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Abstract
Network-based diffusion analysis (NBDA) has become a widely used tool to detect and quantify social learning in animal 
populations. NBDA infers social learning if the spread of a novel behavior follows the social network and hence relies on 
appropriate information on individuals’ network connections. Most studies on animal populations, however, lack a complete 
record of all associations, which creates uncertainty in the social network. To reduce this uncertainty, researchers often use a 
certain threshold of sightings for the inclusion of animals (which is often arbitrarily chosen), as observational error decreases 
with increasing numbers of observations. Dropping individuals with only few sightings, however, can lead to information 
loss in the network if connecting individuals are removed. Hence, there is a trade-off between including as many individuals 
as possible and having reliable data. We here provide a tool in R that assesses the sensitivity of NBDA to error in the social 
network given a certain threshold for the inclusion of individuals. It simulates a social learning process through a popula-
tion and then tests the power of NBDA to reliably detect social learning after introducing observational error into the social 
network, which is repeated for different thresholds. Our tool can help researchers using NBDA to select a threshold, specific 
to their data set, that maximizes power to reliably quantify social learning in their study population.
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Introduction

Cultural behavior, broadly defined, is behavior that is passed 
on among individuals through social learning (Boyd and 
Richerson 1995). Therefore, if researchers are to understand 
the importance of cultural behavior in nonhuman primates 
and other animals, they need to be able to infer when social 
learning is responsible for the spread of behavior in natural 
settings. Recent years have seen the development of novel 
methods that quantify the importance of social learning 
on the spread of a behavior in freely interacting groups of 
animals. A method that has gained increasing popularity 
is network-based diffusion analysis (NBDA), a statistical 

tool that can quantify the effect of social learning among a 
group or population of animals (including humans) (Franz 
and Nunn 2009; Hoppitt et al. 2010). NBDA has been used 
in numerous studies to detect and quantify social learning 
in both free-ranging as well as captive animal populations 
across many taxa, including birds (e.g., Aplin et al. 2012; 
Boogert et al. 2014), insects (Alem et al. 2016), primates 
(Kendal et al. 2010; Schnoell and Fichtel 2012; Hobaiter 
et al. 2014) and cetaceans (Allen et al. 2013).

NBDA, first developed by Franz and Nunn (2009), 
infers social learning if the diffusion of a behavior follows 
the social network (i.e., a representation of connections 
among individuals within a social group or population), as 
it is based on the assumption that more closely associated 
individuals are also more likely to learn from each other 
(Coussi-Korbel and Fragaszy 1995). NBDA compares dif-
fusion data with a matrix that contains a measure of associa-
tion among individuals (Hoppitt et al. 2010), i.e., a measure 
of how frequently two individuals are observed together or 
in proximity. Diffusion data can either be the order with 
which individuals acquire a behavior (order of acquisition 
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diffusion analysis–OADA) (Hoppitt et al. 2010) or it can be 
the time at which they acquire a behavior (time of acquisi-
tion diffusion analysis–TADA) (Franz and Nunn 2009; Hop-
pitt et al. 2010).

As both OADA and TADA track the spread of a novel 
behavior through the social network, accurate data on indi-
viduals’ network connections are desirable. Ideally, informa-
tion on all individuals’ network connections is captured at 
once (Hoppitt and Farine 2017). However, for most studies 
on animal populations, especially free-ranging, this is not 
feasible, either due to sampling restrictions (time or space) 
or the inability to reliably identify all individuals, resulting 
in an incomplete record of all associations. Missing infor-
mation can lead to imperfect relationships, which creates 
uncertainty about association strengths among individuals in 
the social network (Hoppitt and Farine 2017) with potential 
negative impacts on the power of NBDA to reliably quantify 
the importance of social learning (Hoppitt 2017).

Uncertainty decreases with the number of times an 
individual has been seen, and information on its connec-
tions with other individuals and estimates of association 
strengths between them gets more reliable. Several studies 
have outlined that collecting enough information on indi-
viduals’ associations is key to construct an accurate social 
network (Lusseau et al. 2008; Franks et al. 2010; Farine 
and Strandburg-Peshkin 2015; Silk et al. 2015). Thereby, 
the minimum number of observations for an accurate depic-
tion of the social network depends on the level of social 
differentiation within the population, i.e., how varied the 
social system is, with more data required for populations 
with low social differentiation (Whitehead 2008). To mini-
mize uncertainty, researchers often restrict their analysis by 
only including individuals above a certain threshold of sight-
ings. A further argument for excluding animals with only 
few sightings when using NBDA is when not all individuals 
can be observed at all times and the target behavior is short 
or rare and hence easily missed by observers. In that case, a 
high cut-off point for the inclusion of animals can increase 
the certainty about an individual’s information status, i.e., 
to reliably distinguish if it is naïve or informed.

Franks et al. (2010) support the notion that sampling 
should in fact maximize the amount of data collected on 
known individuals, rather than maximizing the number of 
sampled individuals, as uncertainty in the social network is 
more problematic than missing individuals altogether. This 
is supported by Silk et al. (2015), who found that knowing 
even only 30% of individuals in a population can be enough 
to create informative social networks, as judged by network 
measures of connectivity at a node level. Both findings sup-
port having a large and conservative cut-off point for the 
inclusion of animals to reduce uncertainty in the network, if 
the aim is to make inferences about network structure.

However, it is less clear that a large, conservative cut-
off point is appropriate when using NBDA. Dropping indi-
viduals with few sightings from a social network comes 
at the cost of information loss, if network connections 
between individuals are lost due to linking individuals 
being removed. For example, imagine that novel behavior 
is transmitted from A to B to C, where A and C are not 
directly linked. If B is removed due to a lack of data, it 
would appear that C has acquired the behavior by asocial 
learning and not by social learning. Even if the connec-
tions from A to B and B to C are inaccurately estimated, 
inclusion of B may nonetheless more accurately portray 
the transmission of information. Thus, missing network 
connections might result in lower power of NBDA to 
detect a social learning effect, and the recommendations 
of Franks et al. (2010) and Silk et al. (2015) may not stand 
for NBDA. Instead, having a lower threshold and including 
more individuals, while risking larger uncertainty in the 
network, may be preferable. Hence, there is a trade-off in 
the selection of a criterion for including individuals in the 
analysis between including as many as possible to have 
complete information on social network, and restricting 
inclusion of animals to reduce uncertainty (Bejder et al. 
1998).

To resolve this issue, we provide a tool that can help 
researchers using NBDA to choose an appropriate threshold 
for the inclusion of individuals that maximizes the power of 
NBDA to reliably quantify social learning. For our simula-
tions, we use OADA, which uses the order of acquisition 
as diffusion data. Our results still stand for TADA using 
continuous time data (Hoppitt et al. 2010); the log-likeli-
hood function for continuous TADA is equivalent to the sum 
of the log-likelihood of the order of acquisition (used in 
OADA) and the log-likelihood for the time course of the 
diffusion independent of the identities of the learners. Thus, 
impacts of network inaccuracies on the power of OADA will 
similarly affect continuous TADA. Furthermore, results of 
the discrete time version of TADA (Franz and Nunn 2009) 
converge on those of the continuous TADA for small time 
periods (Hoppitt et al. 2010), suggesting that it will be simi-
larly affected. Therefore, we suggest that researchers use the 
same technique described here to determine which individu-
als to include in a TADA, by omitting the time data from 
the procedure to determine the cut-off point that maximizes 
statistical power. Using a simulated data set, we simulate a 
learning process through the population and then assess the 
rate of false negatives (type 2 error) and false positives (type 
1 error) of NBDA for different cut-off points after introduc-
ing noise into the social network. We furthermore assess if 
keeping individuals that learned (i.e., informed individu-
als) regardless of the number of times they have been seen, 
improves the power to detect social learning and assess the 
rates of false positives (type 1 error).
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NBDA can also be applied to interaction data instead of 
association data (Franz and Nunn 2009; Hoppitt 2017). In 
this paper, we focus on the use of association networks since 
these have been most commonly utilized in NBDA—thus, 
the method we present is only directly applicable to associa-
tion networks. However, the procedure could be modified to 
account for the sampling variation present in interaction data 
for differing observation periods across individuals.

Methods

All simulations and analyses were run using R Studio 
v1.1.423 (R Core Team 2015). The supplementary material 
contains the R code to simulate observational data (OR1), 
the NBDA code (OR2) and the code for the simulations for 
assessing sensitivity of NBDA to observational error (OR3), 
the code for the application of the simulations to the simu-
lated observational data (OR4), the simulated observational 
data (OR5) and resulting social network (OR6) and sum-
mary of results of all simulations (OR7–10), as well as a 
guide on how to use the codes (OR11) and further details on 
the algorithm with which the observational data was simu-
lated (OR12) (Table 1).

Input data set

In developing our methodology, we assume that researcher 
possess association data in an observation by individual 
matrix [see Farine (2013) for transformation of data], where 
a number of observations are made, with each individual 
in the population being recorded as being present during 
that observation (1) or absent (0). We assume these data are 
formatted as a matrix with observations (rows) × individu-
als (columns).

In order to test and illustrate the method developed, we 
simulated data of this form by developing an algorithm that 
resulted in a reasonable level of underlying social structure, 
which is necessary for NBDA to reliably detect social learn-
ing. We provide details of this algorithm in the supplemen-
tary material (OR12).

In our simulated data set, we obtained a group by individ-
ual matrix with 60 individuals and 331 observations (OR5). 
Group size varied from one to a maximum of ten individuals 
with a mean of 1.92 individuals per observation.

From the simulated data set, we created a social network 
using the simple ratio association index (for details see 
below) (R package ‘asnipe’) (OR6) for illustrative purposes 
(Cairns and Schwager 1987; Farine 2013; R Core Team 
2015). Illustration of the social network (Fig. 1) was cre-
ated using the Force Atlas 2 algorithm in Gephi (Bastian 
et al. 2009).

To this end, the algorithm we use to generate our illus-
trative data set arbitrarily assumes that 33% of individuals 
account for most of the observations in the association data. 
However, this is not an assumption of the procedure pre-
sented here, which accounts for the pattern of variability in 
the number of times individuals are observed in the specific 
data set being analyzed. 

Process overview

We developed a process that enables researchers to choose 
a justified cut-off point for the amount of association data 
(number of observations) that is required for inclusion of 
an individual into an NBDA (Fig. 2). This process consists 
of two steps: First, we simulated a social learning process, 
which we then analyzed using NBDA after introducing 
noise into the social network while applying different cut-off 
points for the inclusion of individuals to see which yielded 
the highest statistical power, i.e., the highest percentage of 
models where social learning correctly outperformed the 

Table 1  Structure of online resources

Online resource File name Content

OR1 Simulating data set R code to simulate observational data for 60 individuals
OR2 NBDA code 1.2.15 R code NBDA
OR3 Sensitivity functions R code for simulations on the sensitivity of NBDA to observational error for different 

cut-off points
OR4 Application to simulated data set R code where we apply our simulations (OR3) the to the simulated observational data 

(OR5)
OR5 Simulated observational data Csv file with simulated observational data
OR6 Social network Csv file with association matrix resulting from simulated data set
OR7–OR10 Sensitivity summary Csv files with summary of results of simulations applied to our simulated data set
OR11 How to use the code Word document with guide on how to apply the sensitivity functions and specify the 

necessary parameters
OR12 Appendix Word document that describes the algorithm we used to simulate observational data
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null model with asocial learning. Secondly, we repeated 
the process of simulating a diffusion that was a result of 
only asocial learning to see which cut-off points yielded an 
appropriate false-positive error rate, i.e., where social mod-
els erroneously outperformed asocial learning models. We 
illustrate this process by applying both steps to the simulated 
data set described above.

To investigate if retaining learners (i.e., only excluding 
non-learners) influences power of NBDA to detect social 
learning, we then repeated the two steps, this time retaining 
all individuals who learned the behavior regardless of how 
many times they had been observed.

Assessing statistical power of NBDA for different 
cut‑off points after introducing observational error

Here, we propose a procedure for assessing the performance 
of NBDA, using different cut-off points, for a given data set. 
We first simulated a learning process through the popula-
tion assuming learning follows the NBDA model. We then 
analyzed the resulting diffusion data using different cut-off 
points, and assessed the performance of NBDA to detect 

social learning in each case after introducing noise, i.e., 
observational error, into the social network.

As a first step, we created an association network from 
the simulated observational data. Association strengths (aab) 
are usually estimated based on how many times two indi-
viduals (a and b) have been observed together as well as the 
number of times they have been seen apart [for guidance on 
choosing an appropriate association index, see Cairns and 
Schwager (1987); Hoppitt and Farine (2017)]. We used the 
‘simple ratio association index’ (hereafter “SRI”) (Cairns 
and Schwager 1987), which is defined as

SRI =
x

ya + yb + yab + x
,

Fig. 1  Weighted and undirected social network of a simulated data 
set with 60 individuals and 331 observations: Individuals (= nodes) 
are represented with red circles, associations between them (= edges) 
with black lines. The closer together nodes are and the thicker the 
edges, the stronger the association is between them

Fig. 2  Flow diagram of simulation assessing the sensitivity of NBDA 
after introducing noise into the social network. *The user has an 
option to keep individuals who learned in the simulation, even though 
they would not make the cut-off
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where x is the number of sampling periods individuals a and 
b were observed associated, ya is the number of sampling 
periods with just a identified, yb is the number of sampling 
periods with just individual b identified, and yab is the num-
ber of sampling periods where both individuals a and b were 
identified, but not in association.

As a next step, we modeled a diffusion (the documented 
spread of a novel behavior pattern) using the resulting social 
network from the simulated data (N = 60, 331 observa-
tions): In a first round, one individual was randomly chosen 
to learn. In each subsequent round, we calculated the total 
association with informed individuals for each individual. 
Following the NBDA model (Hoppitt et al. 2010) we then 
calculated an individual’s learning rate Ri as

where s denotes the social learning parameter, which esti-
mates the strength of social learning per unit association 
with informed individuals relative to the average rate of aso-
cial learning; and 

∑n

j=1
aij the total association of individual 

j with informed individuals. Here, s represents the strength 
of social learning relative to asocial learning and must be 
set by the user. The ultimate aim of this process is to deter-
mine which cut-off point has most power to detect social 
learning. If s is set too high, then all simulations will have 
high power, whereas if s is set too low, all simulations will 
have low power. The user must find a value of s (by trial and 
error) that results in a range of statistical power, in order to 
determine which cut-off point is most likely to detect social 
learning if it is occurring. For this simulation, we set s = 8, 
which corresponds to an eight-fold increase of the social 
learning rate per unit association with informed individuals 
compared to an individual’s asocial learning rate. The prob-
ability that each individual was next to learn is then given as:

This process was repeated until 20 individuals had acquired 
the behavior (this represents an arbitrarily chosen number 
of learners—in practice this would be matched to the actual 
number observed to learn in the population).

As a third step, we used a Bayesian approach to simu-
late a social network that introduced a level of error for 
each dyad that depended on the number of times each dyad 
had been seen together and the number of times they had 
been seen apart. Thereby, the more often members of a 
dyad had been seen, the closer their simulated associa-
tion strength was to the real value. Similarly, if a dyad 
had only been seen a handful of times, the simulated val-
ues would be more varying (more noise) and potentially 

Ri = s ×

n∑

j=1

aij + 1,

Ri∑
j Rj

further away from the real value. Since the value of aij 
is a proportion (proportion of times i and j are expected 
to be seen together), knowledge about aij, given the data 
available, can be modeled as a beta distribution (known 
as the ‘conjugate’ prior distribution for a proportion) with 
parameters a and b:

When we have no data, we set a = b = 1, which gives a uni-
form distribution for aij—i.e., we accept that aij is equally 
likely to take any value from 0 to 1. After we collect data, 
we update our prior distribution for aij to yield a posterior 
distribution, giving our updated knowledge about aij.

After collecting data of n independent observations, the 
posterior distribution for aij, given x, is given by

where x represents the number of successes (i.e., number 
of times two individuals have been seen together) and n − x 
the number of failures (i.e., number of times two individu-
als have been seen apart). The smaller n is, the wider the 
beta distribution will be, reflecting our increased uncertainty 
in the value of aij. This conjugate method of updating our 
knowledge about a proportion based on independent Ber-
noulli trials is a standard and accepted method in Bayesian 
statistics. Therefore, this method of calculating the level of 
uncertainty is appropriate for the common situation where 
association data is used to calculate the SRI with obser-
vations sufficiently spaced out that they can be considered 
independent. Researchers could, in principle, substitute an 
alternative appropriate expression for error for other indices 
(e.g., Hoppitt and Farine 2017).

Hence, from the sightings record, we created a matrix 
containing the number of times each dyad had been observed 
together (successes). A second matrix contained the cumu-
lative number of times each member of a dyad had been 
observed without the other individual in the dyad (failures). 
We provide a function that extracts said matrices from the 
observation record (OR3). Making no assumptions about the 
distribution of the association strengths within the social net-
work, we used an uninformative (uniform) prior beta(1,1). 
We then simulated association strengths aij using

 The resulting association matrix represented a social net-
work with noise and was used to test for statistical power of 
NBDA for different cut-off points. For our simulated data, 
we used cut-off points of N = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 
13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 26, 27}. In each case, 
all individuals with fewer sightings than N were dropped 
from the social network. Note that the user has the option to 
keep individuals who learned and only drop non-learners (as 
described at the bottom of the Methods section).

aij ∼ Beta(a, b).

aij|data ∼ Beta(a + x, b + n − x)

aij|data ∼ Beta(1 + x, 1 + n − x)
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The fourth step was to test the performance of NBDA to 
correctly identify social learning. We ran the OADA (‘order 
of acquisition diffusion analysis’ (Hoppitt et al. 2010) variant 
using the simple ratio association matrix (simulated—with 
observational error) and the simulated order of acquisition 
that was obtained using the error-free network.

From the OADA model, we extracted the estimates for 
the social learning parameter s, the p value of the likelihood 
ratio test, the AICc (Akaike information criterion corrected 
for small sample size) (Burnham and Anderson 2002) values 
for the social models as well as the models where s was con-
strained to zero, i.e., the asocial models. To select a model 
over an alternative model, differences in AICc values (delta 
AICc) need to cross a certain threshold (defaulted to 2 in 
our simulation; can be set by user) (Burnham and Anderson 
2002). We hence calculated the delta AICc value between 
social and asocial models. We furthermore recorded if the 
true value of s was within the 95% confidence interval (CI) 
for set s (i.e., within 1.92 units) and if outside of the con-
fidence interval, we determined if s was an under- or over-
estimate. The whole process was repeated 10,000 times for 
each cut-off point.

As a last step, we calculated the percentage of models 
where the delta AICc value was above the set threshold of 2, 
i.e., where one model (social or asocial) was outperforming 
the alternative model. From those models, we calculated (1) 
the mean and standard deviation for the estimates of s for 
each cut-off point; (2) the percentage of models where social 
models performed better than asocial models—giving the 
power of NBDA to detect social learning; (3) the percentage 
of models where the true value of s fell within the 95% CI 
for s (this should be ~ 95% if the model is performing well); 
and (4) the percentage of models that over- or underesti-
mated the value of s, i.e., were above the upper limit of the 
95% CI or below the lower limit, respectively (this should be 
approximately even if NBDA is performing well).

We then repeated the entire process, but this time retain-
ing all individuals who had learned, irrespective of how 
many times they had been sighted, i.e., only excluding indi-
viduals that did not learn. We provide the option to retain 
all learners in our code.

Assessing the false positive error rate 
in NBDA for different cut‑off points

In order to assess the rate of false positives, i.e., where 
NBDA identifies a social learning effect where there is in 
fact none, we repeated the procedure described above, but 
this time constraining s = 0, which corresponds to learning 
asocially, i.e., through independent innovations. We assessed 
the rate of false positives for both models where individuals 
were dropped regardless of their information status as well 

as models where learners were retained regardless of how 
many times they had been sighted.

Results

Assessing statistical power of NBDA for different 
cut‑off points

In an NBDA, social learning is inferred if the AICc for the 
model including social learning is lower than for a model 
without social learning. Therefore, the percentage of occa-
sions that social learning models outcompete asocial learn-
ing models gives a measure of statistical power for each 
cut-off point, when s > 0.

For models where all individuals were dropped with 
sightings below the cut-off point (regardless of information 
status), statistical power was highest at a cut-off point of 
4 with 83.96% power (Fig. 3a, OR7). Averaged estimates 
for s were consistently higher than set in the simulation 
(s = 8), ranging from 307.68 to 784.11 (OR7). Estimates for 
s followed an upwards trend as the cut-off point increased 
(OR7)—we explain why this occurs in the Discussion sec-
tion below. In 96.51%–100% of models—depending on the 
cut-off point—the true value of s (8) fell within the 95% 
CI (Fig. 3a, OR7), suggesting that the 95% CI for s can be 
trusted as being appropriate for all cut-off points, if s > 0.

For models where learners were kept regardless of how 
many times they were observed, power to correctly detect 
social learning was highest at cut-off point 6 with 92.95% 
power (Fig. 3b, OR8). Averaged estimates for s ranged 
between 267.23 and 383.64, and in between 95.59 and 
99.19% of models—depending on the cut-off point—the 
true value of s (8) fell within the 95% CI (Fig. 3b, OR8). 
For all cut-off points, retaining learners increased the power 
to detect social learning compared to when learners were 
dropped.

Assessing the false‑positives error rate in NBDA 
for different cut‑off points

For models where all individuals were dropped below the 
cut-off regardless of their information status, the percent-
age of models where social learning was incorrectly out-
performing asocial models when s = 0 (false positives) 
ranged between 0 and 2.23% (Fig. 4a, OR9). Therefore, for 
these data, the false-positive error rate was always below 
that commonly accepted (5%) (‘commonly’ refers to all 
statistics that consider a p value of < 0.05 as statistically 
significant). In this case, a researcher could safely choose 
whichever cut-off point gave the highest statistical power. 
Averaged estimates for s were again consistently higher than 
set in the simulation (s = 0), ranging from 23.18 to 488.5 
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and exponentially increasing with an increasing cut-off point 
(Fig. 4a, OR9). The true value of s (0) fell within the 95% CI 
of s in 97.37–100% of the models depending on the cut-off 
point (Fig. 4a, OR9), further supporting the fact that, for this 
data, all cut-off points can be trusted.

For models where informed individuals (learners) were 
retained, the percentage of models where social models 
incorrectly outperformed asocial models (for s = 0) ranged 
between 2.37 and 35.14%, and was for most cut-off points 
above the commonly accepted 5% (Fig. 4b, OR10). Aver-
aged estimates for s ranged between 38.23 and 245.28 and 
the true value of s (= 0) fell within the 95% CI of the esti-
mated s in 64.83–97.2% of models (Fig. 4b, OR10).

Discussion

We present a method for choosing a cut-off point for the 
inclusion of individuals in an NBDA based on the number 
of times they are observed in the construction of the social 
(association) network. Above, we illustrated this process by 
applying it to a simulated data set. Below we discuss how 
the results obtained could be used to select an appropriate 
cut-off point for this data set. There is no reason to think 
that the cut-off point identified for our simulated data would 
be applicable in general—the appropriate cut-off point will 
depend on the properties of the data set in question. None-
theless, the same logic could be used to choose a cut-off 
point for real data sets.

After simulating a learning process through a social net-
work, we used a Bayesian approach to simulate a social net-
work that introduced a level of error for each dyad depending 
on the number of times each dyad had been seen together 
and apart. The diffusion data and the social network with 

observational error were then analyzed using NBDA to find 
an appropriate cut-off point for the data set.

The same approach could be used to estimate the impacts 
of noise in a social network for real NBDA data, where the 
social network is constructed from association data. We pro-
vide a function that allows the extraction of one matrix with 
the number of times each dyad has been seen together and 
a second matrix with the number of times they have been 
seen apart, which can then be used to simulate an associa-
tion network including noise. Alternatively, users can pro-
vide their own matrices for the simulation. The approach 
presented here is for an NBDA that assumes a static asso-
ciation network that is essentially unchanging over time. 
NBDA itself can be extended to allow the use of a dynamic 
instead of a static network (Hobaiter et al. 2014), but fur-
ther work is needed to determine cut-off points under such 
circumstances.

The simulations presented then allow researchers to test 
(1) the statistical power and (2) the false-positive error rate 
of NDBA under different cut-off points. In our simulated 
data set—for models where all individuals were dropped 
below the cut-off point regardless of their information sta-
tus—false positive error rates were appropriate across the 
range of cut-off points. Furthermore, for both s = 0 and s = 8, 
the true value of s was within the 95% CI approximately 
95% of the time. This suggests that the validity of NBDA 
could be trusted for any cut-off point, and so the cut-off 
point should be chosen to maximize statistical power. Our 
results correspond broadly with Hoppitt’s (2017) finding 
that error in the network does not increase false positives in 
NBDA but can act to make the analysis more conservative 
in detecting social learning (see also Whalen and Hoppitt 
2016). However, it is uncertain if invariability of false error 
rate to cut-off point choice is a general feature of NBDA, so 

Fig. 3  Power of NBDA to cor-
rectly identify social learning 
after introducing noise into a 
social network (black circles) 
and percentage of models where 
estimates for the social learning 
parameter s fell within the 95% 
CI of the set s (= 8) for a given 
cut-off point (red triangles) for 
a models where all individuals 
were dropped below the cut-off 
point and b models where learn-
ers were retained regardless of 
how many times they had been 
observed
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we encourage researchers to always check their own data set 
before accepting a cut-off point.

In our simulated data set, power of OADA was maximized 
at a cut-off point of four sightings, which would result in the 
inclusion of 41 out of the 60 individuals (= 68%). Silk et al.’s 
(2015) finding that having data on as little as 30% of the popu-
lation allows to create an informative social network, does not 
prove to be true for NBDA using our simulated data, as power 
to detect social learning dropped to only 60% with 20 individu-
als being included (which corresponds to a 30% threshold). 
Thus, we show that Silk et al.’s (2015) threshold is not generally 
appropriate for NBDA (and was not suggested for this purpose). 
Instead, the threshold where power of OADA is maximized is 
likely to vary depending on the specific data set—the number 
of individuals in the population, the length of diffusion, associa-
tion strengths among individuals and the social differentiation 
of the population, i.e., how varied the social system is (Franz 
and Nunn 2009; Hoppitt et al. 2010). Hence, we recommend 
using our proposed methods to ensure a threshold for the inclu-
sion of animals that is specific to the data set, and discourage 
the use of arbitrarily chosen thresholds when using NBDA.

For models where all informed individuals were kept 
regardless of how many times they had been seen, power of 
NBDA to detect social learning was highest at a cut-off point 
of 6. Furthermore, power to detect social learning was higher 
compared to when learners were dropped. Dropping individu-
als will intuitively reduce power to detect social learning when 
linking individuals are being removed (as explained in the 
Introduction). However, false-positive rates (when s = 0) for 
most cut-off points was high when all learners were retained 
(and above the commonly accepted 5%) for all but one cut-off 
and over 25% for the cut-off point of 6 which yielded highest 
statistical power. Hence, even though keeping learners may 
improve the statistical power to detect social learning, it may 
also substantially increase the risk of false-positive results. 

Therefore, the option to keep all informed individuals in the 
simulation should only be made use of after ensuring that the 
rate of false positives falls below the 5% threshold for the cho-
sen cut-off point. For our simulated data set, we would con-
clude that we should drop learners if they do not make the cut-
off point, since risking a 25% chance of a false-positive result 
would make a positive result untrustworthy. We suspect that 
it may prove to be a general pattern that retaining all learners 
results in an unacceptable false-positive error rate.

In order to run the simulation to assess statistical power, 
researchers must choose a value of s. In a sense, this choice 
is arbitrary, since, allowing for sampling error, power will 
peak at approximately the same point for all s > 0. However, 
if s is set high, then statistical power will appear level at 
100%, if s is set too low, statistical power will appear level 
at 0%. Therefore, some trial and error may be required to 
find a useful value for s.

In all simulations on the sensitivity of NBDA (with s = 8 
and s = 0, both with dropping and keeping learners), average 
estimates for the social learning parameter s across simula-
tions were considerably higher than the true values set, even 
though when learners were dropped. Nevertheless, in ~ 95% 
of cases the true value of s fell within the 95% CI as would 
be expected if OADA was performing well. Hoppitt (2017) 
found the same effect in OADA. The bias arises because 
in cases where the diffusion follows the network very 
closely, the likelihood of the data increases and plateaus as 
s increases to infinity. Thus the optimization algorithm used 
to fit the model converges on an arbitrarily large value for 
the estimate of s, which biases the average value of estimates 
of s upwards. In such cases, there is also no upper limit for 
the 95% CI of s. Therefore, this is not a reason to generally 
distrust estimates of s obtained from an OADA. Instead, one 
should mistrust the estimated value of s if it appears unre-
alistically high and there is no upper limit for its 95% CI. In 

Fig. 4  Percentage of models 
where NBDA incorrectly 
identifies social learning after 
introducing noise into a social 
network (black circles) and 
percentage of models where 
estimates for the social learning 
parameter s fell within the 95% 
CI of the set s (= 0) for a given 
cut-off point (red triangles) for 
a models where all individuals 
were dropped below the cut-off 
point and b models where learn-
ers were retained regardless of 
how many times they had been 
observed
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such cases one can still take the lower bound of the 95% CI 
as providing a lower plausible limit on the strength of learn-
ing. The upper bound of infinity is merely indicating that it 
is plausible that everyone in the population who learned the 
behavior while connected to an informed individual, did so 
by social learning. Overall, the results obtained here and by 
Hoppitt (2017) indicate the best way to interpret OADA is to 
consider the 95% CI as a plausible range of values for s, as 
opposed to focusing on the value of the maximum likelihood 
estimate for s. Given this is a sensible strategy for interpret-
ing the outputs of any statistical model, this is unlikely to 
represent a severe limitation of OADA.

NBDA has gained increasing popularity to detect social 
learning in both captive and free-living populations of vari-
ous species. It has proven to be a useful tool to detect and 
quantify social learning in animal (and human) populations 
(e.g., Kendal et al. 2010; Hoppitt et al. 2010; Aplin et al. 
2012; Allen et al. 2013; Alem et al. 2016). We show that 
previously proposed thresholds for the inclusion of animals 
for building networks may not be applicable to studies using 
NBDA. Hence, we strongly encourage researchers to use our 
simulation to choose a cutoff point that maximizes power of 
NBDA that is specific to their data set, and discourage the 
use of arbitrarily chosen thresholds in order to minimize the 
risk of false negative and positive results.
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