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Abstract
Microplastics are emerging contaminants that undergo progressive aging under environmental conditions such as sunlight 
irradiation, mechanical forces, temperature variations, and the presence of biological organisms. Since aging modifies micro-
plastic properties, such as their own toxicity and the toxicity of trapped pollutants, advanced methods to analyze microplastics 
are required. Here we review methods to analyze microplastic aging with focus on the aging process, qualitative identifica-
tion, quantitative characterization, and chemometrics. Qualitative identification is done by mechanical techniques, thermal 
techniques, e.g., thermal degradation and gas chromatography–mass spectrometry, and spectral techniques, e.g., infrared, 
Raman, fluorescent, and laser techniques. Quantitative characterization is done by microscopy and mass spectrometry. Micro-
plastic aging results in a series of surface physical changes, biofilm formation, chemical oxidation, thermal alternation, and 
mechanical deterioration. Changes in mechanical and thermal properties allow to differentiate aged microplastics. Infrared 
and Raman spectroscopy are rapid and sensitive for chemical identification of microplastics in complex environmental 
samples. Combining two techniques is preferable for accurate detection and categorization.
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Abbreviations
3D EEM  Three-dimensional excitation–emis-

sion mode
ABS  Acrylonitrile–butadiene–styrene 

copolymer
CARS  Coherent anti-Stokes Raman 

scattering
FTIR  Fourier transform infrared
HDPE  High-density polyethylene
HPLC–MS/MS  High-performance liquid chromatog-

raphy–tandem mass spectrometry

LC-HRMS  Liquid chromatography–high-resolu-
tion mass spectrometry

LDPE  Low-density polyethylene
LIBS  Laser-induced breakdown 

spectroscopy
MALDI-TOF MS  Matrix-assisted laser desorption/

ionization time-of-flight mass 
spectrometry

MCR-ALS  Multivariate curve resolution-alternat-
ing least squares

μFTIR  Micro-Fourier transform infrared 
spectroscopy

PA  Polyamide
PBAT  Polybutylene adipate terephthalate
PBT  Polybutylene terephthalate
PC  Polycarbonate
PE  Polyethylene
PET  Polyethylene terephthalate
PLA  Polylactic acid
PMMA  Polymethyl methacrylate
PP  Polypropylene
PPE  Polyphenylene oxide
POM  Polyoxymethylene
PS  Polystyrene
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PU  Polyurethane
PVA  Polyvinyl alcohol
PVC  Polyvinyl chloride
Pyr-GC/MS  Pyrolysis gas chromatography–mass 

spectrometry
SERS  Surface-enhanced Raman scattering
TED-GC/MS  Thermal extraction-desorption gas 

chromatography–mass spectrometry
TiO2  Titanium dioxide

Introduction

Improper plastic waste management affects the ultimate dis-
posal of plastics. The natural weathering process stimulates 
abundant smaller-size secondary plastics split from com-
mercial plastic products, making microplastics ubiquitous 
in the environment. There is a rising concern regarding the 
accumulation of microplastics in different areas worldwide 
(Drummond et al. 2022; Ding et al. 2023; He et al. 2023; 
Kim et al. 2023; Sharma et al. 2023; Chen et al. 2023; 
Osman et al. 2023). The aging process of microplastics ini-
tiates gradually upon exposure to the environment, encom-
passing photo-radiation, thermal radiation, biodegradation, 
and mechanical fragmentation processes (Liu et al. 2020; 
MacLeod et al. 2021). The lateral and vertical transport over 
long distances through wind, atmosphere, overland runoff, 
ocean currents, and food chain forms an extensive global 
microplastics cycle. The prevalence of aged microplastics 
has become a cause for concern, which has become a global 
plastic toxicity problem (Rillig et al. 2021).

A great deal of previous research about aged microplas-
tics has focused on their characteristic changes after various 
aging processes simulated in the laboratory (Liu et al. 2019a, 
2019c; Chamradová et al. 2021; Wu et al. 2021b; Shan et al. 
2022; Shi et al. 2023c). As the issue of microplastics gains 
more attention, there is an increasing need for research on 
their qualitative and quantitative characteristics. In response 
to the need, several studies have been conducted to explore 
various techniques for the detection and analysis of micro-
plastics, including physical and chemical identification and 
quantification (Rowenczyk et al. 2020; Zhang et al. 2021b; 
Huang et al. 2023). Ivleva (2021) deliberated on the appli-
cability and complementarity of diverse mass-based and 
particle-based methodologies for microplastics. However, 
a systematic summarization of innovative techniques for 
identifying and quantifying aged microplastics to evaluate 
the risk of complicated microplastic mixture has not yet been 
established.

This review aims to provide an overview of the current 
state of research on aged microplastics and their detection 
technologies in environmental matrices in Fig. 1 using spec-
tral-based, thermal-based, and mechanical-based qualitative 

techniques and microscopy-based and mass spectrometry-
based quantitative methods. Furthermore, the review also 
highlights the advantages and limitations of each detec-
tion technique, as well as their potential for investigating 
aged microplastics. This review article serves as a valuable 
resource for researchers working in the field of microplas-
tics and provides insights into the current state of research 
on aged microplastics and the techniques available for their 
detection and characterization.

Aging reshapes microplastics

The natural aging process is regarded as the simultaneous 
complexion of photoaging, thermo-aging, and biological 
and mechanical aging processes. Laboratory studies often 
focus on the mechanistic effects induced by individual aging 
processes due to their manipulability and simplicity. Under 
different aging conditions, the physical and chemical proper-
ties of microplastics change a lot. Firstly, it is obvious that 
the surface morphology of microplastics undergoes great 
changes after extraneous contact or autologous peeling as 
microplastic particle size decreases (Song et al. 2017). Sev-
eral reports have shown that surface roughness increases 
with the generation of lots of cracks, fractures, notching, 
pores, depressions, and protrusions and many small frag-
ments or debris after a period of aging when subjected to 
ultraviolet light and mechanical abrasion (Song et al. 2017; 
Shi et al. 2023c). Biofouling on microplastics are those colo-
nized by living organisms, a complex microbial community 
comprising heterotrophs, autotrophs, predators, and sym-
bionts, which is referred to as the “Plastisphere” (Zettler 
et al. 2013). The adhesion of microorganisms can increase 
microplastic surface hydrophilicity, density, and surface 
roughness during biofilm formation (Nauendorf et al. 2016; 
Shabbir et al. 2020; Huang et al. 2022; Shan et al. 2022). 
For example, Pete et al. (2023) explored that microorgan-
isms can form biofilms on the surface of microplastics, and 
the highly surface-active biosurfactant of Alcanivorax can 
modify the wettability of microplastics, causing the sinking 
of microplastics. Typical aged plastic–biofilm combinations 
exhibit unique effects and environmental risks.

After exposure to various stimuli, such as successive 
illumination (Ren et al. 2021), chemical contacts (Liu et al. 
2019a, 2019c; Wu et al. 2020b; Ren et al. 2021), high tem-
perature (Gardette et al. 2013; Karlsson et al. 2018; Ding 
et al. 2020), and microbial colonization (Tu et al. 2020; Shan 
et al. 2022), element variation is predominant, especially 
in the change of oxygen content of the polyolefin plastics. 
Commonly, the aging process increases the oxygen content 
and changes the structure of polymer chains during degra-
dation and oxidation. The substantial rise of oxygen-con-
tained functional groups indicates the accumulation of many 
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conjugation units with electron-withdrawing substituents 
such as carbonyl and carboxyl groups (Shi et al. 2023c). 
The formation of conjugated bonds, enabling electron transi-
tion with minimum energy expenditure, results in heightened 
fluorescence in photoaged microplastics (Wang et al. 2023a). 
Aged microplastics with different surface structures reveal 
different environmental fate.

Semi-crystalline and amorphous polymers have differ-
ent properties, presenting different effects in their aging 
condition. In general, the degradation rate of amorphous 
polymer is faster than the crystal one, because of the dis-
order. The degree of crystallinity is related to the level of 
long-chain alignment in a macromolecule, influencing the 
mechanical properties of polymers, such as rigidity (Guo 
and Wang 2019). Amorphous plastics like polycarbonate 
(PC), polystyrene (PS), and polyvinyl chloride (PVC) exhibit 
temperature resistance through their glass transition tem-
perature (Sorolla-Rosario et al. 2022). After aging processes, 
the decrease of glass transition temperature corresponds 
with the decline of molecular weight, degradation of long 
chain, and generation of rotatable single chains, enhancing 
the internal free space and mobility of molecular segments 

(Artham and Doble 2009; Pye et al. 2010; Zhang et al. 2020; 
Shi et al. 2021). Semi-crystalline plastics like polyethylene 
(PE), polypropylene (PP), polyethylene terephthalate (PET), 
and polyamide (PA) were identified by particular melting 
point temperatures (Sorolla-Rosario et al. 2022). The crys-
tallinity of plastics is calculated using melting enthalpy and 
increases due to the degradation of amorphous component 
and the chemi-crystallization through photo- or thermo-oxi-
dation (De La Orden et al. 2015; Guo and Wang 2019; Zhou 
et al. 2020; Yu et al. 2022). Moreover, the mechanical char-
acteristics of aged microplastics undergo dramatic changes, 
possibly due to alterations in carbon chain molecules (Yu 
et al. 2022). The aging process alters the physicochemical 
properties of microplastics, facilitates the leaching of addi-
tives and degradation products, and ultimately poses eco-
toxicological risks to humans and the environment.

It is worth noting that aging in an open environment 
makes it a challenge to be identified and quantified, due to 
the modified properties and the coating of natural organic 
matter and pollutants on the surface of microplastics and 
nanoplastics. Pristine and aged microplastics and nanoplas-
tics can interact with allochthonous natural organic matters, 

Fig. 1  Methods for qualification and quantification of aged micro-
plastics. 3D EEM, three-dimensional excitation–emission-mode; 
AFM-IR, atomic force microscopy coupled with IR spectroscopy; 
CARS, coherent anti-Stokes Raman scattering; FLIM, fluorescence 
lifetime imaging microscopy; FTIR, Fourier transform infrared; 
HPLC–MS/MS, high-performance liquid chromatography–tandem 
mass spectrometry; MALDI-TOF MS, matrix-assisted laser desorp-

tion/ionization time-of-flight mass spectrometry; MCR-ALS, mul-
tivariate curve resolution-alternating least squares; μFTIR, micro-
Fourier transform infrared spectroscopy; Pyr-GC/MS, pyrolysis gas 
chromatography–mass spectrometry; RSI, Raman spectral imaging; 
SERS, surface-enhanced Raman scattering; SRS, stimulated Raman 
scattering; TED-GC/MS, thermal extraction-desorption gas chroma-
tography–mass spectrometry
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i.e., cellulose, humic acid, dissolved black carbon, and ful-
vic acid; and autochthonous natural organic matters, i.e., 
extracellular polymeric substances secreted from algae, 
bacteria, and fungi; and anthropogenic natural organic mat-
ters, i.e., septic systems, wastewater treatment plants, and 
agricultural, industrial and stormwater drainage runoff (Ali 
et al. 2022). These mixtures can form an eco-corona film or 
aggregation, changing the physicochemical characteristics 
of microplastics and affecting their bioreactivity, transport, 
aggregation, and fate in the environment (Ali et al. 2022). 
Microplastics are potential vectors of persistent organic 
pollutants and their ability to sorb and concentrate persis-
tent organic pollutants increases after aging (Ricardo et al. 
2021). Therefore, digestion protocols and other pretreatment 
are indispensable to explore microplastics qualitatively and 
quantitatively in complex environment matrixes.

Qualitative identification of aged 
microplastics

Most of the current literature on aged microplastics paid 
particular attention to their specific properties with distinct 
changes. However, it is hard to distinguish the aged micro-
plastics from pristine ones through the changes, such as 
surface morphology, hydrophobic and hydrophilic perfor-
mance, and molecular weight. Methods are indispensable 
for identifying different types and different aging degrees 
of microplastics, according to special properties present in 
characterization. In this study, we reviewed various mechan-
ical-, thermal-, and spectral-based techniques to explore and 
identify different kinds of aged microplastics according to 
their different characteristics.

Mechanical‑based techniques

Mechanical-based techniques cannot give information 
about the identification of the type of polymers. However, 
changes in mechanical properties are powerful evidence 
for the influence of aging, which is also reflected in ten-
sile strength and the brittle/ductile transition. Tensile tests 
were conducted to reveal the changes in the mechanical 
properties of microplastics during aging process. Ainali 
et al. (2021) pointed out that almost all mechanical proper-
ties of low-density polyethylene (LDPE), high-density pol-
yethylene (HDPE), polypropylene (PP), and polystyrene 
(PS), namely tensile strength at yield point and at break 
point (MPa), as well as elongation at break (%) exhib-
ited a distinct decline utilizing an Instron Dynamometer 
after a period of ultraviolet exposure with the continu-
ous embrittlement of the samples. Fracture strain (MPa) 
or elongation at break (%), represents how well a plastic 
item can maintain its shape without cracking (Zhang et al. 

2021a). Plastics with lower fracture elongation values 
are more prone to break under the influence of external 
tensile forces. The brittle–ductile transition for various 
levels of hydrolysis degradation has been tested using 
a 10-kN capacity Instron machine (Arhant et al. 2019). 
For the unaged PET sample and aged ones after 1–3 days 
of hydrolysis, there was a ductile transition followed by 
necking, showing a ductile failure. The narrow neck-
like sections are related to yield deformation. However, 
after a longer time of aging, stress declined significantly, 
and sample failed in a brittle manner. The brittle–duc-
tile transition is the condition of microplastic formation. 
This embrittlement was accompanied by the decline of 
the maximum stress under different temperatures. Besides 
the aging process in the laboratory, Yu et al. (2022) found 
the tensile strength of landfill shopping bags and food bags 
tested by the universal testing machine were weakened 
significantly compared to the original ones. However, the 
relationship between the sample's stress value and land-
fill age had subtle and irregular changes. The mechani-
cal alteration ultimately caused the formation of cracks 
and imperfections on the surface of the examined samples 
(Ainali et al. 2021). Thus, it is more susceptible to the rup-
ture of polymer chains and accumulation of microplastics 
under prolonged external forces.

Aging process of microplastics can also lead to changes 
in stiffness and elasticity. The stiffness of the microplastics 
sample affected the oscillation amplitude of the cantilever 
in the mechanical spectra, and a higher frequency value 
correlated with a stiffer sample of microplastics (Luo et al. 
2020, 2021b). Lorentz contact resonance imaging measure-
ments were performed in the research of Luo et al. (2020) 
to quantify the mechanical characteristics of each phase in 
microplastics. The resonance variations of the two charac-
teristic peaks between pristine and photoaged low-density 
polyethylene (LDPE) microplastics were significant. Unaged 
microplastics showed two typical peaks at the resonance fre-
quencies of 299 and 645 kHz, while aged ones showed those 
of 311 and 670 kHz, respectively. The aging process resulted 
in a considerably stiffer surface characteristic, as seen by the 
frequency differences between the two peaks for aged and 
unaged microplastics (Luo et al. 2020). During the heating 
process, the burned polypropylene (PP) also experienced 
physical degradation, resulting in a regionally inhomogene-
ous surface (Hu et al. 2021). Julienne et al. (2019) utilized 
atomic force microscopy to study the elastic mechanical 
properties of the thin film surface and small fragments. The 
film elastic modulus of unaged low-density polyethylene 
(LDPE) was determined to be 0.17 GPa (Jee and Lee 2010; 
Julienne et al. 2019). Surface hardening of the film shown 
by an increase in elastic modulus is evident in both air and 
water after 25 weeks of xenon lamp weathering to vary-
ing extents. Compared to air aging, the aquatic environment 
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prevented the enhancement of the surface rigidity, but mean-
while accelerated the crack propagation of polymers (Juli-
enne et al. 2019).

As discussed above, mechanical properties are not com-
petent for the identification of different types of microplas-
tics; nonetheless, it is qualified for distinguishing the aged 
microplastics from pristine ones. The embrittlement and 
changes in tensile strength, elongation at break, stiffness, and 
compressive strength of microplastics resulted from chain 
scission, molar mass decrease, and chemi-crystallization of 
polymers. The complicated and sluggish process of envi-
ronmental weathering makes the deterioration of plastics 
tricky. However, the changes in the mechanical properties 
under different conditions make it possible to generate more 
microplastics and nanoplastics from abundant waste plastics.

Thermal‑based techniques

Thermal analysis is an effective way to determine the proper-
ties of polymers that typically do not require any sample pre-
treatment. Two thermal techniques are commonly used: ther-
mogravimetric analysis and differential scanning calorimetry 
(Sorolla-Rosario et al. 2022). Additionally, gas products 
released through sample pyrolysis can be analyzed by mass 
spectrometry analysis, after passing through a chromato-
graphic column, such as pyrolysis gas chromatography–mass 
spectrometry (Pyr-GC/MS) or thermal extraction-desorption 
gas chromatography–mass spectrometry (TED-GC/MS) to 
identify microplastics.

Temperature indices

Thermal analysis provides information on particular proper-
ties of plastic polymers and has been utilized to identify dif-
ferent types of pristine and aged microplastics with identical 
decomposition temperature, melting point temperature and 
glass transition temperature. Thermogravimetric analysis is 
applied to measure mass changes of polymers during ther-
mal treatment indicating the degradation of the material. 
Thermogravimetric analysis is an effective method to moni-
tor the decomposition of all types of individual polymers. 
However, it is challenging to use this approach to identify 
and measure polymers in multicomponent mixtures since 
the decomposition temperature of most polymers overlaps, 
ranging 400–480 °C (Sorolla-Rosario et al. 2022). The only 
exception is polyvinyl chloride (PVC), which decomposes 
in two stages and may be easily identified from other micro-
plastics due to a low-temperature breakdown step of 310 °C 
(Stromberg et al. 1959; Sorolla-Rosario et al. 2022). This 
phase is caused by the weak C–Cl bond breaking (Wu et al. 
2014; Sorolla-Rosario et al. 2022).

Differential scanning calorimetry determines how tem-
perature affects the heat capacity of a material, detecting the 

alterations in polymer structures, such as phase transitions 
or melting (Sorolla-Rosario et al. 2022). Semi-crystalline 
and amorphous polymers have different softness, elasticity, 
strength, and fatigue resistance, making different sense in 
their aging behaviors (Guo and Wang 2019). Therefore, dif-
ferent indexes should be applied for identifying polymers 
with different crystalline states. Sorolla-Rosario et al. (2022) 
found that it is possible to identify both polyvinyl chloride 
(PVC) and polystyrene (PS) amorphous polymers accurately 
by using the glass transition temperature in differential scan-
ning calorimetry. glass transition temperature represents the 
minimum temperature at which amorphous polymer mac-
romolecular chain segments become mobile. Meanwhile, 
semi-crystalline polymers such as polyamide (PA), polyeth-
ylene terephthalate (PET), polypropylene (PP), high-density 
polyethylene (HDPE), and low-density polyethylene (LDPE) 
can be identified by comparing the melting temperature.

Differential scanning calorimetry tests can also pro-
vide important messages for distinguishing different aging 
degrees of microplastics. According to differential scanning 
calorimetry measurements by Shi et al. (2021), with differ-
ent aging times, the glass transition temperature of poly-
carbonate (PC) microplastics dropped from 147.6 °C (0 h) 
to 126.4 °C (640 h), most likely due to photodegradation, 
which caused the polymer chain structure to start separating 
and the side chain proportion to gradually increase (Artham 
and Doble 2009). More rotatable single chains increased 
chain flexibility and migration rate, ultimately causing glass 
transition temperature to be offset to a lower temperature 
(Claude et al. 2004; Artham and Doble 2009; Jiang et al. 
2018). Changes in the molecular weight may also explain 
the differences in glass transition temperature between pris-
tine and aged polycarbonate (PC) microplastics. Ainali et al. 
(2021) demonstrated that ultraviolet irradiation affected the 
melting point temperature of single low-density polyethylene 
(LDPE), high-density polyethylene (HDPE), and polypro-
pylene (PP), analyzed by a differential scanning calorimetry 
instrument. The shortening of the average polymer chain 
length due to the chain scission and the decrease of the aver-
age molecular weight resulted in the decline of melting point 
and the widening of the peak. Interestingly, the polypro-
pylene (PP) melting behavior displayed double endotherm 
curves as a result of recrystallization or rearrangement dur-
ing heating. Similarly, as with the exothermic peak, the melt-
ing peak of the waste polyethylene (PE) plastic in the landfill 
decreased when compared to the original samples (Yu et al. 
2022). Furthermore, the polyethylene (PE) in landfills for 
27 years presented a double shoulder peak in the melting 
area. Two peaks were also showed in the differential scan-
ning calorimetry thermograms of polypropylene (PP) bread 
foil after 5 years of natural degradation in a waste landfill 
(Potrykus et al. 2021). However, the melting point of poly-
propylene (PP) food bags showed an increasing trend as the 
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landfill time increased, which corresponds with the crystal-
linity of polymers. The changes in different polymers agreed 
to their intrinsic properties. The chain scission and rear-
rangement of polyethylene (PE) macromolecules made the 
lower crystallinity, while the vulnerable amorphous region 
of polypropylene (PP) influences the changes in the crystal-
linity (Yu et al. 2022).

Nano-localized thermal analysis is one of the most com-
mon procedures for determining nanoscale thermal analysis 
of unaged and aged microplastics. After aging treatment, 
the average glass transition temperature of low-density 
polyethylene (LDPE) masterbatch microplastics dropped 
by 114.6 °C (from 209.5 ± 11.5 to 94.9 ± 4.4 °C). It was 
determined that glass transition temperature of the continu-
ous phase of low-density polyethylene (LDPE) was shown 
to be predominantly lowered after aging process of micro-
plastics (Luo et al. 2020). Luo et al. (2021a) verified that 
over a longer photocatalytic period, the average softening 
temperature of artificially titanium dioxide  (TiO2)-coated 
polypropylene (PP) microplastics steadily dropped. And the 
closer to aged microplastics were to the nano-TiO2 particle, 
the deeper the surface oxidation on them, which was likely 
induced by nano-TiO2 photocatalytic degradation of the 
plastic polymers. The glass transition temperature of low-
density polyethylene (LDPE) microplastics also decreased 
after oxidation treatments except the Fenton system, show-
ing a reduced capacity to withstand high temperatures (Luo 
et al. 2021b). It is recognized that some factors are partially 
responsible for the changes in the glass transition tempera-
ture. The less flexible carbon chain, lower intermolecular 
force, or smaller molecular weight of the polymer affected 
the lower glass transition temperature.

Thermal changes after aging provide significant insight 
into distinguishing aged microplastics in the environment. 
Thermogravimetric analysis, differential scanning calorim-
etry, and nano-localized thermal analysis reveal unique poly-
mer thermal properties. Discovering changes in the thermal 
properties of polymers after aging is crucial to guarantee the 
existence of microplastics in complex environments. In addi-
tion, for comprehensive insights, thermal techniques should 
be complemented by other analytical approaches when char-
acterizing aged microplastics in environmental samples, 
thereby preventing the misidentification of different types.

Thermal degradation combined with gas 
chromatography‑mass spectrometry

Pyrolysis mechanisms and thermal behavior of different 
plastic polymers have been extensively studied. Combin-
ing pyrolysis techniques with mass analysis, the main prod-
ucts can be considered as thermal degradation markers of 
structural information about macromolecule plastics. Due 
to its multiple advantages and prospective employments, 

Pyr-GC/MS has received increased attention in microplas-
tic qualitative analysis in recent years (Fischer and Scholz-
Böttcher 2017; Okoffo et al. 2022; Rosso et al. 2023). Pyro-
lytic markers are widely utilized nowadays in microplastic 
qualification analysis. Pyr-GC/MS demonstrate the primary 
depolymerization mechanism for low-density polyethylene 
(LDPE), high-density polyethylene (HDPE), polypropylene 
(PP), and polystyrene (PS) (Ainali et al. 2021). Besides, it 
can analyze the effect of photo-irradiation on their decom-
position route. Thus, it is also regarded as an indicative tech-
nique to determine their oxidation situation (Ainali et al. 
2021). The formation of linear ketones, monounsaturated 
and saturated aldehydes, esters, carboxylic acids, and lac-
tones can be recorded according to different structures with 
irradiation time increasing (Ainali et al. 2021). Rosso et al. 
(2023) detected tire wear particles by employing indicators 
specific to the primary rubbers commonly utilized in tire 
manufacturing, namely natural rubber, isoprene rubber, 
butadiene rubber, and styrene–butadiene rubber. It is impor-
tant to note that certain monomers and dimers of these rub-
bers could originate from diverse sources, including styrene, 
1,3-butadiene, isoprene, 4-vinyl cyclohexene, and limonene 
(1-methyl-4-(1-methylethenyl)-cyclohexene, also known as 
dipentene) (Unice et al. 2012; Rauert et al. 2021).

Furthermore, pristine and aged plastics can be recognized 
by identifying potential chemical markers of polyurethane 
(PU) foam degradation in remarkable Pyr-GC/MS finger-
prints (Lattuati-Derieux et al. 2011). As the aging period 
progressed, the isocyanate hard component of polyester-
based foam altered in chromatographic fingerprints. A dra-
matic increase was observed in glycol derivatives, which 
were decomposition products of the polyether polyol soft 
component caused by artificial light aging. The existence of 
many breakdown products might be regarded as an indicator 
of the status of foam deterioration. The Pyr-GC/MS finger-
prints of foams naturally aged were very similar to those 
obtained from the artificially aged polyester-based foam, 
therefore the presence of the compounds detected can be 
considered as degradation markers of this type of plastic pol-
ymers (Lattuati-Derieux et al. 2011). Li et al. (2023) devel-
oped a novel extraction method for Pyr-GC/MS identifica-
tion of small solid-embedded microplastics and nanoplastics 
that combined tetramethylammonium hydroxide digestion 
with dichloromethane dissolution under sonication. Samples 
from soil, sediment, and sludge contained polyvinyl chloride 
(PVC), polyethylene (PE), polyethylene terephthalate (PET), 
polypropylene (PP), and polystyrene (PS) but not polymethyl 
methacrylate (PMMA), suggesting the widespread presence 
of small microplastics and nanoplastics in the solid matrix. 
Therefore, it is necessary to build Pyr-GC–MS databases for 
pyrolytic products linked with polymers that have undergone 
environmental weathering processes found in nature even in 
organisms.
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New methods were developed to address potential con-
tamination of a transfer capillary and limited sample masses 
(more than 0.5 mg) in Pyr-GC/MS (Dümichen et al. 2017; 
Klöckner et al. 2020; Sorolla-Rosario et al. 2023). TED-
GC/MS enable the measurement of complex environmental 
matrices that are heterogeneous on a small scale (Duemichen 
et al. 2014). Using the thermal decomposition method, it is 
possible to analyze a considerable number of samples (up 
to 100 mg) quickly (in about 2–3 h) (Dümichen et al. 2017). 
The distinctive thermal breakdown products of significant 
types of polymers like polyethylene (PE), polypropylene 
(PP) and polystyrene (PS), polyethylene terephthalate (PET), 
and polyamide (PA) are identified. At least one distinct and 
specific decomposition product can be found for each poly-
mer. These markers are then applied to recognize microplas-
tics in actual environmental samples from the aquatic (three 
different rivers) and the terrestrial (biogas plant) systems 
(Dümichen et al. 2017). Through conducting TED-GC/MS 
measurements, a breakthrough was achieved in measuring 
microplastics from both thermoplastics and tire wear abra-
sion in real environmental samples from street runoff at the 
same time (Eisentraut et al. 2018). The drawback was that 
this study did not account for various factors such as the type 
of car and tires, the wear rate, the level of elastomers, the 
additive composition in tires, and the regional variations in 
vehicle usage. Generally, Pyr-GC/MS and TED-GC/MS rep-
resent distinctive methodologies for identifying microplastic 
polymers through the analysis of their thermal degradation 
products with high recognition rate.

Spectral‑based techniques

Infrared and Raman spectroscopy

Table 1 shows that different spectroscopy types have dif-
ferent size limitations, drawbacks, and advantages in the 
application of aged microplastics qualification. Infrared 
and Raman spectroscopy, both of which involve radiation 
interaction with molecular vibrations, can be used to study 
microplastics and nanoplastics from wastewater (Simon 
et al. 2018; Van Do et al. 2022; Yang et al. 2023a), drinking 
water (Koelmans et al. 2019; Jung et al. 2022), freshwater 
(Koelmans et al. 2019; Campanale et al. 2023; Yang et al. 
2023a), marine environment (Abaroa-Pérez et al. 2022; 
Melo-Agustín et al. 2022; Yang et al. 2023a), soil and sedi-
ment (Jia et al. 2022; Jiang et al. 2022), and atmosphere 
(Chen et al. 2022; Xie et al. 2022).

Fourier transform infrared (FTIR) is widely used to 
identify microplastic types, tracing back to the first study 
about microscope plastic debris (Thompson et al. 2004). 
Micro-FTIR spectroscopy (μFTIR), an FTIR spectrometer 
connected to an optical microscope, has gained popularity 
for recognizing and characterizing microplastic particles by 

library matching (Rowenczyk et al. 2020). FTIR is also an 
effective way of evaluating the degradation degree by deter-
mining the surface chemical compositions at specific wave-
lengths. Different indicators are used to determine the oxi-
dation level of polymers, including the carbonyl index and 
hydroxyl index. Carbonyl index is calculated by the inten-
sity of the carbonyl peak (1779–1680  cm−1) to that of refer-
ence peak such as methylene peak (1490–1420  cm−1 (ter 
Halle et al. 2017; Zhang et al. 2021b) or 2992–2874  cm−1 
(Liu et al. 2019c; Jiang et al. 2022)), while hydroxyl index 
refers to the maximum absorbance ratio of hydroxyl groups 
(3700–3100  cm−1) to the reference peak (Yu et al. 2022; 
Wang et al. 2023b). The carbonyl index and hydroxyl index 
are proven to be positively correlated with the aging degree 
(Zhang et al. 2021b; Yu et al. 2023). Carbonyl index is not 
suitable for the evaluation of non-olefin microplastics due to 
the presence of oxygen atoms in the pristine polymer struc-
ture; nevertheless, it is appropriate for studying the newly 
generated surface oxygen-containing moieties of polyolefin 
microplastics perfectly like polyethylene (PE) (Zhang et al. 
2021b; Yu et al. 2023), polypropylene (PP) (Wu et al. 2021a, 
2021b), polystyrene (PS) (Wang et al. 2021, 2023b; Liu et al. 
2022), and polyvinyl chloride (PVC) (Miranda et al. 2021; 
Wang et al. 2023b).

Although the presence of absorption peaks linked to oxi-
dation in those polymers makes it easier for infrared anal-
ysis to identify aging effects in microplastics, those same 
peaks due to the aging process, the fouling attachment, 
and applied additives can overlap with specific vibrational 
modes that reduce the identification efficiency of the plastic 
(Phan et al. 2022). Particularly, it is referred that polyvinyl 
chloride (PVC) is sensitive to ultraviolet radiation, causing 
dechlorination at the first step and generation of conjugated 
double bonds in the polyene polymer (C=C stretching) and 
hydrogen chloride (Gewert et al. 2015). Thus, the infrared 
spectra of aged polyvinyl chloride (PVC) in the environment 
resemble those of aged PE with the emergence of ketones, 
carboxylic acids, and carbon double bonds. It is noteworthy 
that in real environmental conditions, aged microplastics can 
be misidentified when compared to conventional polymer 
libraries.

Therefore, it is necessary to set up a customized thorough 
spectra database including pristine and aged plastic poly-
mers (Filgueiras et al. 2019; Lee and Chae 2021; Fernández-
González et al. 2022). Filgueiras et al. (2019) identified three 
plastic types including aged polystyrene (PS), polyamide 
(PA), and polymethyl methacrylate (PMMA) in surface sedi-
ments along the Spanish Mediterranean continental shelf 
through PerkinElmer spectra libraries and a customized 
polymer database. Renner et al. (2017) developed a robust 
“microplastics identification” method with a success rate of 
96.1% to recognize and characterize heavily aged and con-
taminated microplastics without any cleaning pretreatment. 
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The new mode, which can be used when slightly and even 
heavily aged microplastics correspond with polymer refer-
ences, adopts a novel chemometric approach based on vibra-
tional band area ratios combining noise and matrix signals, 
compared to the conventional library searching procedure 
(Renner et al. 2017). The modification of the “microplastics 
Identification” method is suitable for microplastic identifi-
cation by μFTIR and improves the accuracy by up to 98% 
when identifying real microplastics from a beach sample 
(Renner et al. 2019). In a recent study, Open Specy (www. 
opens pecy. org) was established as an open-source commu-
nity that enables the identification of microplastics using an 
onboard reference library and matching correlation-based 
criteria (Cowger et al. 2021). To increase the precision of 
spectral identification for microplastic research, Open Specy 
contains a variety of spectra from various materials includ-
ing aged ones (Chabuka and Kalivas 2020). Considering 
the limitation of the micrometer spatial resolution scale of 
μFTIR, atomic force microscopy coupled with infrared spec-
troscopy is a highly effective method for nanoplastic detec-
tion and analysis (Dazzi and Prater 2017; Chen et al. 2020; 
dos Santos et al. 2022).

Raman spectroscopy is a nondestructive technique that 
provides molecular fingerprint spectra based on inelastic 
scattering of monochromatic laser (Araujo et al. 2018). It is 
always regarded as the complementary approach of infrared 
spectroscopy for microplastic identification because of its 
higher spatial resolution and submicron or nanometer scale 
detection even in trace samples (Frère et al. 2016).  Raman 
spectral imaging can identify the molecular species present 
in the sample and reflect them on the two-dimensional image 
without any prelabeling of microplastic particles (Lever-
more et al. 2020). Combined with chemometric analysis and 
library search, Raman spectral imaging provides the theoret-
ical basis and practical method for qualitative identification 
and simultaneous characterization of the particle size dis-
tribution of microplastics in complex environmental media 
(Tian et al. 2022). One of the most challenging problems 
is that micro-sized plastic additives with similar chemical 
responses are incapable of being distinguished from micro-
plastics by Raman spectroscopy. That’s why preprocessing 
is indispensable (Erni-Cassola et al. 2017; Stark 2022). Li 
et al. (2022a) applied alcohol pretreatment to prevent the 
interference of the chemical additives during microplastic 
release and degradation by facilitating particle separation 
and individual analysis.

According to the research of Cai et  al. (2018), the 
changes in Raman spectra of microplastics were not dis-
tinct after the aging process. Jin et al. (2022) demonstrated 
that Raman spectrum of microplastics under exposure to 
various oxidation treatments changed significantly based 
on the one-dimension score and loading plots of princi-
pal components analysis–linear discriminant analysis. 

However, the principal components analysis used in 
Raman technique similarly didn’t play a positive role in the 
classification of unaged and aged microplastics (Pořízka 
et al. 2023). Thus, the Raman technique is beneficial for 
distinguishing the polymer types, but it is not useful for 
assessing the extent of plastic degradation (Araujo et al. 
2018; Phan et al. 2022). Moreover, the presence of biologi-
cal matrices and additive impurities in the plastic products 
may amplify the drawbacks of Raman spectroscopy, such 
as weak signal and fluorescence interference (Araujo et al. 
2018; Jin et al. 2022; Pořízka et al. 2023). To overcome 
these shortcomings, novel Raman techniques are devel-
oped to enlarge the detecting scale. Raman Tweezers (opti-
cal tweezers combined with Raman spectroscopy) were 
utilized to optically trap and chemically detect sub-20 μm, 
down to 50 nm range of both model particles in distilled 
and seawater, and fragmented particles in naturally aged 
environmental samples (Gillibert et al. 2019). Nanoplas-
tics with various impure materials may be clearly identi-
fied chemically using Raman Tweezers, even in the pres-
ence of biosurfactant organic overlays. Recently, Xie et al. 
(2023b) combined Raman spectroscopy with a random for-
est algorithm to overcome the limitations of low-quality 
nanoplastic Raman spectra and the interference of complex 
environmental impurities. The application of a tap water 
spiked sample achieved over 97% identification accuracy, 
and the confirmatory experiment demonstrated the suc-
cessful detection of polystyrene (PS) and polyvinyl chlo-
ride (PVC) nanoplastics in rainwater (Xie et al. 2023b).

Surface-enhanced Raman scattering (SERS) is a nano-
material-enhanced technique derived from Raman spectros-
copy that improves sensitivity for the detection of a wide 
range of particles present at low concentration levels (Vélez-
Escamilla and Contreras-Torres 2022; Dey 2023). SERS has 
been used for many years to identify and target microplas-
tics and nanoplastics in the real environment and everyday 
consumer products through continuously enhancing the 
potential of system optimization and resolution improve-
ment. But most of studies focused on SERS detection of 
targeted polystyrene (PS) nanospheres of standard size to 
verify the excellent signal intensity (Lê et al. 2021; Yin et al. 
2021; Yang et al. 2022). It would be ideal to develop SERS 
substrates that would respond favorably to a range of plastic 
materials (Xie et al. 2023a). Xu et al. (2020) accomplished 
the detection and identification of polyethylene terephtha-
late (PET) and polystyrene (PS) microplastics and nano-
plastics by using SERS with Klarite substrates with sizes 
down to 450 nm in ambient air. So far, the SERS identifica-
tion has depended on manual matching or library searching 
according to specific spectra characteristics of conventional 
plastics. It is necessary to apply a special machine algo-
rithm to the SERS detection system to expand the environ-
mentally efficient identification to nanoscale and optimize 

http://www.openspecy.org
http://www.openspecy.org
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accurate distinction of additive effects and low-concentration 
influence.

Coherent anti-Stokes Raman scattering (CARS) is a non-
linear optical process where two laser beams interact with 
molecular vibrations in the sample, generating a coherent 
anti-Stokes signal at a different frequency. In the CARS 
spectroscopic mode, the range of observable spectra is spe-
cifically constrained to 2800–3200  cm−1 within the C–H 
stretching frequency region, which is attributed to the nar-
rower pump bandwidth (Rhee et al. 2024). Recently, Rhee 
et al. (2024) illustrated the efficacy of employing broadband 
CARS micro-spectroscopy for the fast identification of poly-
ethylene (PE), polystyrene (PS), polymethyl methacrylate 
(PMMA), and polyamide 12 (PA 12) within natural soil, 
eliminating the need for any digestion processes. The C–H 
bond-specific CARS imaging and spectral analysis not only 
facilitate a rapid search for microplastic particles but also 
enable chemical identification, even when disturbed by 
residual particles and highly fluorescent substances in the 
soil (Rhee et al. 2024).

As another coherent nonlinear optical techniques, stimu-
lated Raman scattering microscopy introduces an innovative 
approach to amplify Raman signals (Genchi et al. 2023). 
This breakthrough enables the attainment of high-speed, 
three-dimensional imaging with exceptional chemical speci-
ficity and sensitivity, effectively overcoming previous limita-
tions in the Raman field (Saar et al. 2010; Ao et al. 2023). 
Upon conducting density separation of a sediment sample 
derived from the Rhine estuary, Zada et al. (2018) efficiently 
surveyed a 1  cm2-area of the filter surface in less than five 
hours. In this examination, a total of 88 microplastics were 
successfully identified, including Nylon, polyethylene tere-
phthalate (PET), polystyrene (PS), polypropylene (PP) and 
polyethylene (PE), indicating a concentration of 12,000 
particles per kilogram of dry weight. In atmospheric envi-
ronmental samples, a range of microplastics and nanoplas-
tics, encompassing polypropylene (PP), polyethylene (PE), 
polymethyl methacrylate (PMMA), and cellulose plastics, 
were identified, without the interference from other impuri-
ties during the analysis (Ao et al. 2023).

Therefore, infrared and Raman spectroscopy, both based 
on radiation interaction with molecular vibrations, are used 
to study microplastics and nanoplastics in various environ-
ments. FTIR is commonly used for identifying microplastic 
types and evaluating degradation degree by analyzing sur-
face chemical compositions. To address the issue of reduced 
identification efficiency caused by overlapping with specific 
vibrational modes, it is crucial to establish a comprehensive 
and customized spectral database containing both pristine 
and aged plastic polymers. Raman spectroscopy, providing 
molecular fingerprint spectra, is useful for distinguishing 
polymer types but not for assessing microplastic degradation 
extent. CARS and stimulated Raman scattering microscopy 

offer innovative approaches for rapid and sensitive chemi-
cal identification of microplastics in complex environmen-
tal samples, overcoming previous limitations in Raman 
spectroscopy.

Fluorescent responses

Fluorescence visualization has been widely utilized in 
the microplastics research. Fluorescently labeled particles 
using different dyes or fibers utilizing the compound spin-
ning method were especially applied to trace their fate in 
the organisms (Karakolis et al. 2019; Li et al. 2020; Ma 
et al. 2021). The artificial exogenous fluorescent additive 
methods are tricky to control the consistency and have the 
risk of leaching, making secondary pollution. Nonetheless, 
microplastics' intrinsic fluorescence can be used to differen-
tiate them from other particles and achieve classification in 
a complex environment by utilizing their morphology and 
multispectral autofluorescence fingerprints.

The fluorescence lifetime (τ) made microplastics com-
petent for the identification and characterization using fluo-
rescence lifetime imaging microscopy. Monteleone et al. 
(2021a) demonstrate that using a laser pulse repetition fre-
quency of 40 MHz, phasor analysis for fluorescence lifetime 
imaging microscopy was capable of generating specific loca-
tions and being color-coded in the phasor plot for the plastics 
for fast distinction, such as acrylonitrile–butadiene–styrene 
copolymer (ABS) at 3.019 ns, polyphenylene oxide (PPE) 
at 6.239 ns, polyethylene terephthalates (PET) bottles from 
Germany at 2.703 ns, and polyethylene terephthalates (PET) 
bottles from USA at 2.711 ns of τ (Monteleone et al. 2021b). 
The autofluorescence spectra of microplastics were also ana-
lyzed using the fluorescence lifetime imaging microscopy 
with a femtosecond pulsed laser to excite continuous excita-
tion lines to determine the detection range of microplastics 
(Zhou et al. 2022). Phasor analysis for fluorescence lifetime 
imaging microscopy is a nondestructive approach that has 
the potential for lifetime heterogeneity, visualization, and 
differentiation of microplastics and aged ones. Zhou et al. 
(2022) established that microplastics “phasor fingerprint 
libraries” relying on multiple phasor fingerprints shown 
by specific phasor clusters in each phasor image, contained 
phasor cluster positions and quick fluorescence lifetime 
information. The results revealed obvious spatial distances 
of different kinds of microplastics in the “phasor fingerprint 
database”, which makes it simple and intuitive to differenti-
ate them even in the plastic mixtures and sediments (Zhou 
et al. 2022). The advantage of utilizing autofluorescence 
phasor mapping is that it may also provide size and shape 
information, the spatial distributions of microplastics, and 
their interactions with the environment. Although integra-
tion of thermally treated plastics appears to make plastic 
separation more challenging, the majority of the tested 
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polymers with the heat treatment are located in the right half 
of the phasor plot representing shorter fluorescence lifetimes 
(Monteleone et al. 2021a).

Recently, Wang et al. (2023a) demonstrated that artifi-
cial and naturally photoaged nanoplastics have the poten-
tial to function as fluorescent tracers without the need for 
external fluorescent materials, through the further results of 
confocal laser scanning microscopy and three-dimensional 
excitation–emission-mode fluorescence spectra. It showed 
newly generated fluorescence and optical absorption centers 
in aged nanoplastic polymers in three-dimensional excita-
tion–emission-mode fluorescence spectra after ultravio-
let and sunlight irradiation, with aged polyvinyl chloride 
(PVC) and polystyrene (PS) nanoplastics exhibiting stronger 
fluorescence than polypropylene (PP) and polyethylene (PE) 
nanoplastics. Without modifying with exogenous molecules, 
fluorescent nanoplastics may be produced after artificial or 
natural sun irradiation and are useful for fluorescently visu-
alizing the mobility and migration of nanoplastics in aquatic 
species.

Laser‑based techniques

Laser-induced breakdown spectroscopy (LIBS) is a novel 
elemental analysis technique with the advantage of high ana-
lytical speed in various industries including plastic-recycling 
factories (Yu et al. 2014; Legnaioli et al. 2020; Zeng et al. 
2021). The identification of polymer types is always con-
nected to the detection of heteroatoms and intensity ratios 
of elemental emission lines or molecular bands. The  C2 
Swan system (516.0 nm), the carbon–nitrogen (C–N) band 
(388.0 nm), carbon (247.9 nm), hydrogen Balmer alpha line 
(656.3 nm), oxygen (777.2 nm), and nitrogen (746.8 nm) 
were the prominent emission lines (Anzano et al. 2008). 
Through determining the major elemental ratios in poly-
mers, the most crucial one for identifying the plastics was 
H/C ratio, followed by the  C2/C1 ratio which relates the num-
ber of carbon–carbon bonds and carbon atoms. However, 
considering most polymers have similar elemental compo-
sitions, their LIBS spectra are highly comparable, making 
it difficult to differentiate, particularly for the polyolefins 
(Anzano et al. 2008; Zeng et al. 2021). Nonetheless, there 
are minor changes in signal intensities resulting from distinct 
stoichiometric ratios of polymeric molecules. Therefore, 
statistical methods with spectral library and chemometric 
tools have been carried out to give more information from 
obtained spectra and to enhance the discrimination ability.

The principal components analysis has been regarded as 
the most prevalent and effective machine learning approach 
that is suitable for analyzing LIBS spectroscopic data over 
the past decade (Pořízka et al. 2018). Chamradová et al. 
(2021) succeeded in the separation of aliphatic and aromatic 
polymers representing different polymer structures with or 

without heterogeneous atoms, i.e., polypropylene (PP), poly-
amide 66 (PA 66), polyoxymethylene (POM), polystyrene 
(PS), and acrylonitrile–butadiene–styrene copolymer (ABS), 
with the greatest polymer ablation effect under air and argon 
atmospheres through LIBS and principal components analy-
sis. It also demonstrated the possibility for the identification 
of 20 different virgin polymer types and polymers containing 
additives using LIBS combined with k-nearest neighbors, 
principal components analysis, and hierarchical cluster anal-
ysis multivariate analysis, providing technical support for 
the recognition of real-life samples (Gajarska et al. 2021).

To explore the potential application of LIBS in aged plas-
tics, Sommer et al. (2022) examined the oxidation degree of 
PS based on the oxygen emission line at 777.3 nm. As the 
oxidation time increased, oxygen absorption peaks formed 
and increased. Meanwhile, depth profile analysis was car-
ried out to evaluate the penetration depth of the oxidation 
layer and to collect information about the stratification of 
structure inside the polymer matrix. Interestingly, it was 
found that weathered samples showed the oxidation pen-
etration depth of up to 58.0 ± 6.4 μm (Sommer et al. 2022). 
The LIBS technique with principal components statistical 
analyses showed the function of quick polymer identifica-
tion from a large sample of different kinds of plastics in a 
marine environment (Giugliano et al. 2022). LIBS has also 
proved as a reliable method for the identification and char-
acterization of aged microplastics with developed biofilm 
without any pretreatment (Pořízka et al. 2023). Principal 
components analysis was utilized to illustrate the capac-
ity of LIBS to distinguish with several microplastic types 
by matching wavelengths with relevant information about 
the sample, including polyamide (PA), polyethylene (PE), 
polyethylene terephthalate (PET), polypropylene (PP), and 
polyvinyl chloride (PVC). In the score plot, it is possible 
to discriminate between unaged and aged microplastics in 
freshwater and wastewater. The current findings reveal that 
it is feasible to identify and characterize aged microplastics 
coated by biofilms utilizing enhanced laser-based methods 
regardless of the aging time and primary biotic components 
of the biofilm layer (Pořízka et al. 2023). As a result, these 
advanced approaches have the potential to significantly sup-
plement traditional analytical methods and provide novel 
insights into changes in the molecular composition and char-
acteristics of aged microplastics.

Layer-by-layer analysis of LIBS does not require any 
sample pretreatment with no limitation of water existence 
compared to FTIR analysis, despite the minor damaging 
property due to laser ablation (Sommer et al. 2022). There-
fore, both can be regarded as complementary spectral tech-
niques that can determine and verify the characteristics of 
plastic samples. Near-infrared spectroscopy is proven to 
have problems identifying opaque plastics, especially black 
plastics (Zeng et al. 2021). Given this, LIBS is capable to 
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identify and quantify black plastics after the initial screening 
using near-infrared spectroscopy (Liang et al. 2017; Zeng 
et al. 2021). Raman spectroscopy can provide a particu-
lar molecular “fingerprint” but is not good at identifying 
polymers with high fluorescence or scattering due to the 
presence of additives like organic and inorganic dyes and 
fillers. In addition, a hybrid pulsed laser-based LIBS-Raman 
system is constructed to obtain a comprehensive description 
of elemental, structural and molecular information, proving 
that the two methods complement each other perfectly (Sha-
meem et al. 2017; Zeng et al. 2021). Therefore, a combined 
system exploiting the complementarity of two spectral-based 
technologies is more beneficial than a system based on one 
or the other alone for a comprehensive detection and catego-
rization of various types of plastics.

Quantitative characterization of aged 
microplastics

Laboratory aging experiments provide a test basis for the 
quantitative study of aging plastics in environmental sam-
ples, while it is difficult to distinguish the aging degree of 
microplastics when counting the amount. Therefore, in this 
study, we reviewed some novel techniques to calculate the 
overall number of microplastics in laboratory and environ-
mental samples, including optical and electron microscopes, 
microscope spectrometers and mass spectrometry-based 
methods (Table 2). The size detection scope was compared 
except for mass spectrometry-based techniques, which are 
regardless of microplastics size and shape (Fig. 2). These 
techniques provide ways of visual and mass aspects to quan-
tify unaged and aged microplastics. The most regularly used 
units in water samples are microplastics per cubic meter 
(Primpke et al. 2020) and microplastics per liter (Rosso et al. 
2023; Yang et al. 2023b) according to the abundance per 
water volume as well as gram items per liter (Rosso et al. 
2023) according to mass per water volume. A significant 
number of studies were reported to use units such as micro-
plastics per kg dry weight in sediment samples (Thomp-
son et al. 2004; Filgueiras et al. 2019; Lin et al. 2021) and 
microplastics per cubic meter in airborne samples (Liu et al. 
2019b; Levermore et al. 2020; O'Brien et al. 2023).

Microscopy‑based methods

Optical and electron microscopy

An optical microscope is commonly used to visually count 
microplastics (Hanvey et al. 2017). Shi et al. (2023c) quan-
tified fiber numbers on the gridded filtration membrane, 
then manually scaled up based on the sample volume 
acquired before filtering to calculate the overall amount 

of microplastic fibers. However, visual counting just con-
siders the restricted view field and measurement frame. 
The number of microplastics could be drastically overesti-
mated or underestimated due to the neglect of the nanosize 
range of plastics in the environment samples and the pos-
sibility of treating non-plastic particles as plastics without 
identification.

The optical particle shape and size analyzer combines a 
unique integrated vacuum dispenser with an ultra-high-reso-
lution optical bench, which empowers it to measure particle 
size, shape, and concentration. Because microplastic fibers 
have a special shape (length-to-width ratio larger than 3), the 
analyzer can differentiate them from microplastic particles 
(Shi et al. 2023a). This method has a sufficient dispersion, 
high representativeness of test results, quick analysis speed, 
and broad applicability of particles with different shapes, 
which helps it overcome the shortcomings of existing image 
analyzers. But simultaneous identification is also indispen-
sable for multiple particle analysis.

Scanning electron microscope is the most widely used 
method to evaluate the length and size of microplastics and 
is also applied in the quantification procedure. Instead of 
accounting for the entire filter, previous research estimated 
an approximate count of microplastics by randomly select-
ing a portion of the membrane filter area, which caused a 
miscount of the sum of microplastics. De Falco et al. (2018) 
created a novel counting method by taking 21 electron 
micrographs along the two orthogonal diameters of the cir-
cular filter. The number of microplastics on the entire filter 
membrane surface is calculated according to the average 
number of microplastics per unit area, the rectangular area 
of each micrograph and the total area of the filter. Since the 
procedure is general, accuracy cannot be guaranteed due to 
biased estimations and human errors. A fast-random forests 
algorithm is used to identify the inhomogeneous load of 
filtered microplastics (Liu et al. 2024). The unique micro-
plastic aggregation forms highly varied patches on filtered 
substrates, which is governed by interfacial apportionment 
and redistribution of microdroplets due to surface tension 
changes. The aggregation mode can be influenced by the 
weathering state and ambient substances. Pattern-resolved 
calibration is suggested for traditional region-of-interest 
quantitative microplastic analyses, unless using microfluidic 
investigation (Liu et al. 2024).

Fluorescence microscope is an alternative to scanning 
electron microscope and a normal optical microscope. Stain-
ing dyes are well-established in the identification of micro-
plastics because they make it easier to separate microplastics 
from mineral and organic ingredients in samples by adding 
color or fluorescence agents. Compared to other dyes like 
Basic Blue 24, Crystal Violet, and Acridine Orange, Nile 
Red has a stronger affinity for many synthetic polymers, 
although some textile fibers also present weak even with no 
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fluorescence (Prata et al. 2019). The most common applica-
tion is Nile Red fluorescence tagging, combined with fluo-
rescence microscopy, based on morphology assessment and 
quantification based on ImageJ and statistical analysis (Kuk-
kola et al. 2023). Automated quantification has advanced 
gradually in recent years to enhance sample throughput and 
remove the operator-dependent subjective variance. Prata 
et al. (2019) applied Nile Red with the automated software 
“Microplastics Visual Analysis Tool” for the quantification 
of fluorescent microplastics. Different kind of plastics has 
different fluorescent responses under different wavelength. 
As the effectiveness of dying changes due to the polarity of 
the different polymer surfaces, it also makes a difference on 
aged plastics. For example, fluorescence can be observed 
in weathered high-density polyethylene (HDPE), polypro-
pylene (PP), expandable polystyrene and cellulose acetate 
stained with Nile Red at 254 nm but not both fragmentary 
and fibrous weathered polyethylene (PE). It is suggested that 
chemical digestion may be necessary to eliminate organic 
matter in complicated matrices when applying the “Micro-
plastics Visual Analysis Tool” on real river water and sedi-
ment samples (Prata et al. 2019).

Recently, advanced fluorescence tracking techniques 
have been developed. For example, Zhang et al. (2023b) 
constructed the microchannel, a polymethyl methacrylate 
(PMMA)-based microfluidic device, to facilitate the dis-
persion and transportation of Nile Red-stained micro-
plastic particles in the carrier fluid. The entire process of 
microplastics moving through the microchannel was cap-
tured and recorded on a fluorescence microscope. Finally, 
the microplastic particles were automatically counted and 
measured by the software using the camera data. A video 
containing 253 frames was created by pumping 700 μL of 
a polyvinyl alcohol (PVA) solution containing suspended 
microplastics via the microchannel. 221 microplastic par-
ticles were found and examined. It offers a way to realize 
high throughput and precision in particle counting and size 

determination, and minimal time cost without requiring 
the use of highly sophisticated instruments and chemical 
reagents (Zhang et al. 2023b). The method was employed 
successfully in the sample detection from river water, sedi-
ments, and fish gastrointestinal tract (Zhang et al. 2023a). 
Another opti-mechanical attachment on a smartphone-based 
fluorescence microscope is employed to measure the strained 
microplastics as small as 10 μm (Leonard et al. 2022). The 
algorithm-based smartphone quantification eliminates the 
need for laborious digestion procedures and tedious manual 
counting, allowing for the quick assessment of microplas-
tic concentration in environmental samples. High-content 
screening combines high-resolution imaging, high-through-
put detection, and automated quantification of microplastics 
(20–1000 μm) in small-volume liquid samples to test the 
released particles from contact lenses (Liu et al. 2023a). 
Molenaar et al. (2021) demonstrated that it was possible 
to measure particle diameters as small as 45 nm and esti-
mated the number concentrations as 2000 nanoplastics per 
liter using sensitive fluorescence video microscopy, com-
bined with Nile Red staining and single-particle tracking. 
Although recent studies have developed novel microscope 
techniques to automatically count microplastics with high 
accuracy and efficiency even in complicated environmen-
tal samples, the identification of types and aging status of 
microplastics requires the complement of other subsequent 
investigative methods.

Microscope spectrometers

FTIR spectroscopy and Raman spectroscopy coupled with 
imaging analysis also called μ-FTIR imaging and μ-Raman 
imaging have gained extensive popularity in the characteri-
zation of microplastics (Cabernard et al. 2018). This method 
provides microscopic counting and chemical structural anal-
ysis thereby realizing simultaneous identification and quan-
tification. Pretreatment including digestion is indispensable 
to remove contaminants on the microplastic surface. Rosso 
et al. (2023) quantified tire wear particles in stormwater run-
off via microscopic counts using μ-FTIR after ruling out 
fragments identified as cadmium, zinc, and barium sulfide 
blend, with the highest abundance of 358,915 ± 831 particles 
per liter or 40 ± 9 mg particles per liter. Similarly, μ-FTIR is 
developed for the identification and quantification of micro-
plastics in different water samples (such as sea, fresh, and 
wastewater) with the highest quantity of 4203–42,000 micro-
plastics per liter in wastewater, followed by 153–19,836 
microplastics per liter in surface water or groundwater and 
nearly 420 microplastics per liter in seawater (Yang et al. 
2023a, 2023b). According to Rosso et al. (2023), μ-FTIR 
is a popular technique for visualizing various microplastics 
with a limit of detection size down to 5 μm.

Fig. 2  Size range of methods for microplastic detection
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Raman spectral imaging offers less interference from 
water and a more distinct fingerprint spectrum with a larger 
spectral coverage than FTIR, in addition to having a bet-
ter lateral resolution down to 1 μm even 100 nm (Sobhani 
et al. 2019, 2020). After microplastics identification through 
agglomerative hierarchical cluster analysis, Gaussian curve 
function, and Pearson’s correlation coefficient analysis, 
Raman spectral imaging automatically detected the total 
concentration of airborne microplastics larger than 4.7 μm 
up to 2502 microplastics per cubic meter in 24 h  PM10 urban 
road-side sample in London, United Kingdom (Levermore 
et al. 2020). Although Raman spectral imaging enables the 
detection of smaller microplastics and even nanoplastics 
because of the smaller diameter of the laser beam, it is more 
time-consuming compared to μ-FTIR, even using image 
analysis software to identify and count particles automati-
cally (Araujo et al. 2018). It takes 147 h per 100 L water vol-
ume to investigate microplastic particles of 1–10 μm using 
automated single-particle exploration coupled to μ-Raman 
(Cabernard et al. 2018). Schymanski et al. (2018) applied 
Single Particle Explorer to count and analyze microplastics 
released from returnable plastic bottles, and took up to 18 h 
just scan one filter with an area of 4.4 mm × 4.4 mm. There-
fore, it is necessary to optimize spectroscopic techniques to 
accelerate the scanning speed for small-sized microplastics 
and improve identification accuracy.

Advanced microscopic techniques

More advanced methods are developed to analyze microplas-
tics. The hyperspectral imaging principle states that every 
physical item emits radiation at various electromagnetic 
spectrum wavelengths because of their chemical composi-
tion (Huang et al. 2021). By capturing an image across a 
range of wavelengths, hyperspectral imaging integrates spec-
troscopy with imaging. Each pixel in the image represents a 
spectral profile that corresponds to a specific spatial region 
(Huang et al. 2021). Primpke et al. (2020) proposed hyper-
spectral imaging combined with high brilliance infrared 
sources based on broadly tunable external cavity quantum 
cascade lasers microscope for rapid identification and quan-
tification. The novel method displays a higher sensitivity 
and accuracy toward small-scale microplastics than μ-FTIR, 
resulting in five times more microplastics being identified 
and counted in the treated wastewater, deep-sea sediments, 
and snow samples. It also saves considerable time, over 10 
times shorter compared with μ-FTIR (Primpke et al. 2020). 
Recently, Su et al. (2022) initiatively used optical-photo-
thermal infrared micro-spectroscopy to trace the formation 
of microplastics and nanoplastics released from the steamed 
teats and realized to quantitatively estimate both the intake 
of elastomer-derived particles during bottle-feeding and the 
emission of those particles during the steam-disinfecting 

process to the environment. Optical-photothermal infrared 
has the potential to analyze the submicron-sized environ-
mental microplastics (0.5–5.0 μm) mixed with a significant 
amount of biological matrix. It is essential to develop auto-
mated analysis to maximize the benefit of the instrument 
which is not affected by fluorescence (Dong et al. 2022).

Laser direct infrared spectroscopy has been recently 
applied to qualitatively and quantitatively analyze micro-
plastics in bottled drinking water (Nizamali et al. 2023), air 
deposition samples (Nizamali et al. 2023), Mediterranean 
marine samples (including seawater, sediment, fish stomachs 
and mussels) (Ourgaud et al. 2022), beach and stormwater 
drain sediments (Ghanadi et al. 2023), bronchoalveolar lav-
age fluid (Qiu et al. 2023), human testis and semen (Zhao 
et al. 2023), placenta (Zhu et al. 2023) and endometrium 
samples (Sun et al. 2024). The simplicity and automation of 
laser direct infrared spectroscopy imaging make it possible 
to get the number and mass concentration, polymer type, and 
size (e.g., length, width, area, and volume) of microplastics 
effectively and simultaneously (Nizamali et al. 2023).

Stimulated Raman scattering microscopy has potential 
for detecting and three-dimension imaging of microplastics 
and nanoplastics at single-particle level (Ao et al. 2023). The 
notably increased imaging speed of stimulated Raman scat-
tering microscopy results in efficient particle imaging with a 
high throughput, even detecting nanoplastics below 100 nm. 
A data-driven spectral matching algorithm was utilized to 
assist stimulated Raman scattering microscopy to estimate 
240,000 ± 130,000 particles per liter of bottled water with 
nanoplastics accounting for 90% (Qian et al. 2024). This 
data-driven hyperspectral stimulated Raman scattering 
imaging platform inspires further study on single-particle 
imaging with nanoplastics sensitivity and plastic specificity 
in the environment.

In general, advanced infrared and Raman spectroscopy 
coupled with imaging techniques played a powerful role in 
developing microplastic quantification methods. Automated 
analysis enables enhanced efficiency, rapid processing, and 
advanced recognition capabilities of diverse microplastics 
and even nanoplastics. The subsequent enrichment of the 
spectra library is the goal of technological development.

Mass spectrometry‑based methods

While microscopy-based methods focus more on the num-
ber of microplastics, it is simpler to evaluate the proper-
ties of tiny plastic particles through mass-based concentra-
tions. Thermal-based mass spectrometry applied for the 
quantification of different kinds of microplastics is based 
on characteristic pyrolysis products of polymers and their 
suggestive fragment ions. Different kinds of liquid chroma-
tography–mass spectrometry rely on the distribution of ions 
based on their mass-to-charge ratios, providing information 
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about the molecular weights of the depolymerized micro-
plastic components. These methods present high throughput, 
precise selectivity, exceptional sensitivity, and quantitative 
accuracy of microplastic analysis.

Pyr-GC/MS is paid particularly popular attention both on 
microplastic identification and quantification although it is 
destructive (Okoffo et al. 2023). The key benefits of Pyr-GC/
MS include the absence of sample preparation processes, 
extremely low limit of detection and limit of quantification 
(down to ng level), and the use of a completely automated 
system (Velimirovic et al. 2021). The pyrograms of different 
polymers differ primarily in terms of respective products, 
signal intensity, and the associated numbers. A calibration 
curve is necessary to perform a correct quantification in 
environmental samples. The pyrolytic mechanism is distinc-
tive regarding random chain scission, end chain scission, 
chain stripping, and cross-linking. The thermochemolytic 
pyrolysis with tetramethylammonium hydroxide plays a pos-
itive role in simultaneously detecting non-polyolefin plastics 
on a trace level such as polyethylene terephthalate (PET), 
polybutylene terephthalate (PBT), polycarbonate (PC), 
polymethyl methacrylate (PMMA), and polyamide 6 (PA 
6), changing and enhancing the signals through the process 
of online esterification, transesterification, and methylation 
(Fischer and Scholz-Böttcher 2017).

Quantification studies have been performed to analyze 
microplastics in various real environmental matrices, includ-
ing drinking water, sediment, wastewater, atmospheric 
aerosol, and table salts (Fischer and Scholz-Böttcher 2019; 
Gomiero et al. 2019; Kirstein et al. 2021; Li et al. 2022b; 
Roscher et al. 2022; Gregoris et al. 2023; Hernandez et al. 
2023; Okoffo et al. 2023). Li et al. (2023) determined a total 
mass concentration of solid-embedded microplastics at lev-
els of 4.6–51.4 μg per gram in six soil, sediment, and sludge 
samples through Pyr-GC/MS after a series of extraction pro-
cedures, even successfully quantified different microplastics 
in the environmental solid samples with high natural organic 
matter contents. Furthermore, it was discovered that based 
on the result from Pyr-GC/MS, the content of microplas-
tics was correlated with that of the plastic waste and the 
landfill age with 7.62 kg microplastics per ton mineralized 
refuse in the old landfill area and 5.49 kg per ton mineral-
ized refuse in the young one, illustrating the generation of 
secondary microplastics (Lou et al. 2023). An innovative 
approach was established for the precise quantification of 
polyethylene (PE) microplastics in exact atmospheric  PM2.5 
utilizing Pyr-GC/MS, and notably, it does not necessitate 
sample pretreatment (Luo et al. 2023). The method dem-
onstrated satisfactory recoveries (97–110%), exceptional 
sensitivity (limit of detection of 1 pg), and reliable preci-
sions (relative standard deviation of 3–13%). Polylactic acid 
(PLA) and polybutylene adipate terephthalate (PBAT) were 
identified in samples of wastewater, biosolids, and sediment 

using Pyr-GC/MS, with concentrations ranging from 0.07 to 
0.18 mg per gram (Okoffo et al. 2022).

Recently, the quantification of nanoplastics through Pyr-
GC/MS has achieved an impressive breakthrough (Xu et al. 
2023; Okoffo and Thomas 2024). Pyr-GC MS detected 
0.283–0.793 μg nanoplastics per liter in surface water and 
0.021–0.203 μg per liter in groundwater including polyvinyl 
chloride (PVC), polymethyl methacrylate (PMMA), poly-
propylene (PP), polystyrene (PS), polyethylene (PE), and 
polyethylene terephthalate (PET) after undergoing ultrafil-
tration (100 kDa, approximately 10 nm) and  H2O2 diges-
tion pretreatment (Xu et al. 2022). Sheng et al. (2023) sug-
gested a straightforward and reliable approach to estimate 
the concentration of polystyrene (PS) nanoplastics in the 
atmosphere. The results showed remarkable reproducibility 
and excellent sensitivity for atmospheric polystyrene (PS) 
nanoplastics, with a detection limit of 15 pg per cubic meter 
both indoors and outdoors.

TED-GC/MS is also an alternative technique to assess 
larger sample quantities within one measurement (Dümichen 
et al. 2017; Lee et al. 2023a). During the investigation of 
three different freshwater systems (lake sediment, fluvial 
suspended matter, and wastewater treatment plant activated 
sludge) using TED-GC/MS, eight types of polymers were 
analyzed (Kittner et al. 2023). These included both non-
biodegradable and biodegradable types, such as polyethylene 
(PE), polyethylene terephthalate (PET), polypropylene (PP), 
polymethyl methacrylate (PMMA), polystyrene (PS), sty-
rene–butadiene rubber, and two popular biodegradable poly-
mers, namely, polybutylene adipate terephthalate (PBAT), 
and polylactic acid (PLA). It is worth noting that although 
complex matrix components may have an impact on detec-
tion, increased quantities of organic matter in the matrix 
do not necessarily affect lower limit of detection values of 
non-biodegradable microplastics when using TED-GC/MS. 
However, the interactions of complex chemicals become 
stronger during the decomposition of biodegradable poly-
mers, resulting in increased limit of detection value (Kittner 
et al. 2023).

Alkali-assisted thermal hydrolysis combined with high-
performance liquid chromatography–tandem mass spectrom-
etry (HPLC–MS/MS) was reported for the direct quantifica-
tion of polycarbonate (PC) and polyethylene terephthalate 
(PET) microplastics in environmentally relevant samples 
(e.g., sea turtles, sewage sludge, bivalve, indoor dust, sea 
salts, and pet food and feces (Wang et al. 2017; Zhang et al. 
2019a; Zhang et al. 2019b; Di Renzo et al. 2021)) by esti-
mating the concentrations of the depolymerized building 
block compounds, such as bisphenol A and p-phthalic acid. 
Polyamide 6 (PA 6) and polyamide 66 (PA 66) microplastics 
can also be depolymerized in an acid-assisted heating system 
to 6-aminocaproic acid and adipic acid, respectively. That 
can be detected by HPLC–MS/MS with the recovery ranging 
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from 90.8 to 98.8% of polyamide 6 (PA 6) and polyamide 
66 (PA 66) microplastics in the environmental samples, i.e., 
indoor dust, sludge, sediment, fish gut and gill (Peng et al. 
2020). Lin et al. (2020) proposed one method to quantify 
polystyrene (PS) microplastics and nanoplastics using ther-
mal fragmentation and matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI-TOF 
MS), and the fingerprint peaks on m/z 315.3 took effect on 
the quantification yielding a detection limit of 25 ng in 1 μL 
analytical sample. Moreover, unaged and even aged micro-
plastics after weathering can be effectively and accurately 
analyzed by MALDI-TOF MS (Wu et al. 2020a). A strong 
correlation was established between normalized signal inten-
sity and ln[polymer concentration] with a coefficient of 0.96 
for low-molecular-weight polymers and 0.98 for high-molec-
ular-weight polymers. The quantities of aged polystyrene 
(PS) and polyethylene terephthalate (PET) microplastics 
from river sediment were measured at 8.56 ± 0.04 mg per 
kilogram and 28.71 ± 0.20 mg per kilogram, respectively. 
Schirinzi et al. (2019) compared the potential for microplas-
tics quantification of different mass spectrometry in natural 
waters, including MALDI-TOF MS, liquid chromatography 
coupled to high-resolution mass spectrometry (LC-HRMS), 
and the ambient ionization approaches as desorption elec-
trospray ionization and direct analysis real-time. Among 
these methods, LC-HRMS equipped with an atmospheric 
pressure photoionization source in negative mode presented 
the highest sensitivity and robustness. An instrumental limit 
of detection of 20 pg and method limits of detection and 
quantification of roughly 30 pg per liter and 100 pg per liter, 
respectively, were achieved for the best analytical methodol-
ogy. Additionally, samples from rivers and maritime coasts 
had recoveries of 60 and 70%, respectively (Schirinzi et al. 
2019).

Microscopy-based and mass spectrometry-based methods 
provide different counting ways by vision and mass. Reliable 
analysis facilitates the research progress about aged micro-
plastics in real environmental samples. The estimation for 
the prevalence of aged microplastics motivates the predic-
tion to the amount of plastic carbon under increased plastic 
load. The limit of detection of mass spectrometry reaches 
picogram levels. The exceptional sensitivity and reliable pre-
cision of these approaches instill confidence in the ability 
to analyze microplastics and nanoplastics within complex 
environmental matrices.

Chemometric analysis for qualification 
and quantification of aged microplastics

Chemometric analysis uses certain algorithms to form both 
qualitative and quantitative models targeting a series of data 
sets (Chapman et al. 2020). Chemometrics techniques can 

analyze both spectra and spectral imaging, including Raman 
spectral imaging, μ-FTIR, and hyperspectral imaging, cru-
cial for microplastic characterization and identification 
(Fig. 3). Meanwhile, it also compensates for the limitation 
of library search in specific circumstances, such as heavily 
aged and contaminated microplastics (Liu et al. 2023b).

Recently, machine learning has developed to combine 
with Raman spectroscopy and Raman spectral imaging using 
unsupervised pattern recognition like principal components 
analysis (Levermore et al. 2020) and hierarchical cluster 
analysis, and supervised classification algorithms, like 
Gaussian curve function (Levermore et al. 2020), Pearson's 
correlation coefficient analysis (Levermore et al. 2020), mul-
tivariate curve resolution-alternating least squares (MCR-
ALS) (Tian et al. 2022), independent component analysis 
(Shi et al. 2023b), support vector machine (Fischer and 
Scholz-Böttcher 2017), linear partial least squares regression 
by intervals and competitive adaptive weighted sampling (da 
Silva et al. 2021), and random forest algorithm (Xie et al. 
2023b). Raman spectroscopy coupled with a random forest 
model accomplished polystyrene (PS) and polyvinyl chlo-
ride (PVC) nanoplastic detection in tap water spiked samples 
and rainwater with an identification accuracy of over 97% 
(Xie et al. 2023b). Moreover, in collaboration with MCR-
ALS, Raman spectral imaging has been effectively utilized 
to identify microplastics in fish fecal samples and sand sam-
ples for in situ microplastics identification directly without 
pretreatment (Tian et al. 2022). MCR-ALS overcomes draw-
backs in traditional Raman spectral analysis due to digestion 
and absorption in complicated biological or environmental 
samples (Tian et al. 2022). Photo-oxidation induced spec-
tral alterations of microplastics did not significantly affect 
the source-apportionment performance of recognition of 
different microplastics types with a specificity of 98.1%, 
sensitivity of 89.5%, and accuracy of 96.8% when using 
the support vector machine model (Jin et al. 2022). It is 
worth noting that a convolutional neural network-based deep 
learning model achieved higher accuracy (99.33%) in auto-
matically classifying mixtures of microplastics and natural 
organic matter according to their Raman spectra, compared 
to the conventional Raman spectral library software (6.5%) 
(Lee et al. 2023b). The interpretation of deep learning model 
improved classification accuracy, even for spectra with simi-
lar spectral shapes.

μ-FTIR is also a promising method to attach to chemo-
metric analysis. Random decision forests for the analysis of 
large μ-FTIR data sets of environmental samples can dis-
criminate between over 20 different polymer types, and are 
suitable for complicated matrices, such as water, sediment, 
soil, compost, and sewage sludge (Hufnagl et al. 2022). A 
robust method known as “microplastics Identification” was 
applied to identify aged and contaminated microplastics 
without any cleaning operations (Renner et al. 2017). The 
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concept is based on an automated curve-fitting procedure to 
determine a distinctive characteristic fingerprint consisting 
of all relevant vibrational band area ratios. Using FTIR-ATR 
and the “microplastics Identification” method, a total of 300 
naturally aged plastic particles were identified successfully 
with an accuracy of 96% (Renner et al. 2017). Renner et al. 
(2019) extended the application of the “microplastics Iden-
tification” method on μ-FTIR data of microplastics in the 
presence of interfering matrices and a beach sample, with 
emphasis on overlapped and broad vibrational bands. Vidal 
and Pasquini (2021) have introduced a high-throughput 
screening method based on near-infrared hyperspectral 
imaging and multivariate supervised soft independent mod-
eling of class analogy classification models. The method is 
utilized to detect and forecast constituent polymers of pri-
mary and secondary microplastics in beach sand automati-
cally with simple sample preparation. However, it also has 
some drawbacks including size detection limits and under-
estimating black or dark particles (Vidal and Pasquini 2021).

Therefore, automated aged microplastic detection of 
μ-FTIR and Raman spectral imaging accompanied by che-
mometric analysis has demonstrated enormous prospects 
of automatic quantification and classification methods to 
identify microplastics in complex environmental matrixes. 

However, to effectively address the uncertainty of microplas-
tics in the environment, it is necessary to continue develop-
ing more advanced machine learning algorithms. Aggrega-
tion of different methods and chemometric analysis offers an 
effective approach to categorize and consolidate the prop-
erties of microplastics in complicated environment media.

Conclusion

Different aging processes reshape microplastics, altering 
their physiochemical properties including surface morphol-
ogy, chain structure, and thermal and mechanical character-
istics. This review primarily summarizes advanced quali-
tative and quantitative techniques for aged microplastics 
found in the environment. Precise identification and accurate 
quantification of aged microplastics benefit us in assessing 
their impacts and understanding their environmental behav-
iors. Though there is no ideal identification system for aged 
microplastics now, the development of technologies and 
the application of machine learning are gradually showing 
hope to break through technical barriers. Currently, nano-
plastic quantification is not only limited to single standard 
materials. Aged nanoplastic detection in the environment 

Fig. 3  Chemometric analysis of aged microplastics qualification and 
quantification coupled with spectral imaging techniques. The size 
order of different types of plastics is determined by the search results 
of respective “microplastics in the environment” in the Web of Sci-
ence database. HDPE, high-density polyethylene; LDPE, low-density 

polyethylene; PA, polyamide; PC, polycarbonate; PET, polyethyl-
ene terephthalate; PLA, polylactic acid; PMMA, polymethyl meth-
acrylate; PP, polypropylene; PS, polystyrene; PU, polyurethane; PVC, 
polyvinyl chloride
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is more tricky owing to its tiny size and difficult separa-
tion. Thus, further work is required to establish the viability 
of aged nanoplastic techniques, not only limited polymer 
types. An increasingly serious risk to the environment and 
human health regarding aged microplastics reminds us to 
focus on their transport, transformation, and combined effect 
with other pollutants. It is worth noting that plastisphere, 
aged microplastics and inorganic and organic pollutants are 
integrated with complex interaction, which increases the 
detection difficulties of plastic sources. The persistence and 
irreversibility of aged microplastics worldwide with delayed 
toxicological effects make the serious plastic issues focus 
on the need for specific removal techniques progressively.
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