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from 2012 to 2015 valued at over 244 billion dollars, even 
if only a low percentage of production is lost, the economic 
loss would exceed a billion dollars (Mueller et al. 2016). 
Anthracnose, caused by multiple Colletotrichum spp., is 
one of the most devastating global diseases of strawberry 
(Baroncelli et al. 2015; Freeman and Katan 1997; Jayawar-
dena et al. 2016a). Due to intensive use of quinone-outside 
inhibitor (QoI) fungicides, QoI resistance frequently occurs 
in strawberry-infecting Colletotrichum populations, which 
makes controlling this disease much more difficult (For-
celini et al. 2016; Inada et al. 2008). In Africa, coffee berry 
disease (CBD) caused by C. kahawae poses a threat to Ara-
bica coffee production, potentially resulting in yield losses 
of 70–80%, in the absence of effective control measures 
(Silva et al. 2006). Although currently confined to African 
countries, there is a serious risk of dispersal to other Arabica 
coffee cultivation regions (Batista et al. 2017).

Colletotrichum spp. tend to exhibit a relatively high 
degree of host specificity. For example, C. graminicola 
is restricted to infecting gramineous monocots (Crouch 
and Beirn 2009). Likewise, C. higginsianum infects Bras-
sicaceae, including Arabidopsis thaliana (O’Connell et 

Introduction

The genus Colletotrichum, in the phylum Ascomycota, 
comprises over 200 species that have been subclustered into 
fifteen species complexes (Talhinhas and Baroncelli 2021). 
Anthracnose caused by Colletotrichum spp. is an economi-
cally important disease on many ornamental plants as well 
as important grain, vegetable, and fruit crops (Cannon et al. 
2012). In maize, anthracnose stalk rot caused by C. gramini-
cola is responsible for 3.63% of estimated yield loss in the 
United States and Canada (Savary et al. 2019). With the total 
maize production in the United States and Ontario, Canada, 
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Abstract
Anthracnose caused by Colletotrichum spp. is an economically important disease of many plants, including grain, veg-
etable, and fruit crops. Next-generation sequencing technologies have led to a dramatic growth in the size and availability 
of genomic data in public repositories. Beginning with genome sequencing projects of C. higginsianum and C. gramini-
cola, many Colletotrichum spp. genomes have been sequenced due to their scientific and agricultural importance. Today, 
we can access more than a hundred genome assemblies of Colletotrichum spp. Utilizing those abundant genomic datasets 
would enable a better understanding of adaptation mechanisms of Colletotrichum spp. at the genomic level, which could 
help to control this important group of pathogens. In this review, we outline the development and application of genomic 
resources of Colletotrichum spp. with a focus on the benefits of genomic data-driven studies, including reverse-genetics, 
a range of comparative genomic analyses, species identification, taxonomy, and diagnosis, while describing the potential 
pitfalls of genome analysis. Further, we discuss future research directions that could allow a more comprehensive under-
standing of genomic diversity within the genus Colletotrichum.
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al. 2004). In contrast, members of the C. gloeosporioides 
species complex tend to be post-harvest pathogens on a 
wide range of fruits, including avocado, banana, mango, 
coffee, and strawberry (Hyde et al. 2009). Whatever their 
host range, the majority of Colletotrichum spp. employ a 
hemibiotrophic lifestyle, characterized by the sequential 
development of a series of specialized cell types (Münch 
et al. 2008). The initial biotrophic phase is characterized 
by the development of bulbous primary hyphae in living 
host cells following penetration from melanized structures 
called appressoria. Host cell death is later induced in a sub-
sequent necrotrophic phase, which is characterized by the 
production of filamentous secondary hyphae. Previous stud-
ies showed that hemibiotrophic infection in Colletotrichum 
spp. is orchestrated by various molecules: small secreted 
proteins called effectors manipulating the plant immune 
system (Irieda et al. 2019; Kleemann et al. 2012), carbohy-
drate-active enzymes (CAZymes) degrading host cell wall 
(Ben-Daniel et al. 2012; Yakoby et al. 2000), and second-
ary metabolites enhancing rigidity of appressoria or inhibit-
ing plant hormone signaling (Dallery et al. 2020; Ludwig 
et al. 2014). Unlike obligate biotrophic pathogens (Spanu 
and Panstruga 2017), Colletotrichum spp. can be cultured 
axenically and are amenable to genetic manipulation, such 
as transformation and targeted knock-out mutagenesis (De 
Groot et al. 1998; Rikkerink et al. 1994; Rodriguez and 
Yoder 1987). Moreover, recently established CRISPR/Cas9 
and marker recycling systems have made experimental 
designs more flexible and accessible (Kumakura et al. 2019; 
Nakamura et al. 2019; Yamada et al. 2021).

The rapid drop in the cost of next-generation genome 
sequencing has led to a rapid expansion of publicly avail-
able genomic information, with the number of GenBank 
accessions increasing at an annual rate of about 40% (Say-
ers et al. 2019). Colletotrichum spp. are no exception to this 
trend. Due to agricultural and general scientific interest, 
more than a hundred Colletotrichum spp. genome assem-
blies have been generated over the last decade. In this 
review, we examine the literature covering research that 
has contributed to the development and utilization of those 
genomic resources, and then we propose future perspective 
uses of genomic data.

The dawn of the Colletotrichum genomics

The genomics of Colletotrichum spp. began with the 
release of C. higginsianum IMI349063 and C. graminicola 
M1.001 genome assemblies generated by a whole-genome 
shotgun (WGS) approach (O’Connell et al. 2012). Subse-
quently, the genome assemblies of C. orbiculare 104-T, 
C. fructicola Nara-gc5 (considered as C. gloeosporioides 

when the genome was sequenced), and C. gloeosporioides 
Cg-14 were also published (Alkan et al. 2013; Gan et al. 
2013). Comparative genomics studies using these genomic 
resources revealed pathogenicity-related gene repertoires, 
including effector candidate genes, CAZyme encoding 
genes, and secondary metabolite gene clusters. Furthermore, 
comprehensive gene annotations made RNA-seq analyses 
for understanding transcriptome dynamics possible. Those 
studies demonstrated the sequential transcriptome changes 
that occur during the transition from one infection stage to 
another (Gan et al. 2013; O’Connell et al. 2012), as well 
as the regulation of gene expression by the pH-responsive 
transcription factor pacC (Alkan et al. 2013). The increasing 
number of publicly accessible host plant genome assemblies 
enabled performing dual RNA-seq, in which transcriptomic 
changes in both host and pathogen are simultaneously ana-
lyzed. Using this approach, Alkan et al. revealed concurrent 
tomato and C. gloeosporioides alteration in gene expression 
during infection (Alkan et al. 2015).

Acceleration of gene characterization

The availability of genomic information facilitated forward 
genetic screening techniques using Colletotrichum spp. 
Rhizobium radiobacter (Agrobacterium tumefaciens)-medi-
ated T-DNA insertional mutagenesis has been widely used 
to generate Colletotrichum spp. mutants to identify genes 
involved in pathogenicity (Tsuji et al. 2003; Takahara et 
al. 2004). Before the availability of genomic information, 
researchers employed a method called “genomic walk-
ing”, where T-DNA flanking sequences are determined by 
thermal asymmetric interlaced polymerase chain reaction 
(PCR) or inverse PCR and then used to physically isolate 
a cosmid-type genomic clone that contains the sequences 
(Fujihara et al. 2010; Huser et al. 2009). In the post-genomic 
era, researchers can computationally search T-DNA flank-
ing sequences against genome assemblies, which makes the 
identification of mutated genes relatively easy (Harata and 
Kubo 2014; Korn et al. 2015).

The combination of effective genetic manipulation tools 
and genomic information made it feasible to conduct reverse 
genetics experiments with Colletotrichum spp., which 
yielded new insights into infection mechanisms. Reverse 
genetics studies using C. orbiculare have identified many 
of the signaling components required for infection, such as 
CoBFA1, CoTEM1, CoWHI2, and CoPSR1 (Fukada and 
Kubo 2015; Harata et al. 2016), homologs of the budding 
yeast Saccharomyces cerevisiae genes that are involved in 
cell cycle regulation and septum formation. Interestingly, 
the functions of those genes differ between C. orbiculare 
and other fungi, including S. cerevisiae, emphasizing the 
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utility of the reverse genetics approach for illuminating the 
specific functional adaptations of genes in Colletotrichum 
spp. Genomic information from Colletotrichum spp. and 
other fungi was also used to explore the biological roles of 
proteins without known functional domains. Although the 
functions of hypothetical proteins including many putative 
effectors are hard to predict, comparative genomics analy-
ses can provide valuable clues to narrow down the possi-
ble roles of genes of interest. Based on the hypothesis that 
Colletotrichum spp. use a set of common effectors during 
infection to support their hemibiotrophic lifestyle, Tsushima 
et al. explored conserved effector candidates in the genus 
Colletotrichum by comparing 24 ascomycete genomes. This 
study identified that a conserved effector candidate with no 
known functional domains, CEC3, induces nuclear expan-
sion and host cell death (Tsushima et al. 2021). Many com-
parative genomics studies have provided lists of effector 
candidates categorized by their conservation patterns, for 
example, having no homolog in other Colletotrichum spp. 
(species-specific) or other genera (genus-specific) (Bar-
oncelli et al. 2016; Boufleur et al. 2021; Gan et al. 2016). 
Yet, the majority of them remain functionally uncharacter-
ized. Experimental validation of these effector candidates is 
likely to be a focus of future studies.

Colletotrichum spp. genome assemblies also act as ref-
erence genomes for mapping next-generation sequencing 
(NGS) reads, they are used to assist in the identification of 
single nucleotide polymorphisms (SNPs), which can be used 
as high-density genetic markers. Bhadauria et al. generated 
a genome assembly of C. lentis and performed quantitative 
trait locus (QTL) mapping, then successfully identified a 
virulence-governing minichromosome (Bhadauria et al. 
2019). QTL mapping requires crossing parental lines with 
different phenotypes to generate progeny, which is only 
possible for a limited number of Colletotrichum spp. where 
a crossing methodology has been established (Armstrong-
Cho and Banniza 2006). Even if mating between different 
isolates is difficult under laboratory conditions, it is pos-
sible to conduct a genome-wide association study (GWAS) 
utilizing natural variations among unrelated individuals. A 
GWAS using 30 C. kahawae isolates identifed four candi-
date genes that are potentially involved in signaling, detoxi-
fication, and gene expression, which may contribute to 
virulence on coffee berries (Vieira et al. 2019). However, 
for supposedly asexual Colletotrichum spp. (Wilson et al. 
2021), GWAS settings may need to be adjusted because 
near-clonal genetic backgrounds can limit the power of the 
study due to reduced markers that are distributed by recom-
bination (Plissonneau et al. 2017).

Detection of adaptation signals on genomes

Colletotrichum spp. thrive in a variety of niches. Hence, they 
should have evolved distinct gene sets as a consequence of 
environmental adaptation. In this section, we discuss how 
genome data have been used to detect genes associated with 
survival in specific niches.

Although most copy number variations (CNVs) of genes 
are assumed to be detrimental, they can increase fitness by 
altering expression via dosage effects, or by compensating 
for deleterious effects of loss-of-function mutations, par-
ticularly under stressful conditions or in perturbed envi-
ronments (Katju and Bergthorsson 2013). O’Connell et 
al. found that the dicot-infecting C. higginsianum encodes 
more CAZymes involved in pectin degradation than the 
monocot-adapted pathogen C. graminicola, suggesting that 
there has been adaptation to the differences in their host cell 
composition; eudicot cells accumulate more pectin than 
monocot cells (O’Connell et al. 2012). There are more genes 
encoding pectin and hemicellulose-degrading CAZymes in 
members of the C. gloeosporioides and C. acutatum spe-
cies complexes compared to other members of the genus 
(Baroncelli et al. 2016; Gan et al. 2016). Despite belong-
ing to phylogenetically separate branches within the genus, 
these two species complexes include important postharvest 
pathogens, suggesting a convergent gene expansion associ-
ated with their common infection strategy. Genes encoding 
secondary metabolite biosynthesis-related proteins are sig-
nificantly enriched in plant growth-promoting C. tofieldiae 
than in pathogenic Colletotrichum spp., suggesting that C. 
tofieldiae-specific secondary metabolites are responsible for 
the beneficial endophytic interactions with host plants (Hac-
quard et al. 2016).

An evolutionary arms race between hosts and pathogens 
generates strong positive selection on both parties, a pro-
cess that leaves imprints on the genes involved (Möller and 
Stukenbrock 2017). A classical test to detect these signatures 
is based on the estimated ratio of non-synonymous to syn-
onymous mutations (dN/dS also known as ω) (Goldman and 
Yang 1994; Nei and Gojobori 1986). Using this calculation, 
Rech et al. explored genomic variations among eight differ-
ent C. graminicola isolates and found that CDSs encoding 
secondary metabolites and putative effectors tend to have 
higher dN/dS ratios, indicating positive selection (Rech et 
al. 2014). Similarly, comparative genomics analysis using 
six different Colletotrichum spp. showed that genes encod-
ing predicted secreted proteins, which include effector can-
didates, are often enriched for positively selected genes 
compared to other genes (Gan et al. 2016). The genes under 
positive selection identified in these two studies include pre-
viously characterized effector genes, CgEP1 in C. gramini-
cola and homologs of ChELP1 in C. higginsianum (Vargas 
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genomics studies could only access a handful of fragmented 
genome assemblies (Alkan et al. 2013; Gan et al. 2013; 
O’Connell et al. 2012), it would be interesting to readdress 
the same questions with the abundant, high-quality genomic 
resources now available.

Long-read sequencing and structural 
genomic variations

The advent of long-read sequencing technologies such as 
PacBio and Oxford Nanopore has revolutionized genomic 
studies. During de novo genome assembly using a few 
hundred-bp NGS reads, repetitive DNA sequences contain-
ing, for example, transposable elements (TEs) that are lon-
ger than the read length, can lead to gaps in the assembly, 
or misassembled rearrangements (Treangen and Salzberg 
2011). This resulted in repeat sequence contents that were 
often underrepresented in genome assemblies (Alkan et 
al. 2011). Long-read sequencing technologies solved these 
problems by producing more than several tens of kb reads 
that span repeat-rich regions and generate highly contigu-
ous genome assemblies. Using a combination of PacBio 
long-read sequencing and optical mapping, a chromosome-
level genome assembly of C. higginsianum (Zampounis et 
al. 2016) produced some remarkable findings, including 
identification of the association between TEs and effector 
candidate genes, or secondary metabolite gene clusters, a 
dispensable TE-rich small chromosome required for viru-
lence, and large-scale genomic rearrangements mediated 
by TEs (Dallery et al. 2017; Plaumann et al. 2018; Tsu-
shima et al. 2019). Recently, Gan et al. also reported that 
large-scale genomic rearrangements and multi-copy effec-
tor candidate gene clusters are frequently associated with 
repeat sequences such as telomeres and TEs within the C. 
gloeosporioides species complex (Gan et al. 2021). Histori-
cally, many studies have suggested the importance of repeat 
sequences to generate genomic variations in plant patho-
genic fungi (Chuma et al. 2003; Crouch et al. 2008; Ikeda et 
al. 2002), yet these findings are often restricted to specific 
repeat sequence families, due to the lack of the comprehen-
sive genomic information. A comparison of chromosome-
level assemblies illustrates a generalized view of the role of 
repeat sequences in genomic evolution at the single-nucle-
otide resolution. Detection of structural genomic changes 
has raised the question of how repeat sequences contribute 
to pathogen fitness. When existing genomes are compared, 
identification of a responsible genomic variation(s) for a 
given phenotype is often difficult because of the high back-
ground noise within a natural population. Further analy-
ses using chromosome modification techniques, such as 
deletion or transmission of chromosomes (He et al. 1998; 

et al. 2016; Takahara et al. 2016), establishing the utility 
of dN/dS analysis for detecting effector genes that facilitate 
pathogenicity.

CNV and dN/dS ratio analyses usually target gene groups 
or homologous pairs. However, recently emerged genes may 
also play significant roles in the occupation of novel niches, 
as has been demonstrated in effector genes, which are often 
restricted in certain lineages (Fouché et al. 2018). Genus- or 
species-specific genes have been well-documented by com-
paring multiple Colletotrichum and other fungal lineages 
(Buiate et al. 2017; Rao and Nandineni 2017). Moreover, 
recent studies identified strain-specific genes (Gan et al. 
2021; Hsieh et al. 2022; Tsushima et al. 2019). New genes 
are thought to arise largely from two mechanisms, repre-
sented by de novo evolution from noncoding sequences, 
and neofunctionalization of genes obtained through genome 
duplication or horizontal gene transfer (HGT) (Tautz and 
Domazet-Lošo 2011). HGT events in Colletotrichum spp. 
have been reported for movement of the subtilisin gene from 
plants to the Colletotrichum lineage, and in accession of the 
cercosporin toxin biosynthesis gene cluster across the plant 
pathogenic fungi, including Colletotrichum spp. (Armijos 
Jaramillo et al. 2013; De Jonge et al. 2018). Although it is 
unclear if these horizontally transferred genes have under-
gone neofunctionalization once established within a Col-
letotrichum genome, up-regulation of these genes during 
infection suggests their contribution to disease development.

It is obvious that the quality and quantity of genomic 
information are crucial to conducting comparative genom-
ics studies. Dallery et al. identified that a previous C. hig-
ginsianum genome assembly had 2,699 split gene models 
and 2,289 missing gene models, which were recovered in 
the latest chromosome-level genome assembly (Dallery 
et al. 2017). An important caveat, then, is that incomplete 
or disrupted chromosomal regions can diminish the utility 
or reliability of comparative genomics analyses. In addi-
tion, successful genome analysis relies on the accuracy of 
gene annotations. Most fungal genome sequencing projects 
employ gene annotation pipelines to generate gene models 
using transcriptome data and/or known homologous protein 
sequences as guides for prediction. However, the identifica-
tion of accurate gene models using automated methods is 
still challenging, especially for less conserved genes, such 
as orphan genes whose presence is recognized in a single 
species (Li et al. 2022). Indeed, some studies reported tran-
script variants from Colletotrichum spp. that differ from 
their original models (Kumakura et al. 2021; Schliebner 
et al. 2014; Tsushima et al. 2021). We should notice that 
predicted gene models for non-model fungi, including Col-
letotrichum spp., may lack experimental support, and that 
different annotation methods could produce variations 
among gene models. Since the first few Colletotrichum spp. 
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agricultural industry has a great need for inspecting other 
aspects of pathogens, including lineage, aggressiveness, or 
fungicide sensitivity. Population genomics can aid in moni-
toring them all together by analyzing high-resolution geno-
typic data generated by mapping NGS reads to reference 
genomes. For example, the field pathogenomics approach, 
which utilizes RNA-seq data of infected host tissues from 
fields, provides a way to identify phylogenetic relationships 
between samples (Hubbard et al. 2015; Islam et al. 2016), 
to estimate a race based on genetic proximity to known iso-
lates (Lewis et al. 2018; Tsushima et al. 2022), or to evaluate 
mutations in fungicide target genes (Cook et al. 2021). A 
wealth of sequence data should make the diagnosis of Col-
letotrichum spp. more accurate, flexible, and tailored in the 
future.

Toward Colletotrichum pangenomics

Genome assemblies had at one time been generated for a 
representative isolate of each species. However, it is now 
easier to obtain and compare several genome assemblies 
from a single species due to the low cost of sequencing. This 
technological advancement, combined with computational 
power, has generated the concept of pangenome, which 
characterizes the entire set of genomic sequences within a 
phylogenetic clade of interest (e.g. species) (Vernikos et al. 
2015) (Fig. 1). Pangenomic studies determine the genomic 
diversity among all available datasets, spanning from highly 
conserved core sequences to sporadically arisen accessory 
sequences. Identification of such rapidly evolving accessory 
sequences is particularly important for the study of plant 
pathogens because they could contribute to selective advan-
tages in the arms race with host plants (Badet and Croll 
2020). Although reference-based genome alignments are 
practical, scalable, and demand less computational power, 
they can only detect genomic variations that are present in a 
particular reference genome that may be chosen arbitrarily 
(Eizenga et al. 2020). This is an issue for analyzing fungal 
phytopathogen genomes because previous studies show that 
these genomes are highly plastic at the chromosomal level 
(Faino et al. 2016; Li et al. 2019; Tsushima et al. 2019). In 
the near future, comparing many genome assemblies will be 
possible to investigate specific selective pressures against 
structural variations.

Pangenome construction requires huge genomic datas-
ets. How can these massive datasets be produced, archived, 
and examined? The most straightforward way is to gen-
erate genome assemblies by individual research groups. 
However, there is a limit to how much a single team can 
handle. A more realistic solution would be to harness open 
data resources with a common architecture and coordinating 

Plaumann et al. 2018) should help to artificially reproduce 
structural genomic changes and to examine their effects on 
Colletotrichum spp. pathogenicity.

Harnessing sequence data for species 
identification and diagnosis

Accumulation of genomic information has made phyloge-
netic analysis and species identification much more robust. 
A Colletotrichum isolate infecting shiso, or beefsteak plant 
(Perilla frutescens), was previously classified as C. destruc-
tivum based on morphology and the internal transcribed 
spacer (ITS) sequence (Kawaradani et al. 2008). How-
ever, phylogenetic analysis using concatenated multi-locus 
sequence data represented by ITS and four housekeeping 
genes from the newly-obtained genome assembly identified 
this isolate as a novel species, C. shisoi (Gan et al. 2019). 
Because ITS sequence frequently does not provide enough 
resolution for species identification, multi-locus phyloge-
netic analysis is commonly used for taxonomic placement 
of Colletotrichum spp. as a supplement to morphological 
examination (Talhinhas and Baroncelli 2021). However, 
in general, there are no standard protein-coding genes for 
fungal species identification (Houbraken et al. 2021). The 
sequence sets used for multi-locus phylogenetic analyses 
using Colletotrichum spp. differ depending on the efficacy 
of each locus to resolve species delimitation in individual 
species complexes (Jayawardena et al. 2016b). Phyloge-
netic analysis using universal single-copy orthologs across 
genomes (Shen et al. 2020), or average nucleotide identity 
(ANI) analysis, which has been used extensively in bacte-
rial taxonomic assignments (Ciufo et al. 2018), may be used 
with great effect to assist with Colletotrichum species char-
acterization and identification.

Publicly-available genomic resources of Colletotrichum 
spp. can also be used to generate diagnostic markers. Diag-
nosis of a causal pathogen is important to understand the 
economic impact caused by that pathogen and to take appro-
priate disease control measures. Yet, classification based on 
morphology and host species is less definitive, especially 
within a species complex or showing a similar host range. 
To solve this problem, Gan et al. developed diagnostic 
PCR makers to distinguish the four different members of 
the C. gloeosporioides species complex by comparing the 
genomes (Gan et al. 2017). Analysis using these PCR mark-
ers showed that C. fructicola has been the predominant spe-
cies causing strawberry anthracnose in Chiba, Japan (Gan 
et al. 2017) and that C. fructicola was detected in 5.7% of 
tested weed leaves around strawberry nurseries in Nara, 
Japan, which could be an inoculum source of the disease 
(Hirayama et al. 2018). Apart from species diagnosis, the 
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of genomic diversity of Colletotrichum spp., we advocate 
for collecting and analyzing a multitude of genomes, even 
within a single species.
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authority. Sequence data deposited in public databases pro-
vide a great opportunity to investigate the genomic atlas of 
fungi, including Colletotrichum spp. Despite the benefits 
of analyzing public data, as users, we should be aware that 
those data were obtained in different ways, and that filter-
ing inappropriate datasets is often required to reduce proj-
ect-dependent biases (Sielemann et al. 2020). As sequence 
depositors, providing detailed, accurate, and timeless meta-
data along with the sequence is essential to assist integrative 
analyses by other researchers, and to eventually maximize 
the value of the data (Wilkinson et al. 2016). A possible 
bottleneck for expanding the available Colletotrichum spp. 
genomic data would be to find Colletotrichum strains that 
asymptomatically infect plants, or that grow in organic 
matter without hosts (Silva et al. 2017). We can easily 
overlook non-pathogenic Colletotrichum strains, although 
they may harbor intriguing traits, like promotion of plant 
growth (Hiruma et al. 2016; Ye et al. 2020). The whole-
metagenome shotgun sequencing approach holds promises 
for obtaining novel genomic information of Colletotrichum 
spp. in nature. Assembling whole-metagenome sequence 
reads is still challenging due to low sequencing depth, espe-
cially for eukaryotes (Bandla et al. 2020; Regalado et al. 
2020). However, some studies successfully recovered fun-
gal metagenome-assembled genomes (MAGs) (West et al. 
2018; Peng et al. 2021). In the future, application of long-
read sequencing technologies could improve the quality and 
quantity of eukaryotic MAGs. To capture the global image 

Fig. 1  The concept of pangenome. a In reference-based genome 
alignments, one genome (A) is chosen as a reference, then the oth-
ers (B-D) are compared with it. b One-to-one alignments cannot rep-
resent mutual relationships of unaligned genomic regions. Enough 
similar sequences are linked between the reference (top) and another 
(bottom) in each diagram. c Pangenomics reciprocally compares all 

of the genomes. d Many-to-many sequence alignments clarify the 
entire sequence repertoire without a reference bias. A sequence graph 
illustrates core sequences (solid rectangles) and accessory sequences 
(stripe rectangles) as well as structural variations (inversion and 
translocation)
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