
Magn Reson Mater Phy (2007) 20:39–49
DOI 10.1007/s10334-006-0067-6

RESEARCH ARTICLE

Optimized EPI for fMRI studies of the orbitofrontal cortex:
compensation of susceptibility-induced gradients
in the readout direction

Nikolaus Weiskopf · Chloe Hutton ·
Oliver Josephs · Robert Turner ·
Ralf Deichmann

Received: 20 August 2006 / Revised: 23 November 2006 / Accepted: 18 December 2006 / Published online: 1 February 2007
© ESMRMB 2007

Abstract
Object Most functional magnetic resonance imaging
(fMRI) studies record the blood oxygen leveldependent
(BOLD) signal using gradient-echo echo-planar imag-
ing (GE EPI). EPI can suffer from substantial BOLD
sensitivity loss caused by magnetic field inhomogeneities.
Here, BOLD sensitivity losses due to susceptibility-
induced gradients in the readout (RO) direction are
characterized and a compensation approach is deve-
loped.
Materials and Methods Based on a theory describing
the dropout mechanism, an EPI sequence was optimized
for maximal BOLD sensitivity in the orbitofrontal cor-
tex (OFC) using a specific combination of an increased
spatial resolution in the RO direction and a reduced
echo time. Using measured BOLD sensitivity maps and
a breath hold experiment, the model and compensation
approach were tested.
Results Using typical fMRI EPI parameters,
susceptibility-induced gradients in the RO direction
caused dropouts in the OFC and the inferior tempo-
ral lobe. Optimizing the echo time and spatial resolu-
tion effectively reduced the dropout as predicted by the
theory.
Conclusion The model-based compensation approach
effectively reduces BOLD sensitivity losses due to
susceptibility-induced gradients in the RO direction.
It retains the high temporal resolution of single-shot
EPI and can be readily combined with methods for the
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Introduction

Gradient-echo echo-planar imaging (GE EPI) is widely
used for functional magnetic resonance imaging (fMRI)
of the brain. GE EPI is sensitive to microscopic magnetic
field alterations caused by blood oxygen level-depen-
dent (BOLD) susceptibility effects in areas of neuronal
activity [1]. However, it is also sensitive to macroscopic
field inhomogeneities caused by the differences of mag-
netic susceptibility of air and tissue which may result
in local image distortions and signal losses. Geometric
image distortion may be corrected to a great extent by
various on-line and off-line methods [2–6]. However,
signal dropouts remain a problem. The missing signal
has often compromised fMRI studies of the inferior
frontal, the medial temporal and the inferior temporal
lobes [7,8].

Several methods have been developed for reducing
susceptibility related signal losses (e.g., [9–16]). Most of
these approaches focus on dropouts caused by field gra-
dients in the slice selection direction [10–12,16]. The
majority of early fMRI studies used relatively thick
slices in comparison to the in-plane voxel dimension
(e.g., a ratio of 2:1 was typical), so in-plane gradients
caused much smaller intravoxel frequency offsets and
phase dispersion than through-plane gradients. Z-shim-
ming is a widely used dropout compensation technique
based on this rationale [11,12,16]. It forms a composite
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image from a series of measured images, each acquired
with a different compensation gradient pulse in the slice
selection direction [17]. Thus, it enables a range of sus-
ceptibility-induced gradients in the slice direction to be
counterbalanced.

In more recent studies using thinner slices it has been
shown that in-plane gradients in the phase-encoding
(PE) direction may also cause severe dropouts in EPI,
because they lead to spatially localized echo time shifts
reducing the BOLD sensitivity and may even shift the
gradient echo outside the acquisition window—resulting
in a total signal loss [13–15]. Different techniques have
been developed to reduce this type of dropout, such as
applying gradient prepulses in the PE direction [14] and
changing the slice orientation so that the PE component
of the susceptibility-induced gradient is reduced [13].
Also reduction of the EPI acquisition time and invert-
ing the PE gradient polarity [15] help to decrease these
artifacts. A fast and efficient method optimizes the slice
tilt, PE gradient polarity, and z-shim gradient prepulse
[15,18]. However, it has been shown that even when
optimizing those parameters residual dropouts in the
orbitofrontal cortex (OFC) and inferior temporal lobes
remain [18].

Here, we show that these previously reported resid-
ual dropouts [18] may be explained by susceptibility-
induced gradients in the readout (RO) direction. To our
knowledge, we show for the first time that the echo time
shifting due to susceptibility-induced gradients in the
PE direction modulates the dropout due to susceptibil-
ity-induced gradients in the RO direction. We discuss
the possibilities for reducing the dropout due to sus-
ceptibility-induced gradients in the RO direction and
propose a method for signal recovery in certain regions
of the OFC. The method is based on an optimal choice
of echo time and spatial resolution in the RO direction,
informed by the theory describing the dropout mecha-
nism. Optimized scan parameters are given for the two
most frequently used field strengths of 1.5 T and 3 T. The
technique can be combined with methods for the com-
pensation of other types of signal losses, e.g., z-shimming
[11,13].

Theory

BOLD sensitivity

In fMRI experiments based on the BOLD effect as mea-
sured by GE EPI, the local BOLD sensitivity (BS) can
be theoretically estimated from

BS ∝ TE · I (1)

where I is the local intensity in the T ∗
2 -weighted image

[14]. TE is the effective echo time including echo time
shifts due to gradients in the PE direction [14]. Note
that this simple relationship is only strictly correct for a
monoexponential decay of the MR signal. From Eq. (1)
it is obvious that losses in the BOLD sensitivity due
to susceptibility-induced gradients can be caused by a
reduction of the image intensity or shortening of the
effective echo time.

Signal dropouts caused by susceptibility-induced
gradients in the RO direction

Since it has been previously described how susceptibil-
ity-induced gradients in the through-plane [11,13] and
PE direction [14] cause signal loss, we focus here on
signal loss caused by susceptibility-induced gradients
(Gsusc

x ) in the RO direction. We consider the case of EPI
with cartesian sampling (Fig. 1a, cyan solid line) and
assume that the field of view Lx,Ly in the RO and PE
directions, respectively, is scanned with a resolution of
�x and �y. The gradient Gsusc

x causes a shift of the echo
in the kx/RO direction in k-space. The shift increases lin-
early with the duration between the RF pulse and each
echo in the EPI echo train, resulting in a shifted and
sheared k-space trajectory (Fig. 1a, red dotted line). If
an additional compensation gradient Gcomp

x in the RO
direction is switched on for the duration τ before the
data acquisition, the total k-space shift �Ksusc at the
local echo time TE is

�Ksusc = γ · TE · Gsusc
x + γ · Mcomp

x (2)

with the compensation gradient moment Mcomp
x = Gcomp

x ·
τ , and γ being the gyromagnetic ratio. In the presence
of a susceptibility-induced gradient in the PE direc-
tion (Gsusc

y ) the effective echo time is given by TE =
TE0/Qpos/neg with Qpos/neg = 1∓(2π)−1 ·γ ·�t·Ly ·Gsusc

y
for a positive or negative PE prewinder moment [14,15],
where TE0 is the nominal echo time as entered on the
scanner interface and �t is the echo spacing.

Severe signal loss occurs if the echo is shifted outside
the acquisition window (Fig. 1b, cyan solid line), i.e.,
if the k-space shift �Ksusc at TE exceeds the sampled
k-space window in the RO direction

|�Ksusc| >
π

�x
. (3)

As can be seen from Eqs. (2) and (3), the maximal
susceptibility-induced gradient which can be tolerated
before dropouts occur depends on the RO resolution
�x and the effective local echo time TE. The echo time
may be modified locally by susceptibility-induced gra-
dients in the PE direction, resulting in an interaction
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Fig. 1 Distortion of EPI k-space trajectories caused by suscepti-
bility-induced gradients in the readout (RO) and phase-encoding
(PE) direction. a In the absence of susceptibility-induced gradi-
ents, the k-space trajectory is determined by the imaging gradi-
ents (cyan solid line). A susceptibility-induced gradient in the RO
direction (Gsusc

x ) distorts and shifts the k-space trajectory (red dot-
ted line), leading to a shift of the center of the trajectory by �Ksusc.
b If the trajectory is distorted so much that it does not traverse
the k-space center, i.e., �Ksusc exceeds the k-space coverage (cyan
solid line), the main gradient echo is not acquired, yielding severe
dropouts. By increasing the spatial resolution and thus k-space
coverage in the RO direction the lost signal may be recovered
(red dotted line)

of the in-plane gradients in the RO and PE direction on
signal dropouts. In contrast to the susceptibility-induced
gradients in the PE direction, the gradients in the RO
direction do not shift the echo time significantly (max-
imally by �t/2), so the local TE and thus the BOLD
sensitivity are minimally affected. However, the signal
is abruptly lost when the central echo falls outside the
acquisition window (when the shift exceeds �t/2). Even
before the echo is completely shifted outside the acqui-
sition window, the point-spread-function (PSF) may be
altered, leading to intensity fluctuations and a reduc-
tion in spatial resolution (for simulations of suscepti-
bility-induced distortions of spiral trajectories and PSF,
see [19]).

We can use Eqs. (2) and (3) to calculate the spatial
resolution and TE required to avoid dropouts due to

susceptibility-induced gradients in the RO direction. At
3 T, susceptibility gradients are limited to approximately
300 µT/m in most brain areas (e.g., for the most severely
affected OFC see [20]). The minimal TE providing ade-
quate BOLD sensitivity is in the range of 25 ms–30 ms
[2,21]. Thus, using a TE = 25 ms at 3 T and assuming a
maximal

∣
∣Gsusc

x

∣
∣ ≈ 300 µ T/m the lowest RO resolution

not causing dropouts is �x = 1.5 mm. At 1.5 T with a
maximal

∣
∣Gsusc

x

∣
∣ ≈ 150 µ T/m (estimated from the val-

ues at 3 T) and a minimal TE of about 35–40 ms [21], the
respective resolution is approximately �x = 2 mm at
TE = 37 ms. Note that we have neglected any local echo
time shifts for this simplified calculation. However, if sig-
nificant echo time shifts occur and can be predicted, the
maximal local TE should be used instead of the nominal
TE0 in Eq. (2).

Methods

The study consisted of four different experiments. The
first experiment was designed to delineate brain regions
where compensation techniques [13,15,18] for suscep-
tibility-induced gradients in the through-plane and PE
direction do not recover the signal loss. The second and
third experiment were designed to demonstrate the pre-
dicted dependence of the dropout on the susceptibility-
induced gradient, the compensation gradient prepulse
moment (Mcomp

x ), and the local TE. The fourth experi-
ment investigated whether an increased RO resolution
would recover the BOLD sensitivity in the orbitofron-
tal cortex (OFC) in an fMRI breath hold experiment as
theoretically predicted.

General methods: data acquisition and analysis

For all experiments, unless otherwise noted in the indi-
vidual experimental sections, the following procedures,
techniques, and parameters were used. For each exper-
iment one volunteer was scanned in a 1.5 T whole-body
scanner (Magnetom Sonata, Siemens Medical, Erlangen,
Germany) or a 3 T head scanner (Magnetom Allegra,
Siemens Medical). The whole-body scanner was oper-
ated with a body transmit and a head receive coil, the
head scanner with a head transmit-receive coil. The vol-
unteers (2 females, 1 male, age 32–37 year) gave written
informed consent according to the guidelines of the local
ethics committee.

The manufacturer’s standard automatic 3D-shim pro-
cedure was performed at the beginning of each experi-
ment, correcting for first and second order distortions in
the static magnetic field within the imaged volume. We
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implemented single-shot EPI sequences which allowed
us to freely choose the moment Mcomp

x of the com-
pensation gradient prepulse in the RO direction, the
moment of the z-shimming gradient prepulse, and the
PE gradient polarity. The details of the imaging param-
eters for each experiment are given separately. EPI mag-
nitude images, echo time (TE) maps, and BOLD
sensitivity (BS) maps were reconstructed from the
complex measurement data using a generalized recon-
struction method based on the measured EPI k-space
trajectory to minimize ghosting [22]. The TE maps and
BS maps were estimated according to the procedures in
Deichmann et al. [14], i.e., the local TE was determined
from the local phase evolution during the acquisition
and the BS was then determined by Eq. (1).

A field map was recorded for distortion correction,
anatomical reference, and simulating EPI dropouts. The
parameters were at 1.5 T/3 T: double echo FLASH, 64/48
oblique transverse slices, slice thickness = 2 mm, gap
between slices = 1 mm, repetition time TR = 1,170/761
ms, flip angle α = 90◦, short TE = 10 ms, long
TE = 14.76/12.46 ms, BW = 260 Hz/pixel, PE direction
anterior–posterior, field of view FOV = 192 × 192 mm2,
matrix size 64×64, flow compensation. Using the
FieldMap toolbox [4,23], field maps were estimated from
the phase difference between the images acquired at
the short and long TE and unwrapped [24]. After spa-
tial smoothing (Gaussian kernel, FWHM = 6 mm) of
each field map and applying a brain mask created by
the Brain Extraction Tool [25], voxel displacements for
the EPI images were determined from the field map
and imaging parameters. Distortion correction was per-
formed by applying the inverse displacement to the EPI
magnitude images (displacement maps were resliced in
the EPI space by trilinear interpolation), TE maps, and
BS maps without a correction for the intensity distor-
tions.

The gradients of the field inhomogeneities were esti-
mated by numerical differentiation from the field maps.
We used 8th order sinc interpolation and smoothed the
field maps with FWHM = 3 mm (trading signal-to-noise
ratio (SNR) for higher resolution; [4]). The field maps,
gradient maps, and all images derived from EPI (magni-
tude, TE, BS) were coregistered and resliced [26]. The
field inhomogeneity gradient maps were used to calcu-
late maps of predicted signal dropout in the measured
EPI images on the basis of our theory given the chosen
imaging parameters, i.e., TE, spatial resolution, echo
spacing �t, slice tilt, and compensation gradient pre-
pulse moment Mcomp

x . We simulated the effects of both
in-plane and through-plane field gradients. Since the
effects of through-plane gradients had been described
previously [14,15], results were only reported for the

dropouts due to the in-plane gradients. All data analy-
ses and simulations were performed using SPM2 ([26];
Wellcome Trust Centre for Neuroimaging, London, UK)
and custom-made scripts in Matlab7 (The MathWorks,
Natick, MA).

Experiment 1: determination of regional signal
dropouts that cannot be recovered by compensation
of susceptibility-induced gradients in the through-plane
and PE direction

In this 1.5 T experiment we investigated those brain
areas where signal losses cannot be recovered using the
established compensation technique for susceptibility-
induced gradients in the through-plane and PE direc-
tion [13,15]. The technique relies on an optimal slice tilt,
z-shimming gradient prepulse, and PE gradient polarity
to minimize signal losses [18]. To determine the param-
eter set optimizing the BS for each brain region, EPI
were acquired with different z-shim gradient moments
from Mcomp

z = −4 mT/m×ms to +4 mT/m×ms (in steps
of 1 mT/m×ms), different slice tilts from –45◦ to +45◦
from the transverse plane (in steps of 15◦), and different
PE gradient polarities. For each parameter set, five EPI
volumes were recorded. The first four volumes were dis-
carded to allow for T1-equilibration. The following were
the basic EPI imaging parameters: 48 slices, slice thick-
ness = 2 mm, gap between slices = 1 mm, TR = 4.4 s, α

= 90◦, TE0 = 50 ms, BW = 2,298 Hz/pixel, bandwidth
in PE direction BWPE = 31.2 Hz/pixel, PE direction
anterior–posterior, FOV = 192 × 192 mm2, matrix size
64 × 64. A maximal BS map was calculated from all BS
maps acquired with different parameters. The maximal
BS map displayed the highest BS in each voxel achiev-
able using optimally adjusted parameters. A subset of
these data was used previously to construct a BS atlas
[18] where further details on the data analysis and BS
maps can be found. The maximal BS map was quali-
tatively assessed for residual signal losses by compari-
son with the anatomical FLASH image. It was further
assessed whether the residual BS losses coincided with
high amplitudes in the susceptibility-induced gradients.

Experiment 2: signal dropouts due
to susceptibility-induced gradients in the RO
direction and the effect of a compensation gradient
prepulse in the RO direction

In this 1.5 T experiment, we assessed how the signal
dropouts vary when compensation gradient prepulses
are applied in the RO direction before the k-space acqui-
sition. The moment was varied from Mcomp

x = −3 m
T/m×ms to +3 mT/m×ms in steps of 1 mT/m×ms. For
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each moment, five EPI volumes were recorded. The first
four volumes were discarded to allow for T1-equilibra-
tion. The EPI imaging parameters were the same as in
Experiment 1. Since the OFC was a main target region of
this study, dropouts due to field gradients in the PE direc-
tion in this area were minimized by tilting the oblique
transverse slices by 30◦ towards the coronal plane (with
the anterior edge being more superior than the pos-
terior edge) while using a positive PE gradient polar-
ity according to Deichmann et al. [13]. The measured
EPI images were assessed qualitatively to identify sig-
nal losses dependent on the compensation gradient pre-
pulse moment Mcomp

x . We then compared the dropouts
in the image recorded with zero prepulse to our theo-
retical prediction.

Experiment 3: dependence of signal dropouts
on the effective local echo time TE

In this experiment, we investigated the dependence of
the signal loss on the effective TE at 1.5 T. The effective
local echo time TE depends not only on the nominal
echo time TE0 but also on the field gradients in the PE
direction and the polarity of the PE imaging gradient.
When the PE imaging gradient polarity is inverted, the
shift in TE is reversed. To assess how the signal drop-
outs in EPI vary due to the local echo time shifting, EPI
images with different gradient prepulse moments in the
RO direction and different PE gradient polarities were
recorded. For each of the two PE polarities, the pre-
pulse moment was varied from Mcomp

x = −4 mT/m×ms
to +4 mT/m×ms in steps of 1 mT/m×ms. For each pre-
pulse moment and PE polarity, ten EPI volumes were
recorded (same EPI parameters as in Experiment 1,
except for TE0 = 70 ms, TR = 5.4 s, z-shim gradient pre-
pulse moment = −1.5 mT/m×ms). The first four vol-
umes were discarded to allow for T1-equilibration and
the remaining six volumes were averaged to increase the
SNR. The calculated TE maps were assessed for echo
time shifts due to susceptibility-induced gradients in the
PE direction. Based on this information, the theoreti-
cally predicted dropouts, and the measured EPI images
were assessed qualitatively for local TE dependent sig-
nal losses.

Experiment 4: recovering BOLD sensitivity losses

In this experiment at 3 T, we determined whether an
increase of resolution can recover the BOLD contrast-
to-noise ratio (CNR) in the OFC areas affected by sus-
ceptibility-induced gradients in the RO direction.
Although the BOLD sensitivity (BS) may be estimated

from a single EPI image [14], we additionally conducted
an fMRI breath hold experiment [27] to exclude the pos-
sibility that an increase in the estimated BS is masked by
an increased temporal noise. Breath holding as a hyper-
capnic challenge reliably increases the cerebral blood
flow and the BOLD signal, and is comparable to CO2
inhalation, as shown in previous studies [27].

The fMRI experiment comprised three sessions. Each
session consisted of four blocks of breath holding (30 s
duration) alternating with blocks of free breathing (45 s
duration), beginning and ending with free breathing.
The subject was cued at the beginning of each block
via head phones. Relatively long breath holding/free
breathing periods were chosen to maximize the BOLD
signal changes and to allow a steady breathing state to
be reached.

To reduce the residual dropouts in the OFC, EPI
images were acquired with the optimal parameters as
given in the Theory section: resolution of 1.5 mm in the
RO direction and 3 mm in the PE direction, and TE0 =
25 ms. The other EPI parameters were: 46 oblique trans-
verse slices tilted by 30◦, slice thickness = 2 mm, gap
between slices = 1 mm, TR = 2.99 s, α = 90◦, TE0 =
25 ms, BW = 1,953 Hz/pixel, BWPE = 27.9 Hz/pixel, PE
direction anterior–posterior, FOV = 192 × 192 mm2,
matrix size 128 × 64 (RO x PE), z-shim gradient pre-
pulse moment = −1 mT/m×ms. For anatomical refer-
ence, a high-resolution T1-weighted 3D image was used
that was previously acquired at 1.5 T (3D MDEFT [28];
FOV = 256×224, matrix size 256×224, 176 partitions,
slab thickness 176 mm, τ1 = 222.6 ms, τ2 = 307.4 ms, TR
= 12.24 ms, TE = 3.56 ms, α = 23◦, BW = 106 Hz/pixel).

In order to determine the impact of spatial resolution
on signal dropouts, images were reconstructed from the
k-space data at the full resolution of 1.5 mm (high resolu-
tion) and the reduced resolutions of 3 mm (intermediate
resolution) and 4 mm (low resolution) in the RO direc-
tion. The lower resolution images were calculated by
limiting the image reconstruction to the central portion
of data in regridded k-space, taking into account ramp
sampling. By using the identical k-space raw data and
resampling, any bias in the comparison of the different
resolutions due to different physiological noise, head
motion, or scanner instabilities is avoided.

The low, intermediate and high resolution EPI time
series were identically preprocessed and statistically
analyzed using SPM2. The EPI images were corrected
for motion, distortions, and for interactions of motion
and distortions using the FieldMap toolbox [5,23] and
the variance weighted smoothed field map. All images
were coregistered, resliced, and smoothed with a Gauss-
ian kernel of FWHM = 5 mm. The time series of each
voxel was high-pass filtered with a cut-off period of 150 s.
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A general linear model (GLM) was applied to the
time series of each voxel [29]. Breath holding blocks
were modeled as a boxcar reference function which was
convolved with a Gaussian function (σ = 7.48 s)
to account for the delayed and dispersed blood flow
response. In order to reduce artifacts caused by head
motion, covariates derived from the head motion param-
eters (six per scanned volume) were included in the
GLM [30] as effects of no interest. Temporal autocor-
relations were modeled by a first order autoregressive
model. Activated voxels were determined by testing
for significant positive correlation of the measured sig-
nal with the modeled response, i.e., significant signal
increase due to the breath holding. T statistics were
estimated for each voxel and activations passing a fixed
voxel-wise threshold of t > 3.12 were considered signifi-
cant (corresponds to P < 0.001).

For a direct comparison of the BOLD CNR of the
lower and high resolution images, the image intensity of
each time point and voxel of the preprocessed lower res-
olution time series was subtracted from the image inten-
sity of the corresponding time point and voxel of the
high resolution time series. This differential time series
reflected the signal difference between the two resolu-
tions and therefore also the BOLD signal difference.
The differential time series was statistically analyzed
the same way as the individual time series, however,
the motion parameters of both individual time series
were included as regressors in the GLM. All voxels that
showed a higher activation for the higher spatial resolu-
tion were determined by testing for significant positive
correlation of the differential signal with the modeled
breath holding BOLD response. Activations passing a
fixed voxel-wise threshold of t > 3.12 and a cluster
size of 0.12 ml were considered significant. The statis-
tical maps were masked with a brain mask generated
from the T1-weighted anatomical MDEFT image [25].

Results

Experiment 1: determination of regional signal
dropouts that cannot be recovered by compensation
of susceptibility-induced gradients in the through-plane
and PE direction

Figure 2 (left) shows maps of the highest achievable
BS when for each voxel the best combination of slice
tilt, PE gradient polarity, and z-shim gradient moment
is chosen. Even under these ideal conditions, compar-
ison with the FLASH reference image (second from
left) revealed areas of severe signal loss in parts of the
posterior gyrus rectus, and the orbital parts of the infe-

rior and superior frontal gyri (Fig. 2a). In addition to
these orbitofrontal areas, prominent BS losses occurred
in parts of the inferior temporal gyri and fusiform gyri
(Fig. 2b). These dropouts coincided with large suscep-
tibility-induced gradients in the RO direction (Fig. 2,
center images), but not with large susceptibility-induced
gradients in the PE and slice select direction (Fig. 2, two
right most images).

Experiment 2: signal dropouts due
to susceptibility-induced gradients in the RO
direction and the effect of a compensation gradient
prepulse in the RO direction

In this experiment at 1.5 T, we assessed how the sig-
nal dropouts in EPI vary when compensation gradi-
ent prepulses with different moments are applied in
the RO direction. Figure 3a shows maps of the suscep-
tibility-induced gradients Gsusc

x, Gsusc
y, Gsusc

z as estimated
from the individual field map. The maximal magnitudes
of the susceptibility-induced field gradients in the OFC
exceeded 100 µT/m in all directions. However, in most
dropout regions

∣
∣Gsusc

x

∣
∣ was less than ∼160 µT/m. The

first image of Fig. 3b highlights areas that according to
the theory should suffer from signal dropouts due to
in-plane susceptibility gradients as determined from the
field maps. As theoretically predicted from the mea-
sured gradients Gsusc

x, Gsusc
y , dropouts due to gradients

in the RO direction occurred in the left and the right
OFC (similar to the residual dropouts in Experiment 1).
Dropouts due to gradients in the PE direction occurred
in the posterior medial part of the OFC. The EPI images
also showed an overall reduction of signal intensity in
the OFC which can be attributed to the through-plane
gradient. As expected from the measured susceptibility-
induced gradient in the RO direction, a positive gradient
prepulse in the RO direction recovered signal from the
left OFC, but increased the signal loss in the right OFC.
Conversely, a negative prepulse recovered signal in the
right OFC, but decreased the signal in the left OFC
(Fig. 3b, three right most images).

Experiment 3: dependence of signal dropouts
on the effective local echo time TE

In this experiment, we investigated the dependence of
the signal loss on the effective local echo time TE.
Figure 4 shows the field gradient maps (a), TE maps
(b), and EPI images (c) for the same slice for both PE
gradient polarities. Depending on the polarity of the PE
gradient, a given value of Gsusc

y caused an increase or
decrease of the effective local TE. A U-shaped area in
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Fig. 2 Residual signal dropouts despite compensation of suscep-
tibility-induced gradients in the through-plane and phase-encod-
ing (PE) direction (at 1.5 T) located in the a orbitofrontal cortex,
b inferior temporal lobes and fusiform gyri. Map of the maximal

BOLD sensitivity that can be achieved by optimized compensa-
tion (left), anatomical FLASH image (second from left), map of
susceptibility-induced gradients (three right most images)

Fig. 3 Signal dropouts in the
orbitofrontal cortex (OFC)
caused by field
inhomogeneities (at 1.5 T).
a Anatomical FLASH image
and maps of
susceptibility-induced
gradients for the same slice
and the three principal
directions. b Areas of
predicted signal dropout
(given a zero prepulse
moment) due to the different
susceptibility-induced
in-plane gradients (left) and
EPI images acquired with
different gradient prepulse
moments in the readout (RO)
direction (three right most
images)

the OFC showed an increased effective TE with posi-
tive PE polarity and a decreased effective TE with neg-
ative PE polarity (Fig. 4b). In areas where an increased
effective TE coincided with large gradients in the RO
direction, dropouts were exacerbated. For example, the
voxel marked by the yellow crosshair in Fig. 4c suffered
from more pronounced dropouts in the case of the posi-
tive PE polarity because, in this case, TE was increased,
reducing the cut-off value of Gsusc

x .

Experiment 4: recovering BOLD sensitivity losses

In an fMRI breath hold experiment conducted at 3 T, we
assessed whether an increased spatial resolution in the
RO direction can recover the BOLD sensitivity (BS) in
OFC dropout areas. As shown in Fig. 5a, the low (4 mm)
and intermediate (3 mm) resolution images exhibited
a reduction in the estimated BS in the left and right

OFC (left and center left) in comparison to the high
resolution images (1.5 mm, center right). For optical
guidance, the yellow contours encircle areas where the
estimated BS was at least 40% higher for the high res-
olution image than the low resolution image. Figure 5b
shows that significant BOLD signal changes were absent
in the low resolution images (left) during the breath
holding in areas suffering from susceptibility-induced
gradients in the RO direction (green contours). Clearly,
most of these areas were activated in the high resolu-
tion images (Fig. 5b, right). The intermediate resolution
recovered only parts of this BOLD sensitivity loss with
fewer areas being activated than for the high resolu-
tion image (Fig. 5b, center). A direct comparison of the
observed BOLD signal changes further confirmed the
increased BOLD CNR of the high resolution images in
these dropout areas (Fig. 5c). Note that the recovered
BOLD signal change is largest in gray matter, as physi-
ologically plausible (Fig. 5c).



46 Magn Reson Mater Phy (2007) 20:39–49

Fig. 4 Dependence of signal
dropouts on the local
effective echo time TE (at
1.5 T). a Anatomical FLASH
image and maps of
susceptibility-induced
in-plane gradients for the
same slice. b The left two
images show TE maps for
both phase-encoding (PE)
polarities, and the third image
shows the difference of the
two TE maps. c The left two
images show EPI images for
both PE polarities. The third
image shows predicted
dropouts due to
susceptibility-induced
gradients in the readout (RO)
direction for both PE
polarities

Discussion

We have presented a theory describing EPI signal losses
caused by susceptibility-induced magnetic field gradi-
ents in the readout (RO) direction and validated it
experimentally. Based on the theory we have devised
a dropout compensation technique and have shown its
efficiency in an fMRI breath hold experiment. The the-
ory predicts that the field gradients in the RO direction
distort the k-space trajectory and may shift the main
gradient echo outside the acquisition window—yielding
severe signal loss (Fig. 1). This type of signal loss is deter-
mined by the amplitude of the susceptibility-induced
gradient, the effective local echo time (TE) and the spa-
tial resolution in the RO direction. To our knowledge,
we have shown for the first time how the local echo
time shifting caused by susceptibility-induced gradients
in the phase-encoding (PE) direction affects the drop-
out caused by susceptibility-induced gradients in the RO
direction (Fig. 4). The theory was validated by different
experiments studying the dependence on the underlying
susceptibility-induced field gradients, the spatial resolu-
tion, the echo time, and a gradient compensation pre-
pulse applied in the RO direction.

Although it has been realized in principle that strong
gradients in the RO direction can cause signal losses
in EPI [31,32], most compensation techniques have
focused on susceptibility-induced gradients in the
through-plane direction [11,17,33] and more recently
on the PE direction [13–15]. The compensation meth-
ods addressing gradients in the RO direction either do
not separate the qualitatively and quantitatively differ-
ent effects of susceptibility-induced gradients in the PE
direction from those of gradients in the RO direction
[7,34] or do not consider gradients in the PE direction at
all [32]. Here, we have accounted for the susceptibility-
induced gradients in both the RO and PE direction and
provided a simple analytical model to predict BOLD
sensitivity (BS) losses.

Our theory has various implications for EPI of regions
affected by susceptibility-induced gradients in the RO
direction. These dropouts occur with EPI parameters
commonly used for fMRI: for example, when selecting
a nominal echo time of TE0 = 50 ms and a spatial res-
olution of 3 mm at 1.5 T, signal is lost for even moder-
ate susceptibility-induced gradients in the RO direction
exceeding ±78 µT/m. Values of this magnitude are com-
monly observed in the OFC and inferior temporal lobe
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Fig. 5 Recovering BOLD sensitivity (BS) dropouts using an opti-
mized spatial resolution (at 3 T) a Spatially smoothed BS maps
estimated from the complex EPI data and T1-weighted MDEFT
image. Significant dropouts (at the lower resolution) due to sus-
ceptibility-induced gradients in the readout direction are encir-
cled by the yellow contours. b Statistical maps of significant signal

changes due to breath holding (t > 3.12). c Statistical maps dis-
play areas where the high resolution image showed significantly
higher activation than the low resolution image and the inter-
mediate resolution image, respectively, (t > 3.12, minimal cluster
size >0.12 ml). The maps are superimposed over the zoomed T1-
weighted MDEFT image

at this field strength and result in severe signal loss. From
the theory it is clear that the commonly employed com-
pensation techniques for dephasing in the through-plane
[11,33] or PE direction [13,15] cannot recover signal lost
due to gradients in the RO direction (see also Fig. 2).

Very often BS losses are reduced by simply increas-
ing the in-plane spatial resolution and/or decreasing the
nominal echo time. However, special care must be taken
when modifying these parameters. Simply increasing the
overall in-plane spatial resolution both in the RO and
PE direction potentially compromises the EPI quality,
because an increased resolution in the PE direction
requires the acquisition of more PE lines and thus a
significantly longer overall slice acquisition time. This
reduces the temporal resolution and leads to a longer
minimal echo time, possibly exacerbating signal loss
[13]. Increasing the spatial resolution also reduces the
baseline signal-to-noise ratio. Shorter nominal echo
times recover signal lost due to susceptibility-induced
gradients in the RO direction. However, the BS in fMRI

might not be improved by this strategy, because exceed-
ingly short echo times reduce the BS [14].

For the effective compensation of dropouts due to
susceptibility-induced gradients in the RO direction, we
have implemented and tested an EPI sequence using
high spatial resolution in the RO direction only. In con-
trast to an increased PE resolution, an increased RO
resolution has less impact on the total acquisition time,
avoiding the aforementioned problems of a longer
acquisition. For example, for a fixed maximal gradi-
ent amplitude of 40 mT/m×ms and slew rate of 200
mT/m×ms doubling the resolution in the RO direction
from �x = 3 mm to �x = 1.5 mm increases the echo
spacing by approximately 50%. In fact, the total acquisi-
tion time per slice is increased by less than 25%, because
the center of the acquisition window is fixed at the nomi-
nal TE value and fat saturation and RF excitation add to
the acquisition time. Doubling the PE resolution, how-
ever, would double the encoding time and thus increase
the total acquisition time per slice by ca. 50%.
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As derived in the Theory section, we recommend a
RO resolution �x = 1.5 mm and a nominal echo time
TE0 = 25 ms at 3 T, and a RO resolution � x = 2 mm
and a nominal echo time TE0 = 37 ms at 1.5 T. On
one hand, it can be expected that the increased spatial
resolution leads to a reduced signal-to-noise ratio (SNR)
in well-shimmed areas and a prolonged TR which would
further reduce the SNR per time. On the other hand, it
has been shown that at 3 T the loss in SNR due to the
higher resolution does not lead to a similar reduction in
the BOLD sensitivity, because the physiological noise
level is similar to the thermal noise level at this high
SNR [35,36]. For example, fMRI experiments were per-
formed with a similar EPI sequence but with even higher
resolution (1.5 mm isotropic) and successfully detected
activations located in the lateral geniculate nucleus [37].

This dropout compensation method can and should
be combined with other dropout compensation methods
such as z-shimming [11,13] to compensate for suscepti-
bility-induced gradients in the through-plane direction.
The combination with an optimized slice tilt [13] and
PE gradient polarity [15] can be particularly synergistic.
They do not only directly help to reduce dropouts due
to susceptibility-induced gradients in the PE direction,
but prevent a prolongation of the local echo time, thus
reducing dropouts due to susceptibility-induced gradi-
ents in the RO direction. This can be a particularly effi-
cient compensation technique, because it only requires
a simple tilting of the slice. An adapted slice tilt can
also be used to reduce the component of the suscepti-
bility-induced gradient in the RO direction. For a more
detailed discussion on how to optimize the slice tilt, the
PE gradient polarity, and the z-shim gradient moment
please refer to [18].

As an alternative to rectilinear GE EPI, non-recti-
linear k-space readout schemes may be used to reduce
dropouts due to in-plane gradients. In particular, spiral-
in or spiral-in/-out EPI acquisitions were successfully
used to recover signal losses [38]. The spiral-in read-
out reduces signal losses, because the outer k-space is
acquired at short echo times which allows for refocusing
of strong susceptibility-induced gradients. Therefore, in
general any acquisition scheme sampling k-space from
the outside to the center is expected to reduce dropouts
as compared to the opposite k-space acquisition scheme.
A theory similar to that presented here describing drop-
outs due to in-plane susceptibility gradients has been
derived for spiral acquisitions [19].

Conclusions

We have presented a theory and experimental evidence
showing that susceptibility-induced gradients in the EPI

readout (RO) direction cause severe signal loss. We have
developed a simple model allowing for an efficient sim-
ulation of EPI dropouts and an informed choice of EPI
parameters depending on the given field inhomogene-
ities in a region of interest. We provide guidelines for
avoiding this type of signal loss by using a specific com-
bination of an increased spatial resolution in the RO
direction and a reduced echo time. In particular, opti-
mized parameters are reported for fMRI of the OFC at
1.5 T and 3 T. The presented approach can and should
be combined with existing techniques for reduction of
BOLD sensitivity losses due to susceptibility-induced
gradients in the phase-encoding direction and through-
plane direction [13–15,18].
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