less strong requirements on scanner

hardware than q-space analysis does, according to pre-

liminary results by Nilsson and Alexander [69]. In addition

to being dependent on gmax, the resolution limit also

depends on the noise level. For example, Alexander

showed that two systems with diameters of 2 and 4 lm

became inseparable in terms of the estimated values of

d when the signal-to-noise ratio (SNR) was reduced from

50 to 20 [19].

The compartment model relies on a few assumptions.

First, it assumes that axons are well modelled by imper-

meable, parallel and equal-sized cylinders. This assump-

tion can be relaxed, as discussed below. Secondly, it

assumes that an inaccurate prior value of Dintra does not

hamper the accuracy of other model parameters. To our

knowledge, this assumption has not been investigated in

detail. Thirdly, it assumes that RDh is independent of d and

td, which is probably an unproblematic assumption.

Fourthly, it assumes that the GPD approximation describes

RSr sufficiently well. This assumption is valid for most

experimental conditions [70], but not for a\\ 1 and

b[[ 1, since the signal curve then takes the shape of a

diffraction pattern [71–73]. The amplitude of the highest

diffraction peak is, however, less than 5 % of S0, although

it may increase, for example, in the presence of a surface

relaxation sink which enhance the relaxation rate close to

the membrane [74]. Nevertheless, the GPD approximation

is generally valid until less than 10 % of S0 remains, as

shown both by simulations and experiments [68, 75].

Another condition that invalidates the GPD approximation

is when b\\ 1. This condition may result in apparently

biexponential signal-versus-b curves from a single com-

partment [76]. In the context of diffusion MRI using clin-

ical MRI scanners, however, this condition is of little

concern for most protocols since b\\ 1 only for d greater

than 20 lm.

Modelling of axon diameter distributions

Nerves are typically composed of axons of varying diam-

eters, which can be incorporated in the model of RSr

according to

RSr ¼
Z

q d0jd; rdð Þ exp �b RDr d0jd; tdð Þð Þdd0; ð8Þ

where q(d0|d, rd) is the volume-weighted axon diameter

distribution with mean d and standard deviation rd. This

model will be referred to as the diameter distribution

model, but it has also been described as the AxCaliber

model [21]. In that model, the axon diameter distribution is

modelled by a gamma distribution, with shape and scale

parameters given by (d/rd)2 and rd
2/d.

In the presence of a distribution of axon diameters, RSr

becomes apparently biexponential [77]. However, RSr is

approximately monoexponential under the experimental

limitations imposed by the clinical MRI scanner, even for

relatively large values of rd (Fig. 3). In the analysis of high

b-value data acquired in vivo, Zhang et al. [65] showed in

a conference abstract that a model assuming equal-sized

axons produces higher estimates of the average axon

diameter than a model assuming a diameter distribution. The

source of this bias may be partly explained by Fig. 3, which

shows that the slope of the signal-versus-b curve increases

as rd increases, even as the average diameter is fixed. The

estimated value of fr is less influenced than the axon diam-

eter by whether a single compartment size is assumed or a

size distribution is incorporated in the model [78].

Fig. 3 Left: Three gamma distributions of axon diameters, all with

average diameters of 5 lm, but with rd = 0, 1.1 and 2.4 lm. Middle:

corresponding RSr-versus-b curves from the three distributions,

matched in grey scale with the distribution panel. Right: Values of

RDr used to generate the signal curves, versus d. The values were

calculated from Eqs. 6 and 7, assuming a typical diffusion MRI

protocol with d = 20 ms and td = 18 ms. Note that all curves are

approximately monoexponential up to the maximum b-value achiev-

able with clinical MRI scanners (bmax & 5 ms/lm2 for the given

values of d and td, with gmax = 100 mT/m)
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Orientation dispersion and axonal undulation

Axons are normally modelled as being parallel, but this

assumption may be invalid. Leergard et al. [79] obtained

axonal orientation distributions by manually recording

individual fibre orientations on myelin-stained histological

sections. The full-width at half-maximum (FWHM) of the

angular orientation distribution was 34� in the densely

packed corpus callosum. Axonal undulation also induces

axonal orientation dispersion [80].

Axonal orientation dispersion can be incorporated into

the model of RS as described by Zhang et al. [81], but is

here adapted to the form of Eq. 8, according to

RSr ¼
Z

q vju;jð Þ

exp �b n � vð Þ2RDr � b 1� n � vð Þ2
� �

ADr

� �
dv;

ð9Þ

where q(v|u, j) is the orientation distribution around the

direction u with a dispersion factor j. This model will be

called the orientation dispersion model, described using

five model parameters: S0, fr, RDh, d, and j, assuming ADr

is fixed to some prior value.

The effect on RSr of an orientation dispersion has been

investigated experimentally and in simulations by Avram

et al. [72]. The results showed that a wider orientation

distribution led to faster signal attenuation at low b-values

and less signal remaining at high q-values. Analysing such

data with the compartment model would presumably result

in higher values of RDh and lower values of fr.

Zhang et al. [81] fitted the compartment model, which

assumes parallel axons, to data simulated from the orien-

tation dispersion model. This resulted in over- and under-

estimated values of d and fr, respectively, although these

biases were almost recovered by instead fitting the orien-

tation dispersion model to the simulated data. Effects of the

resolution limit, however, prevented accurate estimation of

d below approximately 4 lm. Drawing on the weak signal

dependency for small axon diameters, Zhang et al. [82]

refined the model to assume d = 0 lm, which allowed for

improved estimation of j. The resulting model, called

neurite orientation dispersion and density imaging

(NODDI), allows the orientation dispersion to be estimated

in the human brain from data obtained in as little as

10 min.

Axons in extracranial white matter and in the optic

nerve undulate, i.e., they follow approximately sinusoidal

paths [83]. For the optic nerve, the non-straightness

is easily appreciated from reconstructed 3D segments of

axons (Fig. 4). Diffusion measurements performed in

sinusoidally undulating axons yields results similar to those

performed in the presence of orientation dispersion

according to Monte Carlo simulations by Nilsson et al.

[80], although there is a fundamental difference between

orientation dispersion at the micro- and macroscopic levels.

In axons that undulate with wavelengths of a few tens of

microns, d is overestimated by an amount proportional to

the undulation amplitude. This bias is probably not

recoverable by improved modelling, since the water mol-

ecules have time to sample one or more complete undu-

lations during the diffusion time, so that the effective

restriction length is actually larger than the axon diameter.

A similar argument can be applied for axons that vary in

diameter, for example, those in the optical nerve which

varies up to a factor of two in diameter over a distance of

12 lm [45]. In the case of undulation wavelengths of a

hundred microns or more, the differently oriented segments

of the axon may be regarded as non-exchanging [80],

thereby meeting the assumptions in the orientation dis-

persion model. Stretching a nerve with undulating axons

reduces the undulation amplitude, which would result in

less of an overestimation of the axon diameter, and prob-

ably also in alterations of the diffusion characteristics

measured by DTI [80].

The two-compartment exchange model and membrane

permeability

In the presence of exchange between two water compo-

nents, the diffusion-weighted signal can be predicted by the

Kärger equations [84, 85]. These equations are derived

from the Bloch-Torrey equations [86], where the magnet-

isation S in the water components are related by rate

equations dS/dt = A�S. The mixing matrix is given by

A = -(2pq)2 D ? K, so that the solution to the rate

equations provides an expression for the total signal S

according to [78]

S q; tdð Þ ¼ S01Texp � 2pqð Þ2tdDþ tdK
� �

� f; ð10Þ

where S0 is the signal acquired without diffusion

weighting, 1 is a column vector of ones. For the two-

component system discussed previously, D = diag(Dh, Dr),

i.e., the model assumes that the GPD approximation is

valid in all compartments. Moreover, f = [fh, fr], and the

exchange matrix K is given by

K ¼ �kh;r þkr;h

þkh;r �kr;h

� �
; ð11Þ

where conservation of mass gives fh kh,r = fr kr,h under the

assumption that fi represents the total mass of component i.

For experiments performed using a double PGSE sequence

instead of the conventional single PGSE sequence, the two-

compartment model in Eq. 10 can be simplified to only

include four model parameters in the so-called filtered
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exchange imaging (FEXI) experiment [87]. FEXI gives the

apparent exchange rate (AXR), which is related to the

exchange rate according to AXR = (kr,h�fh)-1. Details

regarding that experiment are, however, outside the scope

of this review.

For cells embedded in a homogeneous medium the

outward exchange rate from the cells is given by

Kr;h ¼ Pd A=Vð Þr¼ 1=si; ð12Þ

where Pd is the diffusional membrane water permeability,

(A/V)r is the surface-to-volume ratio of the cell, and si is the

mean residence time for a molecule in the cell, or the

intracellular exchange time [13]. The diffusional water

membrane permeability Pd is affected by the properties of

the lipids in the membrane and by water-channel proteins

embedded in the membrane [88, 89]. It generally increases

smoothly with the temperature, although it may increase

sharply at certain temperatures [13, 88]. Note the differ-

ence between the osmotic and diffusional permeability,

where the former is generally larger than the latter and

refers to the permeability measured in the presence of an

osmotic pressure gradient over the membrane [90]. The

Fig. 4 a Myelinated axons in the optic nerve vary in diameter by

tenfold and are separated from each other by astrocyte processes

(electron micrograph). b Higher magnification of the boxed region in

A shows mitochondria (mit) in axons and astrocyte processes (a).

c Allocation of space in the optic nerve. d Optic axons reconstructed

from inner diameters over a length scale of 12 lm. The axons vary

markedly in caliber (max/min = 2.0 ± 0.6 lm; n = 1,200). Arrows

mark constrictions. None of these constrictions were nodes of

Ranvier. e Distribution of diameters is skewed with thin axons

predominating. Solid line is a lognormal fit. Inset: Distribution of

diameters along the reconstructed segments for a subset of axons with

mean diameter 0.55 lm (n = 1,100) and 1.55 lm (n = 500). Solid

lines are Gaussian fits. Reproduced from Perge et al. [45] with

permission from Journal of Neuroscience
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diffusion NMR/MRI experiment measure the permeability

under steady-state conditions, and thereby yields the dif-

fusional permeability [91].

The model in Eq. 10 is here on called the two-com-

partment exchange model, and it describes RS using five

parameters: S0, fr, RDh, d, and si. Special cases of this model

allow si to be inferred from constant-gradient experiments,

in which g is fixed while td is varied [92, 93]. This approach

provides accurate estimates of si, but for long diffusion

times and values of gmax above those normally available

with clinical MRI scanners. Instead of the approach used in

constant-gradient experiments of only collecting limited

data, a large set of experimental conditions with varying

values of d, td and b can be acquired. This allows the full

two-compartment exchange model to be fitted to the data.

Although the two-compartment exchange model is

derived based on an assumption incompatible with the

notion of restricted diffusion; that both components show

Gaussian diffusion where the mean-squared distances

increase linearly with time, it predicts the outcome of a

single PGSE experiment well in most cases [68, 86]. For

example, Nilsson et al. [23] evaluated the performance of

the model using Monte Carlo simulations, for a protocol

with d = 50 ms, td = 64–256 ms, and bmax = 28 ms/lm2.

The results showed that effects of both restricted diffusion

and exchange can be observed for some microstructural

configurations in signal-versus-b curves obtained using

a clinical scanner (Fig. 5). Another study performed a

similar evaluation using a protocol with d = 30 ms,

td = 30–60 ms, and bmax = 20 ms/lm2 [68]. These two

studies showed that the two-compartment model generally

provides accurate estimates of the values that were used in

the simulation, except for d below the resolution limit. In

addition, two other exceptions were found. First, the

exchange time was accurately estimated only when being

on the same order of magnitude as the maximal diffusion

time employed in the measurements. For example, Nilsson

et al. [68] showed that si was accurately estimated for

si \ 300 ms, compared to the maximal diffusion time of

td = 60 ms. Second, fast exchange demand high q values

Fig. 5 Signal curves simulated with d = 50 ms and diffusion times

from 64 to 256 ms, shown in red to black, order according to the

arrows. Columns show varying exchange times, while rows show

varying diameters. Note that the amplitude of the signal-versus-

b curves increase at high b-values for prolonged td when effects of

restricted diffusion dominate (lower right), while the opposite occurs

when effects of exchange dominate (upper left). Dashed lines

represent the magnified noise floor. Note the unit of b, where

104 s/mm2 = 106 s/cm2 = 10 ms/lm2. Reproduced from Nilsson

et al. [23] with permission from Elsevier
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in order to be observable according to the ‘‘shutter speed’’

analysis of Lee and Springer [94], and is accurately

quantified only if the exchange is barrier limited [86].

The concept of barrier limited exchange relates to an

assumption in the Kärger equations; that the exchanging

components are well mixed so that all particles have equal

probabilities of switching components during si. This

assumption is valid in compartmentalised systems only

when si [[ d2/2Di, i.e., barrier limited exchange as dis-

cussed by Fieremans et al. [86]. Violation of this condition

leads to inaccurate parameter estimates. For example,

Nilsson et al. [23] showed that the estimated values of si

and fr became inaccurate for d [ 8 lm. Another study by

Nilsson et al. [68] similarly found that fr was underesti-

mated for large values of d and low values of si, but

showed that this problem can be partly mitigated by

matching acquired data with data obtained from Monte

Carlo simulations that have been performed with varying

model parameters and stored in a database. Other studies

have also encountered the concept of barrier-limited

exchange, but discussed it in other terms [78, 95, 96]. The

membrane permeability at which the exchange is no more

barrier limited also represents the point at which increased

permeability results in increased ADC values, as shown in

Fig. 6 [97].

Under conditions in which the exchange is not barrier-

limited, but rather limited by the time necessary to diffuse

across the cell, the exchange time in a cylinder is given by

[93]

si ¼ d2=32Dintra þ d=4Pd; ð13Þ

rather than by Eq. 12, with (V/A)i = d/4 for a cylinder.

Summary of models

Table 1 shows a summary of the models describing RS in

white matter, although these models could equally well be

employed to describe S independently of the diffusion

encoding direction in isotropic systems. Expanding the

models is generally straightforward as for example the

inclusion an isotropic CSF component [67]. The models

could also be combined, for example, to model exchange, a

diameter distribution, and orientation dispersion, using

seven model parameters to describe RS. Accurate repre-

sentation of the white matter microstructure probably

requires all these features to be present in the model. In

addition, two or three hindered and restricted components

with different orientations are required to model the dif-

fusion in white matter regions that contain multiple fibre

populations with different orientations. Behrens et al. [98]

suggested that at least a third of all white matter voxels

contain more than one fibre population. Potentially, nearly

all white matter voxels may contain crossing fibres [99].

Model selection is not a trivial matter, because clearly the

microstructure of the white matter is highly complex in most

if not all parts of the brain. Estimating all properties of all

fibre populations may not even be possible, so simplifica-

tions are required. The NODDI model by Zhang et al. [82] is

a good example of where simplifications allows more precise

estimates of relevant parameters, but model simplification

requires approximations that may be invalid. For example,

the assumption of non-exchanging compartments is invalid

in sub-acute ischemic stroke lesions [100]. However, the use

of more complex models, having a greater number of model

parameters, is not always feasible, since fitting the model

parameters may capture features of the signal noise rather

than underlying microstructure. To avoid overfitting, testing

whether the data support a complex model over a simple

model can be done with an F test, for example, as performed

by Kiselev and Il’yasov [101]. They showed that the kurtosis

Fig. 6 Variations in cell membrane permeability impact the ADC

strongly for very high permeability values only. Calculated ADC

values of water were plotted against the membrane permeability, with

lines connecting simulations with identical diffusion times. Top and

bottom panels depict simulation results with a combination of

Dintra = 1.0 and 3.0 lm2/ms, respectively, with equal relaxivities in

the two compartments of 150 ms. Shaded regions highlight physio-

logically relevant membrane permeability values in healthy cells.

Reproduced from Harkins et al. [97], with permission from John

Wiley and Sons
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model (three parameters) could be used just as well as the

biexponential model (four parameters) to fit data acquired

in vivo with high b-values in 20–41 % of the grey matter

voxels investigated. This means that not all of the data

acquired supported the biexponential model. The Bayesian

information criterion can also be used to compare models.

Using data acquired in the corpus callosum of perfusion-

fixated rat brains, Panagiotaki et al. [102] evaluated 47

analytic models of diffusion in multiple non-exchanging

compartments with up to 11 model parameters. They found

that models incorporating an intra-axonal component having

restricted diffusion generally explained the data better than

models assuming hindered diffusion in all components.

However, diffusion MRI data alone may be insufficient to

select between models of equal complexity. For models

having an equal number of model parameters, these may be

transformed from one model to the other. For example, the

number of model parameters in the very minimal model

(three) is equal to that of the kurtosis model (for measure-

ments performed in a single direction). Consequently, the

parameters in the two models can be related according to

fr = RK/(RK ? 3) and RD = fh�RDh, where RK is the

radial kurtosis [30]. Three of the models in Table 1, the

diameter distribution model, the two-compartment exchange

model, and the orientation dispersion model, all describe the

signal curves using five model parameters. Finding the

optimal model in such a case requires careful model evalu-

ation [102]. Choosing the optimal model could also be aided

by the contribution of independent external information, for

example, that acquired by microscopy. The FEXI protocol

could also contribute with independent information regard-

ing exchange, since it is sensitive specifically to the exchange

between the slow and fast diffusion components [87, 103].

Extracellular diffusion

In addition to the concepts included in the models above,

the structure of the extracellular space will also influence

the water diffusion. The extracellular space is tortuous,

which in nerves results in diffusion that is more hindered in

the direction perpendicular to the nerve than parallel to it,

according to

RDh ¼ ADh=k
2; ð14Þ

where k is the tortuosity factor. For ion diffusion in the rat

cerebellum, this factor has been measured as

k = 1.55 ± 0.05 [104], however, the value of k depends

on the fractional volume of the extracellular space (vextra).

For example, Lipinski et al. [105] reported that k ¼ v�0:41
extra ,

based on particle simulations on digitised images of

histological sections. Other relations have also been

employed, for example k2 = 1 ? (1 - vextra)
3/2 by Hall

et al. [106] and k2 ¼ v�1
extra by Alexander [67].

By using a model that relates k and vextra, the number of

model parameters may in some cases be reduced by one,

since Eq. 14 relates RDh to ADh. However, the relation

between k and vextra is uncertain and is likely to be influ-

enced also by factors other than vextra, such as the narrow

spaces between cells [107]. In addition, the hindered

fraction fh may be an inaccurate proxy of vextra, since it may

represent water from both the extracellular space and from

cells in fast exchange with it [49]. Equation 14 may thus be

more suitable for post-hoc analysis of estimated model

parameters than for incorporation in biophysical models.

Model fitting

The diffusion MRI experiment is relatively simple to

describe from a theoretical point of view, but implementing

it and analysing the results is more complicated in practice,

as described thoroughly elsewhere [108, 109]. The most

important aspect to consider in the context of biophysical

modelling of white matter diffusion is the statistical dis-

tribution of the MRI signal. For single-receiver systems,

the magnitude signal is Rice-distributed [110, 111]. This

distribution is approximately Gaussian if the SNR, defined

Table 1 Summary of models describing RS in white matter, where n denotes the number of model parameters

Model name Model parameters n Comments

Very minimal S0, fr, RDh 3 Assumes RDr = 0

Compartment Minimal ? d 4 Similar to the CHARMED model [20]

Diameter distribution Minimal ? d, rd 5 Similar to the AxCaliber model [21]

Two-compartment exchange Compartment ? si 5 Based on the Kärger equations

Orientation dispersion Compartment ? j 5 Model by Zhang et al., also requires AD, which can be assumed to be equal to Di

Undulation Minimal ? A, L, AD 6 RS given by a propagator model [80]

FEXI ADC, r, AXR 3 In addition to these three model parameters, S0 is included for each mixing time

DKI S0, RD, RK 3 The full diffusional kurtosis model uses 22 model parameters [26]

Biexponential S0, fs, Df, Ds 4 Modelling a fast and a slow diffusion tensor requires 14 model parameters

All models could be extended to describe the signal in any direction by using three more model parameters that define the direction of the fibre

(h, u) and the axial diffusivity (AD). The FEXI, diffusional kurtosis, and biexponential models are included for comparison
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by SNR = S/r with r being the standard deviation of the

signal in the real or imaginary channel, is higher than

approximately two, but has an expectation value of r(p/2)1/2

when the true signal is zero. This signal bias is known as the

rectified noise floor. If r is known, the Rice distribution can

be taken into account in the model fitting as shown, for

example, by Veraart et al. [112] for the kurtosis model.

Multiple receive coils and parallel imaging, techniques

widely used today, results in an approximately non-central

chi distributed rather than a Rice distributed signal [113–

115]. The noise level is also non-uniform across the image

volume when multiple receive coils are used [116]. Post-

processing such as motion correction also affect the signal

distribution [115]. The noise floor bias, which is present also

when multiple coils and parallel imaging is used [113, 114],

can make it challenging to distinguishing a water signal from

environments with highly restricted diffusion (Dr & 0) from

the level of the noise floor. Knowledge of the level of the

noise floor is thus important in the model fitting.

Model validation in cell suspensions and excised tissue

Model development has been accompanied by validation

experiments in suspensions of, for example, red blood cells

and yeast cells. Before comparing in vivo and in vitro

results, however, differences in water temperatures could

be important to consider since Dbulk and presumably also

Dintra increase by approximately 50 % when the tempera-

ture increases from 20 to 37 �C [117]. Measurements at

low temperatures are thus beneficial in terms of the reso-

lution limit: in order to keep Dr, a, and b equal at the two

temperatures, the values of d and td at 37 �C should be two

thirds of those at 20 �C (Eq. 5). In order to preserve bmax,

the value of gmax would then need to be approximately

80 % greater at the higher temperature.

Diffusion experiments on excised tissue provide an

opportunity to compare model-based estimates of structural

parameters of the tissue with independent histology-based

estimates. For conclusions drawn from results obtained in

excised tissue, the time interval between death and tissue

fixation should be considered since it influences diffusion

in neural tissue. For instance, the MD in the corpus cal-

losum in a dead brain is reduced from approximately

0.17 to 0.06 lm2/ms during two weeks of brain decompo-

sition [118]. Studies of human tissue are particularly

sensitive to this issue, in contrast to animal tissues that may

be fixed directly postmortem, or premortem by perfusion

fixation. Fixation itself also affects the diffusion; for exam-

ple, it reduces MD but not FA [119, 120]. Moreover, dif-

ferences in diffusivity between infarcted and healthy tissue

are lost during fixation [119]. The storage time of the fixed

tissue only has a minor influence on the MD and FA [121].

Studying exchange using red blood cells and yeast cells

suspensions

The exchange rate in red blood cells has been determined

using various independent methods such as diffusion NMR

and the Kärger model [117, 122, 123], the Mn2? doping 1H

NMR method [124], and studies of diffusion using internal

magnetic field inhomogeneity [125]. The different methods

have provided similar results. The diffusional membrane

permeability of the mammalian red blood cell is high, with

Pd in the range 49–112 lm/s at 37 �C, as measured in

various species [124]. The high values of Pd in combina-

tion with the small sizes of red blood cells lead to values of

si in the order of 5–10 ms according to Eq. 12, assuming

V/A & 0.5 lm [91].

The two-compartment exchange model has been used to

quantify si in erythrocyte ghost models. As expected,

blocking of the aquaporin channels results in increased

values of si [123]. It has also been shown that the value of

fr estimated from diffusion data is lower than that obtained

with an independent method [117]. This underestimation

might be expected, since the exchange is not barrier-lim-

ited for the high membrane permeability found in red blood

cells.

Yeast cells provide a relatively simple model system for

diffusion NMR and MRI investigations, in which the

exchange rate is much slower than in red blood cells.

Åslund et al. [13] used the double PGSE sequence to map

the exchange rate in yeast cells, and showed that Pd is

dependent on the temperature. Suspensions of yeast cells

were used to validate the FEXI model and to compare

results obtained with NMR spectrometers and those

obtained using a clinical MRI scanner [87]. The results

from both platforms resembled each other and agreed with

expectations from other studies.

Intracellular diffusion

Independent estimates of Dintra are valuable in the con-

struction and application of biophysical models of diffu-

sion in tissue. Zhao et al. [126] performed measurements

with very short diffusion times and reported

Dintra = 2.0 ± 0.3 lm2/ms in HeLa cells with diameters of

approximately 20 lm, compared to Dbulk * 3 lm2/ms for

free water at 37 �C. In another study, Beaulieu and Allen

measured the intra-axonal diffusion coefficient in giant

axons of the squid, which are large enough (200–1,000 lm)

to allow for measurements of intra-axonal diffusion coeffi-

cients unaffected by restriction effects of the membranes

(i.e. a ? 0 and b ? 0 in Eq. 7). The values measured

were ADintra = 1.61 ± 0.06 lm2/ms and RDintra = 1.33 ±

0.09 lm2/ms, respectively, which can be compared to

Dbuk = 2.08 ± 0.04 lm2/ms for free water at 20 �C [56].
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Longitudinally ordered neurofilaments within the axons

were suggested as the cause of the small anisotropy, i.e., the

difference in axial and radial diffusivity of the intra-axonal

water. Anisotropy of the intra-axonal diffusivity would

likely have some impact on axon diameter estimated

obtained by analyses performed with the two-compartment

model on data obtained with clinical MRI scanners, since the

value of RDintra influence a and b. However, the impact

would likely be limited. In both of these studies, Dintra * 2/3

Dbulk, but it is even lower in yeast cells [127].

The diffusivity within cells might be inhomogeneous.

Sehy et al. [128] showed ADC values in the Xenopus

oocyte ranging from 0.5 lm2/ms in the vegetal pole to

1.7 lm2/ms in the nucleus. In neural tissue where the cells

are up to three orders of magnitude smaller than the mil-

limetre sized oocyte, such an inhomogeneity probably

contributes less to the value of Dr than the size of the cell.

Galons et al. [129] investigated rat glioma cells and

reported that 50–60 % of the intracellular water has slow

diffusion, which also showed evidence of being restricted.

This could potentially confound results of model-based

analysis that assume a homogeneous intracellular envi-

ronment, and requires further investigation.

Excised nerves

Investigations of diffusion in excised tissue using the single

PGSE sequence have been performed in several studies, the

first of them in 1970s [130, 131]. Most studies have

investigated optic and sciatic nerves, spinal cord, and

whole brain. Signal-versus-b curves acquired in excised

nerves are multi-exponential for diffusion encoding per-

formed both perpendicular and parallel to the nerves [22,

132, 133]. The fast diffusion component has been reported

to be almost independent of the diffusion time, while the

slow diffusion component has shown evidence of being

restricted (Fig. 7). The fast and slow diffusion components

were accordingly assigned to the extracellular and intra-

axonal spaces, respectively [133]. Estimates of the axon

diameter distribution using the AxCaliber model have

shown good agreement with corresponding histology-based

estimates in porcine optic and sciatic nerves [21]. The

estimates were based on several sets of diffusion mea-

surements acquired perpendicular to the nerve and with

diffusion times between 10 and 80 ms.

Parameters correlating with the axon diameter can also

be obtained using model-free approaches, for example, q-

space analysis [66, 134, 135]. However, q-space analysis

underestimates compartment sizes unless d\ 0.02 d2/Dintra

[64], which corresponds to d\ 80 ls for d = 2 lm.

Experiments in excised nerves have verified that the

compartment size estimated from the slow diffusion com-

ponent depends on d [136], as expected from Eqs. 5 and 6.

Water exchange between the intra-axonal and the

extracellular space has been investigated by, for example,

Stanisz et al. [22] who modelled nervous tissue as con-

sisting of permeable and uniformly-sized spheres and

parallel ellipsoids. The spheres represented glia cells and

the ellipsoids represented axons, assuming that the diffu-

sion was restricted also in the direction parallel to the

Fig. 7 Normalized attenuation of water signal as a function of the

diffusion time, averaged over three brains (a), and three nerves (b).

Full and open symbols represent nerve data in which the diffusion

gradient direction was parallel (AS) and perpendicular (RS) to the

long axis of the nerve, respectively. In the brains (top), the slope of

the slow component increase with prolonged diffusion times, while

the slope of the slow component is reduced for prolonged diffusion

times in nerves (bottom). These two phenomena are the hallmarks of

exchange and restricted diffusion, respectively. Note the unit of

b, where 106 s/cm2 = 104 s/mm2 = 10 ms/lm2. Reproduced from

Assaf and Cohen [133] with permission from John Wiley and Sons

Magn Reson Mater Phy (2013) 26:345–370 357

123



axons. Based on measurement in the bovine optic nerve,

the authors found that the model required a non-zero

membrane permeability (Fig. 8), which was estimated to

be Pd = 9 ± 2 and 17 ± 3 lm/s for the axon and glial

membrane, respectively. This corresponded to exchange

times of approximately 30–60 ms. The axonal and glial

water volume fractions were 17 ± 4 and 43 ± 5 %,

respectively.

Results from other studies also indicate that effects of

water exchange are detectable in diffusion-weighted data

acquired in excised nerves. Bar-Shir and Cohen performed

bi-gaussian analysis of the propagator, similar to biexpo-

nential analysis of the signal-versus-b curve, and demon-

strated that fs is reduced as td is prolonged above 10 ms in

measurements on the swine optic and sciatic nerves [136].

The observation was attributed partly to water exchange.

Biton et al. [137] observed similar trends in normal spinal

cord. The authors also investigated myelin-deficient spinal

cord, where the root-mean-square displacement of the slow

diffusion component increased almost linearly with (td)1/2,

for td between 22 and 200 ms. This observation suggests

higher exchange rates in the myelin-deficient spinal cord

than in the normal one, as could be expected. Assaf et al.

[133] observed reduced values of RS at high b-values for

prolonged diffusion times in the spinal cord of the 7-day-

old rat, which is evidence of exchange (Fig. 5). In the

mature spinal cord, however, the values of RS increased for

prolonged td, as expected for restricted diffusion. In sum-

mary, exchange in excised nerves appears to be fast enough

to affect the signal curves acquired so that exchange should

be included in models of white matter diffusion. Measuring

the exchange rate may be just as important as measuring

the axon diameter, since it is altered both in disease and

during development.

Model validation in vivo

In contrast to the case in excised tissue, the signal-versus-

b curves observed in vivo are conspicuously independent of

td, as reported for measurements performed in regions such

as the cortex and striatum of the rat as shown in Fig. 9 [53],

human white and grey matter, [52] and white matter of

the cat [138]. Investigations of RS in the corticospinal

tract for diffusion times between 64 and 256 ms with

bmax = 28 ms/lm2 showed no effects of a varied diffusion

time (Fig. 10) [23]. At a first glance, these results seem to

contradict the assumption that the slow diffusion fraction is

restricted, especially since the reported values of fs are

generally much lower than the value of 80 % that would be

expected if all intracellular water molecules were restricted

in their diffusion. To resolve these issues, it is helpful to

analyse white and grey matter separately and to investigate

four concepts one by one: differences in relaxivity between

excised and living tissue, expected values of the signal

fractions, effects of restricted diffusion, and the rate of

compartmental exchange.

Relaxivity and diffusion

Studies of the transversal relaxation in excised nerves have

provided evidence of three water components, assigned to

myelin water, extracellular water, and intra-axonal water,

with T2 relaxation times of 10–20, 65–80, and 250–350 ms,

respectively, where the specific values depend on the

magnetic field strength [77, 139]. Other studies have sug-

gested that the T2 relaxation time is longer in the extra-

cellular space than in the intra-axonal space [139, 140].

However, this assignment is not supported by diffusion

experiments showing that fr increases for prolonged TE

Fig. 8 Signal-versus-b curves obtained with diffusion encoding

perpendicular and axial to the bovine optic nerve. a The global fit

of a three-pool tissue model (solid lines) to the experimental data

(data points). b The results of the three-pool model without

permeability (P = 0 for all pools). The misfit for high b values is

observable. Note the unit of b, where 106 s/cm2 = 104 s/mm2 =

10 ms/lm2. Reproduced from Stanisz et al. [22], with permission

from John Wiley and Sons
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[77, 133]. Most in vivo studies of transversal relaxation

rates have observed two components with short (10–50 ms)

and long (70–130 ms) T2 relaxation times, assigned to

myelin water and the combined contribution of intra- and

extracellular water [141–143]. Support for three compo-

nents in vivo have been found in the peripheral of the

amphibian Xenopus laevis [144], and in some regions in the

human brain [141]. Three components could be interpreted

as significantly longer T2 relaxation times for extracellular

compared to intra-axonal water [142]. However, results

from diffusion MRI studies in the CNS suggest at most a

negligible difference in transversal relaxation between the

intra-axonal and extracellular space in vivo: the fast- and

slow diffusion components have indistinguishable relaxiv-

ities [145, 146], DTI metrics are insensitive to TE [147],

and biexponential model parameters are insensitive to TE

within practically achievable ranges [52]. These observa-

tions suggest that the signal fractions in vivo do reflect the

relative volume fractions of the various diffusion compo-

nents, independent of echo and repetitions times within

feasible ranges. Fast exchange between intra-axonal and

extracellular water would also render their relaxivities

inseparable; however, such a fast exchange is unlikely in

healthy white matter.

Signal fractions

Several authors have performed high b-value diffusion

experiments in vivo and quantified the resulting signal-

versus-b curves using a biexponential model. Most of these

studies have yielded values for fs in the range 20–35 % [52,

53, 138, 148–150]. This range covers results from varying

protocols, acquired in rats as well as in humans and in

grey- as well as white matter or a combination of both

(Table 2). Values outside this range have been found in

studies of white matter where the signal-versus-b curve was

acquired in a well-controlled direction compared to the

direction of the axons. For instance, Clark and Le Bihan

reported fs & 50 % in the internal capsule, for diffusion

encoding performed in the left-right direction [52]. Nilsson

et al. [23] similarly reported fs & 50 % for measurements

performed perpendicular to the corticospinal tract.

The hypothesis that the slow diffusion component rep-

resents intracellular water has been challenged by the fact

that the total intracellular volume fraction (vintra) is much

higher than the values reported for fs [52, 149]. However,

intracellular water is distributed in several different envi-

ronments such as cell bodies of neurons and glial cells as

well as in axons and dendrites. Diffusion measured in

parallel with axons or dendrites will have a high diffusivity

and appear to be unrestricted. Moreover, astrocytic water is

probably in fast exchange with the extracellular water,

since the ADC is reduced by up to 50 % when the astro-

cytic AQP4 expression is reduced [49]. Parts of the intra-

cellular water fraction may thus show fast diffusion.

Some intracellular water, such as myelin water, is MR-

invisible at the echo times by which most diffusion

experiments are performed with clinical MRI scanners. The

fractional myelin volume (vmyelin) may nevertheless have

an influence on fr due to geometrical reasons [55].

Assuming that water compartments other than the intra-

axonal, extracellular and myelin compartments are negli-

gible, we have vaxon ? vextra = 1 - vmyelin, where vextra

here is the fractional volume of the extracellular space and

Fig. 9 The plot shows signal attenuation curves obtained in vivo, in

the striatum and the cortex of the rat, for three different diffusion

times (8.4, 18.01, and 60 ms shown by squares, circles, and triangles,

respectively). The curves obtained show no diffusion time depen-

dence, in contrast to the dashed curves that would have been expected

from the a two-component model (similar to the two-compartment

model, but with a fixed diffusion coefficient of the slow component).

Note the unit of b, where 1 s/mm2 = 10-3 ms/lm2. Reproduced from

Niendorf et al. [53], with permission from John Wiley and Sons

Fig. 10 RS-versus-b curves acquired in the corticospinal tract of a

healthy volunteer. Five curves were acquired with td from 64 to

256 ms. Solid lines are biexponential fits. No obvious effects of a

varied diffusion time is observed in the signal curves. Dashed lines

indicate ± 1 standard deviation of the signal acquired with

td = 256 ms. Dotted lines show the mean noise level. Reproduced

from Nilsson et al. [23], with permission from Elsevier
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other spaces in fast exchange with it. The relation between

vaxon, vextra and vmyelin can be simplified by assuming that

the ratio between the axonal outer and inner diameters

(g) is independent of the axon diameter (Fig. 1b), and that

axons are cylindrical, so that vaxon = g2 (vaxon ? vmyelin) =

g2 (1 - vextra). Assuming vextra = 20 % and g = 0.65

[40, 151], the expression for vaxon evaluates to 60 %. In the

spinal cord, results from segmented histology images

suggest that vaxon may be as low as 45 % [135, 152].

Assuming that the water concentrations and relaxivities in

the intra-axonal and extracellular spaces are approximately

equal, the expected value of fs may thus be in the range

45–60 %. The presence of axonal orientation dispersion

may further reduce the value of fr [80]. Since fs & 50 %

for diffusion measured perpendicular to white matter [23],

it might thus plausible to associate the slow diffusion

component to intra-axonal water in white matter, also for

the in vivo case. Corresponding analysis of grey matter is

more complicated, due to the large dendritic orientation

dispersion [153].

Restricted diffusion

In contrast to what is the case in excised nerves and also

expected for restricted diffusion in white matter, the RS-

versus-b curves obtained in vivo are generally independent

of td [23, 52, 53, 138]. DTI metrics, obtained in the corpus

callosum, are also independent of td between 8 and 80 ms

[154]. However, specialised diffusion MRI measurements

by Does et al. [155] have revealed a td dependence of the

ADC for diffusion times below approximately 5 ms. Taken

together, these results may imply that RDr & 0 for diffu-

sion times longer than approximately 5 ms. In such cases,

the absence of a diffusion-time dependence in RS is to be

expected. This is exemplified in Fig. 11, where the com-

partment model was used to generate RS(b), assuming

d = 6 lm and protocols that resemble those employed in

NMR spectrometer-based investigations of excised tissue

with those used at clinical MRI scanners [23, 67, 133].

While the td dependence of the signal is evident for the

spectrometer case, it is much weaker for the two cases

corresponding to clinical scanners. Specifically, RDr & 0

at both diffusion times in the protocol of Nilsson et al. [23],

due to the high value of d featured in that protocol. The

value of d is much shorter in the protocol resembling that

employed by Alexander et al., but the low value of bmax

results in only a small signal difference between the two

diffusion times.

In apparent contradiction with the assumption that

RDr & 0, biexponential quantification of signal-versus-b

curves shows that Ds is significantly higher than zero in vivo

[52, 53, 138, 148–150]. Values of Ds above zero could,

however, be expected for measurements performed with the

diffusion encoding not being exactly perpendicular to the

Table 2 A summary of the fast and slow ADCs (Df, Ds) obtained using the biexponential model in rat and human brains, together with the slow

diffusion fraction and details of the protocols employed (td/d, bmax)

Tissue Reference Df/Ds (lm2/ms) fs (%) td/d (ms) bmax (ms/lm2)

Rat brain, WM ? GM Niendorf et al. [53] 0.84/0.17 20 18/n/a 10

Rat brain, WM Ronen et al. [138] 0.69/0.08 *30 10/8.5 12.5

Rat brain, WM ? GMa Pfeuffer et al. [146] 0.70/0.08 n/a 60/7 20

Human brain, WMb Clark et al. [150]c 0.75/0.30 37 25/27 3.5

Human brain, WM Clark et al. [52] 1.12/0.16 34 25/n/a 4

Human brain, WMd Maier et al. [149]e 1.25/0.16 36 35/35 5

Human brain, WM ? GM Mulkern et al. [148] 1.40/0.25 26 56/80 6

Human brain, WM Nilsson et al. [23] 0.45/0.03 51 64/50 28

Human brain, thalamus Clark et al. [150]c 0.76/0.45 37 25/27 3.5

Human brain, thalamus Maier et al. [149]e 1.18/0.23 32 35/35 5

Mouse cortex Schwarz et al. [189] 0.77/0.18 21 13/8 10

Mouse cortex, ischaemic Schwarz et al. [189] 0.58/0.13 43 13/8 10

Mouse cortex, cold-injured Schwarz et al. [189] 0.89/0.10 33 13/8 10

Adult rat, post mortem Niendorf et al. [53] 0.51/0.09 31 18/n/a 10

Entries are ordered by category and bmax

a Based on two linear regressions
a Averaged over corpus callosum, the internal capsule, frontal white matter and centrum semiovale
c Dual tensor model, based on two linear regressions
d Averaged over the corpus callosum and the internal capsule
e Dual tensor model
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nerve. If RDr & 0 and the encoding direction deviates by

an angle / from the plane with normal u (the direction of

the nerve), we would expect

Ds ¼ sin2ð/ÞADr: ð15Þ

This means that the value of Ds observed by Nilsson

et al. [23], using a 3-T head scanner, could have been

obtained if / & 10�, i.e., if the estimated direction of the

nerve deviated more than ten degrees from its true value.

Fibre orientation uncertainty can be estimated [156], but

are not available for the study. We may however note that

such a large deviation appears to be unlikely in a region

with high FA [156], which was 0.72 ± 0.03 in the region

assessed by Nilsson et al. [23]. The high values of Ds

observed in vivo probably demands other explanations.

Two other hypotheses could explain the non-zero value

of Ds and the apparent absence of a td-dependence of

RS(b) at high b-values. Nilsson et al. [23] suggested that

this could be the effect of exchange between the intra-

axonal and extracellular space. This hypothesis will be

discussed in the next section. Nilsson et al. [80] also

described effects of axonal undulation on RS(b), assuming

RDr = 0, and reported that macroscopic undulation results

in td-insensitive and apparently biexponential signal-ver-

sus-b curves with non-zero values of Ds.

Despite the uncertainties regarding the biophysical

mechanism responsible for the slow diffusion component

in vivo, estimates of the axon diameter from diffusion MRI

data acquired in vivo correlate with corresponding esti-

mates from histology images. Using the AxCaliber model,

which assumes impermeable, straight and parallel axons,

Barazany et al. [157] estimated the axon diameter distri-

bution from data obtained from the corpus callosum in the

rat brain, using a system with gmax = 400 mT/m. The

known variations in the axon diameter distribution along

the corpus callosum from the anterior (genu) to the pos-

terior (splenium) were largely reproduced, although the

axon diameter distributions found by AxCaliber were

generally broader than those obtained by histology. The

authors suggested that this deviation was caused by tissue

shrinkage during histological preparation. Moreover, the

reported values of fr were in the range 15–30 %, which is

lower than expected. Alexander et al. [67] similarly

showed an agreement between the known variations in

axon diameter along the corpus callosum and an axon

diameter index estimated from diffusion MRI data acquired

in two fixed monkey brains and two live volunteers, using

an animal experimental system (gmax = 140 mT/m) and a

clinical MRI scanner (gmax = 60 mT/m), respectively. The

term ‘‘axon diameter index’’ refers to a summary statistic

over the axon diameter distribution that may differ from the

volume-weighted average axon diameter, possibly due to

non-linear weighting effects when the compartment model

assuming a single diameter is used (Fig. 3). The index was,

however, overestimated both in the monkey case and the

human case, as compared to the value expected from his-

tological investigations.

Exchange

Several authors have investigated the intracellular exchange

time in live brain tissue and reported values between

approximately si = 25 and 620 ms [93, 146, 158, 159]. The

results were obtained from large volumes containing con-

tributions from a mixture of grey and white matter. Nilsson

et al. [23] reported an intra-axonal exchange time of

si = 306 ± 45 ms in a well-defined region of the cortico-

spinal tract. Although this value of si is within the range

suggested by previous studies, the analysis did not account

for the likely presence of orientation dispersion [23]. The

presence of orientation dispersion would probably result in

an underestimated value of si when analysing the data using

the two-compartment exchange model, since effects of

exchange and of orientation dispersion on RS are similar.

Fig. 11 RS-versus-b curves produced using the compartment model

with fr = 0.2, d = 6 lm, RDh = 0.6 lm2/ms. The protocols in the

left, middle and right panel intend to resemble the protocols employed

by Assaf et al., by Nilsson et al., and by Alexander et al., respectively.

Note the differing scales on the x-axis
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The water exchange rate in the human brain has also been

investigated using filtered exchange imaging (FEXI), which

yields the so-called apparent exchange rate (AXR). In

regions of interest placed in frontal and parietal white

matter, as well as in the internal capsule, the AXR was

1.6 ± 0.11, 1.0 ± 0.12, and 0.8 ± 0.08 s-1, respectively

[103]. These AXR values correspond to exchange times of

between 1.25 and 2.5 s, assuming fr = 50 %. These esti-

mated values of si are considerably longer than those sug-

gested in previous studies.

On the lower part of the exchange-time range observed

in the brain, values of si between 25 and 135 ms were

obtained in grey and white matter regions by Pfeuffer et al.

[92, 146] based on constant gradient experiments and

reported in two separate studies. These results could sug-

gest the presence of a fast exchanging component with

exchange times in the order of 10–100 ms. While the intra-

axonal water is presumably in slow exchange with the

extracellular space (a slow diffusion component is

observed also at long diffusion times), the exchange rate in

astrocytes could be high. A reduction of the membrane

permeability of these cells, using RNA interference to

knockout aquaporin expression, results in ADC reductions

of approximately 50 % [49]. Such an effect is only to be

expected if the initial exchange rate is high (Fig. 6). Does

et al. [160] similarly suggested that one of the components

in the T2 spectrum originated from water outside myelin-

ated axons, but within compartments in rapid exchange

with the extracellular space.

The rate of water exchange between the intra-axonal and

extracellular spaces is probably strongly influenced by the

myelin sheath (Fig. 1). For example, studies analysing the

relaxivity of different components have suggested that

exchange between myelin water and water in the intra-

axonal and extracellular space occurs with exchange times

of approximately 100–200 ms [143, 161]. Some studies

have assumed that the overall permeability of myelin is

inversely proportional to the thickness of the myelin sheath

[162, 163]. However, this assumption may only be valid for

thin membranes [164]. The intricate structure of the sheath

suggests that there could be multiple mechanisms by which

the properties of myelin influence the exchange rate. For

example, the periaxonal space is connected to the extra-

cellular space, so that water molecules crossing the axo-

lemma can reach the extracellular space without having to

pass the myelin membranes (Fig. 1). Another mechanism

has been investigated using simulations, in which the

myelin was assumed to be impermeable, but where

exchange was allowed to take place at the nodes of Ranvier

(Fig. 1), as presented in a conference abstract [165].

Describing the nodes by their width (w) and internode

distance (L), the ratio of permeable surface to the total

volume is given by [103]

A=V ¼ 4w=dL; ð16Þ

which gives an intra-axonal exchange time of si = dL/4wPd.

Although this model is inaccurate for large values of L, it

may be used to deduce that larger axons with larger dis-

tances between the nodes of Ranvier would be expected to

show lower exchange rates than thin axons with short

distances between the nodes. Future studies could investi-

gate this model by determining the exchange rate in

maturing white matter. Simulations suggest that this

mechanism would render intra-axonal exchange times in

the order of seconds or longer [165], which lends credi-

bility to the idea that intra-axonal water is in slow

exchange with the extracellular space.

Application: Ischemic stroke

Several authors have investigated how DTI parameters are

influenced by ischaemic stroke at various stages after onset

and hypothesised about the cause of these alterations, as

reviewed by Sotak [166]. High b-value investigations of

diffusion in stroke lesions are less abundant than corre-

sponding DTI studies, but a few studies have quantified the

signal-versus-b curve using the biexponential model.

Schwarcz et al. [167] showed that ff decreases in the

hyperacute stage of global ischaemia in the mouse brain, as

could be expected from the cell-swelling hypothesis that

predicts a reduction of the amount of extracellular water in

stroke lesions. In addition, both Ds and Df were reported to

decrease as compared to the normal case. Brugières et al.

similarly found that ff decreased in subacute stroke lesions

in a patient group, but found that Ds and Df increased and

remained unaffected, respectively [168]. These conflicting

results could possibly be explained by the different time

from onset in the two studies.

The presence of water exchange between the fast and

slow diffusion components complicates the interpretation

of results from biexponential analysis of signal-versus-

b curves. Sub-acute stroke lesions were investigated using

high b-values and two different diffusion times by Lätt

et al. [100]. Effects of exchange were clearly visible in

most lesions (Fig. 12). The two-compartment exchange

model was fitted to signal curves geometrically averaged

across the diffusion-encoding directions, thereby implicitly

assuming that the underlying tissue was isotropic. While

this assumption is invalid for healthy white matter, the sub-

acute stroke lesions investigated showed lower FA values

than healthy tissue. The reduction in anisotropy is also

present at high b-values, as observed by a reduced kurtosis

anisotropy in hyper-acute and acute stroke lesions [169].

By performing an extended analysis of the values presented

by Lätt et al. [100], a significant correlation is found
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between k = 1/si and both FA and MD (Fig. 13). In

addition, MD correlated strongly with fh Dh (q = 0.90,

p = 4 9 10-6, Spearman), as predicted from Eq. 4. Time

from onset, patient age, and fr did not correlate significantly

with any parameter. These correlations suggest that varia-

tions in the exchange rate may be responsible for deter-

mining the MD and the FA of stroke lesions in the sub-

acute stage. Since MD increases and FA decreases from the

early sub-acute stage onwards, a correlation between time

from onset and k would have been expected, but it was

absent. This absence could possibly be explained by the

large heterogeneity in MD and FA observed between

patients and within lesions [170, 171]. Follow-up of a

cohort of patients with regular measurements could allow

this hypothesis to be tested.

Simulations of tissue undergoing ischaemia

Budde and Frank suggested that the total cell surface is

preserved when cells swell during ischaemia, which would

result in axon and dendrite beading [172]. Monte Carlo

simulations of water diffusing in beaded axons showed that

this is sufficient to explain a large decrease in AD, MD, and

FA. The results were validated by subjecting excised rat

sciatic nerve to stretching, which induces beading, but not a

bulk shift of water into the axon. The beading mechanism

could explain the simultaneous decrease in MD and FA

between the hyper-acute and acute stage, but not the

simultaneous decrease in FA and increase in MD during

the sub-acute stage. However, the latter observation could

possibly be explained by exchange as discussed above

(Fig. 13).

Other explanations for the reduced MD in stroke have

also been suggested based on simulation studies. For

instance, Hall and Alexander investigated effects of tissue

swelling on the diffusion weighted MRI signal using Monte

Carlo simulations and noted that swelling may introduce

regions of restricted diffusion in the extracellular space

[106]. The authors suggested that this could explain the

drastic MD reduction in stroke. In contrast, Jin et al. sug-

gested that cell swelling results in the shrinkage of larger

domains in the extracellular space rather than closing of the

Fig. 13 Correlation plots for

data obtained from Lätt et al.

[100], showing the correlation

between k = 1/s, and FA and

MD in the left and right panels,

respectively. Correlation was

significant for both plots, based

on a Spearman correlation test.

The solid line is the linear fit

Fig. 12 Signal-versus-b curves obtained with td = 60 ms (black) and

260 ms (grey), from three regions of interest shown on top of a DWI

image on the right, where the white arrow indicates the order of the

panels from left to right. Measurements were performed approxi-

mately 30 h after onset. Dashed lines represent the noise floor. Clear

evidence of exchange is seen in the middle and right panel, as reduced

signal values for prolonged td. Note the unit of b, where 1 s/mm2 =

10-3 ms/lm2. Reproduced from Lätt et al. [100], with permission

from John Wiley and Sons
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intercellular gap [107]. Harkins et al. [97] reproduced the

large reduction in MD observed in stroke by simulating

diffusion experiments in a two-compartment system. The

large MD reduction was explained by the increase in

intracellular volume fraction and by assuming that the T2

relaxation time is much shorter in the intracellular space

than in the extracellular space. However, the MD would be

highly dependent on TE under such conditions, in contrast

to what has been observed experimentally [173].

Altered intracellular diffusivity

Several authors have tried to perform separate investiga-

tions of the intra- and extracellular diffusivities in stroke

lesions. For example, Silva et al. [174] measured the ADC

in rats where the relaxivity was selectively enhanced in the

extracellular space, and tuned the echo time so that only

intracellular signal contributed to the measured ADC value.

No major differences in the ADC values were observed

between normal measurements and relaxation-enhanced

measurements, indicating that there is no difference in

ADC between the intracellular and extracellular space, or

that the extracellular signal fraction is negligible. Follow-

ing middle cerebral artery occlusion, the ADC was reduced

by approximately 40 %, for both the normal and the

relaxation-enhanced measurement. The reduction in Dintra

following ischemia is also supported by reports of a

reduced value of Dintra immediately after death, as

observed in diffusion experiments with sub-millisecond

diffusion times achieved by the use of oscillating gradients

[155]. Doung et al. [175] determined the ADC of intra-

cellular- and extracellular-specific molecular markers and

did not detect any difference in ADC in the two spaces.

Similarly, Neil et al. reported that the ADC of 133Cs that

accumulated intracellularly was reduced in global brain

ischaemia.

While these studies do suggest that Dintra is reduced

following an ischaemic stroke, it is not clear what to expect

regarding Dr. Reduction of Di leads to lower values of a
and b (Eq. 6), which could actually result in increased

values of Dr (Fig. 2). Separate measurements acquired with

varying diffusion times would be required to better

understand the implications of reduced values of Dintra on

metrics observed by conventional diffusion MRI.

Other applications

Conventional DTI has numerous clinical applications

[176], and biophysical modelling of diffusion in white

matter can help understand the mechanisms underlying

alterations in DTI parameters. For example, Sen and Basser

concluded that MD and FA are primarily influenced by

changes in the outer diameter of axons, the extracellular

volume fraction and the inter-axonal spacing [177]. Har-

kins et al. [97] used simulations to show that the ADC is

nearly insensitive to variations in the membrane perme-

ability. Nilsson et al. [80] suggested that stretching of

nerves composed of undulating axons could increase the

FA, based on results from simulations. Despite the progress

made by such modelling studies, two shortcomings intrin-

sic in DTI remain: that the resulting parameters only

indirectly related to the tissue microstructure [178], and

that results can be confounded by the presence of crossing

fibres and partial volume effects [179–181]. Due to such

shortcomings, DTI results must be carefully scrutinized to

avoid the misinterpretation that follows if FA interpreted is

a measure of ‘‘white matter integrity’’ [182]. This claim is

exemplified by the counterintuitive finding of elevated FA

in a region of the brain of patients with mild cognitive

impairment [183]. This result was interpreted as the rela-

tive sparing of motor-related pathways compared to cog-

nitive-related ones in areas of crossing fibres, resulting in

an increased homogeneity of fibre orientations.

To solve the problems intrinsic in DTI, biophysical

models can be used to extract parameters more specific to

the tissue microstructure, from data acquired with extended

protocols. Such extended protocols may feature b-values

higher than those used in DTI, which allows for crossing

fibers to be resolved [179, 184]. Acquiring data with higher

b-values may also increase the sensitivity to tissue micro-

structure alterations, which was explored in early studies of

diseases such as multiple sclerosis [185], vascular dementia

[186], and to follow up of treatment in intracranial tumours

[187]. However, model-based assessment of microstruc-

tural properties such as the axon diameter or the intracel-

lular exchange time require data to be acquired not only

with higher b-values than in DTI, but also with variable

diffusion times. Acquisition of such data comes with a

price: longer scan times. This problem can be partially

solved by improved pulse sequence design, as in the case of

filter exchange imaging [87, 103], by using algorithmic

protocol design [67], or by relevant simplifications of

complex models as in the case of NODDI [82]. As many of

the models and strategies described in this review have

only recently been developed, their clinical applications are

yet scarce, but that may change in the near future due to

recent improvements in hardware and data acquisition

strategies [188].

Conclusions

Biophysical models of diffusion in white matter have been

constructed to include effects of restricted diffusion in

approximately cylindrical axons, a distribution of axon
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diameters, orientation dispersion and exchange between the

intra-axonal and extra-axonal space, allowing these prop-

erties to be inferred from diffusion MRI experiments. In

practise, however, properties such as parameters of the axon

diameter distribution may be possible to estimate accurately

in vivo only if limitations in the scanner hardware are

overcome, most notably, limited values of gmax. In general,

the predictions made based on biophysical models agree

with experiments performed in vivo. For example, the value

of the signal fraction of slowly diffusing water agrees with

the expected, assuming that myelin water is invisible at the

long echo times at which diffusion MRI is performed. The

specific tissue properties that determine the characteristics

of the slowly diffusing water are, however, not yet fully

characterized, although the water exchange rate and degree

of orientation dispersion probably both contribute.

Accordingly, those tissue properties also affect parameters

determined using models such as DTI and DKI. For

example, MD and FA are probably influenced by the degree

of axonal undulation in extracranial nerves, while they

correlate with the exchange rate in subacute stroke lesions.

Recent studies have also shown that three-dimensional

properties of white matter are required to take into account

in order to further understand how the tissue properties

affect the outcome of diffusion MRI experiments.
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Apparent exchange rate mapping with diffusion MRI. Magn

Reson Med 66(2):356–365

88. Jansen M, Blume A (1995) A comparative study of diffusive and

osmotic water permeation across bilayers composed of phos-

pholipids with different head groups and fatty acyl chains.

Biophys J 68(3):997–1008

89. Ye RG, Verkman AS (1989) Simultaneous optical measurement

of osmotic and diffusional water permeability in cells and lip-

osomes. Biochemistry 28(2):824–829

90. Verkman AS (2000) Water permeability measurement in living

cells and complex tissues. J Membr Biol 173(2):73–87

91. Benga G (1988) Water transport in red blood cell membranes.

Prog Biophys Mol Biol 51(3):193–245
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(1998) Expression of aquaporins in Xenopus laevis oocytes and

glial cells as detected by diffusion-weighted 1H NMR spec-

troscopy and photometric swelling assay. Biochim Biophys Acta

1448:27–36

160. Does MD, Gore JC (2002) Compartmental study of T(1) and

T(2) in rat brain and trigeminal nerve in vivo. Magn Reson Med

47(2):274–283

161. Vavasour IM, Whittall KP, Li DK, MacKay AL (2000) Different

magnetization transfer effects exhibited by the short and long

T(2) components in human brain. Magn Reson Med 44(6):

860–866

162. Ford JC, Hackney DB (1997) Numerical model for calculation

of apparent diffusion coefficients (ADC) in permeable cylin-

ders–comparison with measured ADC in spinal cord white

matter. Magn Reson Med 37(3):387–394

163. Hwang SN, Chin C-L, Wehrli FW, Hackney DB (2003) An

image-based finite difference model for simulating restricted

diffusion. Magn Reson Med 50(2):373–382

164. Tien T, Ottova-Leitmannova A (2000) Membrane transport. In:

Tien T, Ottova-Leitmannova A (eds) Membrane biophysics: as

viewed from experimental bilayer lipid membranes (Planar lipid

bilayers and spherical liposomes), 1st edn. Elsevier Science,

Amsterdam, pp 221–282

165. Nilsson M, Hagslätt H, Van Westen D, Wirestam R, Ståhlberg
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