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Abstract
Plastic pollution is becoming a major health issue due to the recent discovery of microplastics and nanoplastics in living 
organisms and the environment, calling for advanced technologies to remove plastic waste. Here we review enzymes that 
degrade plastics with focus on plastic properties, protein engineering and polymers such as poly(ethylene terephthalate), 
poly(butylene adipate-co-terephthalate), poly(lactic acid), polyamide and polyurethane. The mechanism of action of natural 
and engineered enzymes has been probed by experimental and computation approaches. The performance of polyester-
degrading enzymes has been improved via directed evolution, structure-guided rational design and machine learning-aided 
strategies. The improved enzymes display higher stability at elevated temperatures, and tailored substrate-binding sites.
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Abbreviations
Da	� Dalton
DS bond	� Disulfide bond
EC number	� Enzyme commission number
GFP	� Green fluorescence protein
LCC	� Leaf compost cutinase
Mw	� Molecular weight
Mn	� Number-averaged molecular mass
MHET	� Mono(2-hydroxyethyl) terephthalate
PBAT	� Poly(butylene adipate terephthalate)
PE	� Polyethylene

PET	� Polyethylene terephthalate
PP	� Polypropylene
PS	� Polystyrene
PVC	� Poly(vinyl) chloride
PU	� Polyurethane
Tg	� Glass transition temperature
Tm	� Melting temperature
UV	� Ultraviolet
Xc	� Degree of crystallinity

Introduction

Plastic materials are utilized almost everywhere in our daily 
lives, which have also brought tremendous amounts of waste 
that approaches 400 million tons each year (Lampitt et al. 
2023). Currently, less than 20% of plastic waste is recycled, 
and the rest of it is disposed of in landfills or incinerated. 
Plastics are extremely recalcitrant to the natural processes; 
thus, the disposed postconsumer plastic wastes could exist 
in the environment for centuries without being decom-
posed significantly. The massive production of plastics also 
consumes non-renewable petroleum resources given that 
most plastics are produced using fossil-derived feedstocks. 
Although biobased plastics from renewable feedstocks and 
biodegradable plastics have been produced, they comprise 
only 1% of all plastics produced annually. Some types of 
biobased plastics are not biodegradable and may still show 
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negative effects on the environment (Ali et al. 2023). There-
fore, the need for incineration or recycling will remain for 
many years.

Recycling postconsumer plastics to recover the raw mate-
rials for resynthesizing new products is the ideal route in 
terms of sustainable utilization of plastics (Luo et al. 2023). 
Mechanical recycling has been implemented, but physical 
processes could devastate the properties of polymers and 
lead to downcycling. For instance, recycling poly(ethylene 
terephthalate) (PET) through mechanical grinding and melt-
ing reduces ductility from 310 to 218% after one cycle and to 
2.9% after three cycles (Damayanti 2021; Dhaka et al. 2022). 
Chemical processes enable the bond cleavage to release the 
constitutive feedstocks for subsequent applications without 
compromising the material properties. However, chemical 
processes usually involve extreme reaction conditions and 
hazardous reagents (Barnard et al. 2021; Christopher et al. 
2022; Thiounn and Smith 2020). Enzymes are renewable 
biocatalysts that catalyze specific reactions under mild con-
ditions such as temperature, pH and pressure. Therefore, 
enzyme-mediated decomposition brings a lower environ-
mental impact than chemical approaches, offering an eco-
friendly approach to managing plastic waste.

The plastic decomposition efficacy of naturally derived 
enzymes, if any, is very low because plastics were designed 
to withstand biodegradation processes. Therefore, the plas-
tic decomposition rate of candidate enzymes needs to be 
improved via protein engineering. In recent years, inspiring 
results have been produced in searching, characterizing and 
engineering enzymes that can decompose PET with state-
of-the-art technologies. It has also been demonstrated that 
the terephthalic acid recovered from enzyme-mediated PET 
decomposition can produce virgin PET that exhibits fea-
tures similar to those synthesized using petrochemical tere-
phthalic acid (Lu et al. 2022; Tournier et al. 2020). Random 
mutagenesis as well as rational design with specific purposes 
such as optimizing substrate-binding and increasing enzyme 
thermostability have been exploited, and intensive struc-
tural and mechanistic investigations have been conducted to 
understand how these amino acid residues contribute to the 
enhanced performance.

This review provides a comprehensive summary of recent 
developments in the structural and mechanistic analysis of 
naturally occurring or artificially engineered enzymes that 
have been shown to possess the potential for decomposing 
plastics. The focus is primarily on the enzymatic degra-
dation and depolymerization of the most commonly used 
commodity polymers, specifically polyesters, while also 
including descriptions of enzymes that exhibit significant 
activity toward other major polymers such as polyamides, 
polyurethanes and polyolefins. As the unique properties of 
the substrate can significantly affect the enzyme reaction, 
this review will also briefly introduce the physiochemical 

properties of the polymers. Additionally, the technologies 
used to identify and engineer plastic-degrading enzymes will 
be described, along with a discussion of the obstacles and 
limitations involved in the technical and economic viability 
of current strategies.

Physiochemical properties of plastics

The chemical composition of plastics is the primary deter-
minant of their biodegradability. Specifically, polyolefins 
comprising carbon–carbon bond-linked polymers, includ-
ing the most produced polyethylene (PE), polystyrene (PS) 
and polypropylene (PP), are recalcitrant to biodegradation. 
In contrast, plastics composed of heteroatom-based back-
bones, mainly C–O and C–N, are susceptible to enzyme 
action (Fig. 1). The polymers’ chemical composition also 
contributes to the physical properties of the plastics. For 
instance, the amide moieties distributed along polymers 
in polyamides form inter-polymer hydrogen bond interac-
tions to assist the regular alignment of this polymer and thus 
increasing its strength.

Polymers can align in randomly organized amorphous or 
well-organized crystalline configurations (Fig. 2). Crystal-
line regions that are stiff and rigid can augment the strength 
of the materials (Nilsson et al. 2012). Based on the crys-
tallinity, plastics can be divided into amorphous and sem-
icrystalline. The former, including polystyrene (PS) and 
poly(vinyl) chloride (PVC), comprises polymers that only 
contain amorphous regions. The latter, exemplified by PET 
and polyethylene (PE), contains polymers arranged in amor-
phous and crystalline configurations. The degree of crystal-
linity (Xc) of semicrystalline plastics that corresponds to the 
relative content of the crystalline part is closely related to 
their resistance to enzyme reaction (Fig. 2).

Some physical properties of plastics limit the polymer 
accessibility and mobility and pose challenges for enzyme 
reactions. First, plastics are insoluble and densely packed 
materials, such that the enzyme action could be limited 
to the plastic surface without infiltrating into the interior 
of the polymers. Therefore, fragmentation or grinding of 
plastics to increase the enzyme-plastic contacts might be 
needed to accelerate the enzymatic degradation efficiency. 
Second, the polymers’ high molecular weight (Mw) low-
ers the relative surface area and slows enzyme-mediated 
reaction (Singh and Sharma 2008). Different from ordi-
nary substances, the Mw of a given polymer is a range 
(e.g., 10,000–500,000 Da) as the polymer chain elonga-
tion is ruled by random events that may lead to various 
chain lengths. Therefore, the molecular weight distribu-
tion and number-averaged molecular mass (Mn) are also 
needed to be measured. Polydispersity, which is defined 
as the weighted average divided by the number of average 
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Fig. 1   Chemical composition of major synthetic polymers, including carbon–carbon-based and heteroatom polymers
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molecular weight (Mw/Mn), provides an idea of the width 
of the molecular weight distribution. These parameters 
are important in describing the status of polymer integ-
rity, especially when incomplete decomposition occurs. 
Third, polymers in the crystalline region are more stable 
than those in the amorphous part. Therefore, plastics that 
have higher Xc are more resistant to enzymatic degradation 
compared to those with lower Xc (Strobl 1997) (Fig. 2). 
Fourth, the polymer softening is represented by its glass 
transition temperature (Tg), where the amorphous regions 
in the materials are transformed from glassy to rubbery 
state (Fig. 2). Polymer chains are kinetically arrested and 
exhibit higher strengths at temperatures below Tg. There-
fore, a degradation reaction conducted at a temperature 
near or higher than Tg of the polymers is considered advan-
tageous. For instance, Tg of PET is around 70 °C (i.e., 
75–80 °C in air and 65–70 °C in water); thus, thermosta-
ble or thermophilic enzymes should exhibit a higher PET 
decomposition rate (Alves et al. 2002; Müller et al. 2005). 
Notably, polymers in amorphous regions can transition to 
rigid fractions and even recrystallize at elevated tempera-
tures, a process called “physical aging” (Zhao et al. 2002). 

Taking PET as an example, material Xc increased from 
14.6 to 24.7% and 37.5% in 9 h at 72 °C and at 75 °C in 
6 h, respectively (Tournier et al. 2020). Such an increase 
in Xc would complicate the enzyme-catalyzed depolymeri-
zation. Therefore, enzyme reaction temperature should be 
chosen cautiously, and monitoring the Xc alteration during 
reaction is recommended.

Polymer materials could differ considerably in terms 
of crystallinity, thickness, molecular mass and many other 
physical parameters, which make a direct comparison of data 
generated in different studies difficult. Therefore, benchmark 
substrates should be used wherever possible. Otherwise, 
explicit descriptions of substrate properties should be pro-
vided. Another concern is various additives (e.g., stabiliz-
ers, antioxidants and flame retardants), fillers (e.g., organic, 
mineral and glass fiber) and pigments that can be blended 
into the polymers to strengthen the plastic or optimize the 
manufacturing processes. It has been shown that the pig-
ments of colored PET do not influence the enzyme reac-
tion and can be separated from the PET hydrolytic products 
(Lu et al. 2022), while the effects of other additives on the 
enzyme activity remain unexplored.

Fig. 2   Physical properties of selected plastics. The temperature-
dependent polymer motility of semicrystalline plastics is displayed 
in the upper part. The random curves and aligned columns represent 
polymers in crystalline and amorphous regions, respectively. The 
blue and red curves represent amorphous polymer chains in low and 

high motility. Plastics are resting (glassy state) under Tg, partially 
mobile near Tg and completely resolved near Tm. The Tg and Tm of 
six major types of plastics are listed in the table. PE, polyethylene; 
PS, polystyrene; PP, polypropylene; PVC, poly(vinyl chloride); PET, 
poly(ethylene terephthalate); PU, polyurethane
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Heteroatomic polymers

Poly(ethylene terephthalate)

PET represents the most abundant polyester, constituting 
nearly 18% of the global polymer production. As of 2021, 
its annual production volume reached 400 million tons 
(Markit 2021). PET has been extensively studied for its 
potential to be decomposed by enzyme-mediated reaction, 
largely owing to its backbone composition, which consists 
of terephthalic acid and ethylene glycol linked by ester 
bonds (Koshti et al. 2018; Zimmermann 2020). PET is 
theoretically amenable to the action of ester bond hydro-
lytic enzymes named esterases. As PET has Tg of around 
70 °C, thermostable enzymes that can operate near this 

temperature have been considered to exhibit higher activ-
ity. Thus, several early research studies focused on search-
ing for thermophilic enzymes for PET decomposition.

Esterases, including lipases (EC 3.1.1.3), carboxylester-
ases (EC 3.1.1.1) and cutinases (EC 3.1.1.74), have been 
reported to exhibit PET hydrolytic activity (Wei and Zim-
mermann 2017a, b). As the same catalytic mechanism is 
employed (Fig. 3), the PET hydrolytic efficacy of these ester-
ases is determined by the conformation of their substrate-
binding pocket. Lipases that catalyze the hydrolysis of long-
chain triglycerides exhibit limited PET hydrolytic activity 
(Marten et al. 2005; Müller et al. 2005). This is mainly 
attributed to the lid structure that covers the active site and 
prevents enzymes from directly accessing the macromolecu-
lar substrates (Brzozowski et al. 2000). The active center of 
the other two types of esterases is exposed to the bulk solvent 

Fig. 3   Catalytic mechanism of serine hydrolases. The catalytic reac-
tion is catalyzed by serine hydrolases that harbor a catalytic triad 
comprising Ser-His-Asp. The substrate is colored in green and the 

oxyanion hole comprising the main chain amino group of two amino 
acids is noted by red dashed curves
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owing to the lack of a lid structure. Carboxylesterases form 
a narrow substrate-binding pocket and show higher activity 
on short-chain acyl esters (Biundo et al. 2016; Ribitsch et al. 
2011), whereas cutinases from bacteria and fungi responsi-
ble for the degradation of a plant polyester known as cutin 
display activity toward long-chain substrates (Herrero Acero 
et al. 2011; Müller et al. 2005; Ronkvist et al. 2009). Based 
on existing knowledge, the most effective PET-degrading 
enzymes are cutinases- or cutinase-like enzymes (Chen et al. 
2020; Wei and Zimmermann 2017b). The degree of PET 
decomposition can be evaluated by measuring the weight 
loss of PET substrate, observing the polymer surface via 

scanning electron microscope and measuring the soluble 
hydrolytic products that mainly include terephthalic acid, 
mono(2-hydroxyethyl) terephthalate (MHET) and bis(2-
hydroxyethyl terephthalate).

Cutinases are a type of serine hydrolases that employ a 
catalytic triad composed of a nucleophile (Ser), a base (His) 
and a deprotonated acid (Asp) to exert the hydrolytic reac-
tion (Fig. 3). Cutinases adopt the canonical α/β-hydrolase 
fold, which contains a central β-sheet that comprises nine 
β-strands and flanked by three helices on either side (Fig. 4a, 
b). The catalytic triad and oxyanion hole are situated on 
the opposite wall of the substrate-binding cleft formed on 

Fig. 4   The overall structure- 
and substrate-binding site of 
PET decomposing cutinases. 
The structures of representative 
a type I and b type II cutinases 
are illustrated. a. The overall 
structure of LCC (left, PDB 
ID, 4EB0) and the substrate-
enzyme interaction network in 
the complex structure of LCC-
ICCG and MHET (right, PDB 
ID, 7VVE). The β-strands are 
labeled numerically. Disulfide 
bonds (DS) and residues that 
constitute the catalytic triad and 
oxyanion hole are indicated. 
Dashed lines linking MHET 
and residues indicate a distance 
less than 3.5 Å. b. The overall 
structure of IsPETase (left, PDB 
ID, 5XG0) and its interaction 
network of MHET (PDB ID, 
7XTW). Dashed lines measure 
distance as described in (a). The 
catalytic Ser in both complex 
structures was mutated to Ala. 
The locations of + 1 and + 2 sub-
sites are displayed on the right. 
c. Three various conformations 
of W185 observed in IsPETase 
(PDB ID, 5XG0) are shown in 
the left panel. Right panel: The 
MHET complexes of IsPETase 
(cyan; PDB ID, 7XTW) and 
LCC-ICCG (orange; PDB ID, 
7VVE) are superimposed. 
The residues that comprise 
catalytic triad, oxyanion hole 
and substrate-binding pocket 
are indicated by line models and 
MHETs are shown in sticks. 
PET, poly(ethylene terephtha-
late); MHET, mono(2-hydrox-
yethyl) terephthalate. LCC, leaf 
compost cutinase; LCC-ICCG, 
a thermostable variant of LCC 
that harbors F233I, D238C, 
S238C and Y127G alterations
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the protein surface. The substrate binds with its carbonyl 
carbon (C) pointing toward the Ser –OH and the carbonyl 
oxygen (O) stabilized by the oxyanion hole comprising two 
backbone –NH groups. The Ser residue that is deprotonated 
by His serves as a nucleophile to attack the carbonyl carbon 
(C) of the substrate to afford an acyl-enzyme intermediate. 
Then, the R2 group is removed from the polymer in an alco-
hol form due to an elimination reaction. The acyl-enzyme 
intermediate is then attacked by a water molecule (H2O) 
to afford the acid form of R1, which regenerates the active 
center to the resting state.

While the PET hydrolytic activity of some fungal cuti-
nases has been documented (Ribitsch et al. 2012a; Ronkvist 
et al. 2009), current research mainly focuses on bacterial 
cutinases. In 2016, a cutinase-like enzyme termed IsPETase 
was identified in Ideonella sakaiensis, a PET-assimilating 
bacterium isolated from a natural microbial community col-
lected in a PET recycling factory that can grow on and use 
PET (1.9% Xc) as a carbon source (Yoshida et al. 2016). 
The optimal operation temperature of IsPETase is 30 °C, 
exhibiting the highest PET hydrolytic activity than other 
reported enzymes (Yoshida et al. 2016). IsPETase is classi-
fied as a subclass of cutinase (EC 3.1.1.101), which shares 
up to 47.6% of the sequence identity with conventional cuti-
nases but harbors some different structural characteristics. 
The most explicit feature distinguishing canonical cutinases 
from IsPETase-like cutinases is the number of intramolec-
ular disulfide (DS) bonds (Fig. 4a, b). Here, the conven-
tional cutinases that contain one DS bond (DS1) are classi-
fied as type I and IsPETase-like cutinases that contain two 
DS bonds (DS1 and DS2) are type II. All currently known 
cutinases possess the conserved DS1 that links a α-helix to 
a loop on the C-terminus of the protein (Fig. 4a). On the 
other hand, IsPETase-like cutinases harbor an additional DS 
termed DS2 that has been proposed to stabilize an active site 
extended loop to constitute a putative substrate-binding cav-
ity (Chen et al. 2018; Joo et al. 2018) (Fig. 4b).

Type I cutinases

The first enzymatic decomposition of PET film was reported 
by TfH or BTA1 from a soil cellulolytic actinomycete Ther-
mobifida fusca (Lykidis et al. 2007), whose reaction caused 
weight loss of two kinds of PET films by around 40–50% at 
55 °C in 3 weeks (Müller et al. 2005). Afterward, a series 
of cutinases from various Thermobifida species that exhibit 
PET hydrolytic activity were reported (Herrero Acero et al. 
2011; Ribitsch et al. 2012a, b; Roth et al. 2014; Thumarat 
et al. 2015). Enzymes from other genera were also reported. 
Cut190 from Saccharomonospora viridis shares around 65% 
sequence identity with Thermobifida cutinases (Kawai et al. 
2014), and its variant that contains mutations S226P and 
R228S exhibits up to 27% weight loss of PET film at 63 °C 

in three days. DmPETase from Deinococcus maricopensis 
was found to be less sensitive to the crystallinity degree 
and exhibits activity on semicrystalline sections of post-
consumer PET bottles at 50 °C without the need for amor-
phization of the materials (Makryniotis et al. 2023). Other 
than the thermophilic enzymes, two cold-active cutinases 
derived from Antarctic bacterium Aequorivita sp. (PET27) 
and Kaistella jeonii (PET30) that showed depolymerizing 
activity on amorphous PET foil were also reported (Zhang 
et al. 2021). The PET hydrolytic activity of PET27 is 38-fold 
higher than PET30 at 30 °C, though both are very low rela-
tive to IsPETase.

In addition to microbial strains, metagenomes are impor-
tant sources for searching candidate enzymes (Danso et al. 
2018; Eiamthong et al. 2022; Erickson et al. 2022; Pfaff 
et al. 2022; Sonnendecker et al. 2022; Sulaiman et al. 2012). 
Leaf compost cutinase (LCC) identified from a leaf com-
post metagenome attracted much attention due to its supe-
rior activity over other reported PET hydrolytic enzymes 
(Tournier et al. 2020; Wei et al. 2019). A type I cutinase 
termed BhrPETase sourced from hot spring water metage-
nome is highly identical to LCC, such that only 16 various 
amino acids are identified in the mature peptides of these 
two enzymes. BhrPETase exhibits 11 °C higher Tm than 
LCC when expressed in Bacillus subtilis (Xi et al. 2021). 
PHL-7, named as PES-H1 in an independent study, which 
was identified from plant compost metagenome exhibits two-
fold higher activity compared with LCC at 75–80 °C (Pfaff 
et al. 2022; Sonnendecker et al. 2022). Notably, as high as 
1 M phosphate buffer is demanded for PHL-7 to reach its 
optimal performance, which should be considered in further 
investigations and applications (Pfaff et al. 2022; Sonnen-
decker et al. 2022).

Type II cutinases

The identification, structural and biochemical analysis of 
IsPETase triggered the characterization of type II cutinases, 
which share a highly identical three-dimensional structure to 
type I cutinases while containing an additional DS2 (Fig. 4b) 
(Austin et al. 2018; Danso et al. 2018; Fecker et al. 2018; 
Han et al. 2017; Joo et al. 2018; Liu et al. 2018). Partial 
β6-corresponding fragment in IsPETase was judged as a loop 
in some deposited structures, yet the strand numbering used 
here follows those of type I cutinases to facilitate the paral-
lel structural comparison. Type II cutinases appear to exist 
widely in the environment, and several have been identified 
in various bacteria strains and metagenomes (Blázquez-
Sánchez et al. 2022; Chen et al. 2021a, b; Danso et al. 2018; 
Eiamthong et al. 2022; Sagong et al. 2021). A few type II 
cutinases that harbor a highly identical substrate-binding site 
composition to that of IsPETase were identified from Gen-
Bank (Joo et al. 2018), including those from Rhizobacter 
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gummiphilus (RgPETase), Burkholderiales bacterium RIF-
CSPLOWO_02_FULL_57_36 (BurPL or BbPETase) and 
Polyangium brachysporum (PbPL or PET12). RgPETase 
shows the same thermal profile, comparable hydrolytic 
activity toward microcrystalline PET (milled commercial 
PET bottle, 17.1% Xc) and lower activity toward amorphous 
PET film (6% Xc) relative to IsPETase (Sagong et al. 2021). 
BurPL shows similar activity and higher thermal stability 
than IsPETase (Chen et al. 2021a, b; Sagong et al. 2022). 
BurPL has an N-terminal domain whose presence renders 
the enzyme higher thermal stability yet lower activity, prob-
ably owing to the steric hindrance that interferes with the 
enzyme attachment on PET (Sagong et al. 2022). Wild-type 
PbPL exhibits very low activity, but its performance can 
be elevated to a comparable level relative to IsPETase by 
substituting two active site-nearby residues to mimic that 
in IsPETase (see below) (Chen et al. 2021a, b). PE-H from 
a marine bacterium Pseudomonas aestusnigri exhibits PET 
hydrolytic activity at 30 °C (Bollinger et al. 2020). Ther-
mophilic enzymes including two derived from metagenome 
(PET2 and PET6) and CtPL from Caldimonas taiwanen-
sis show optimal activity at 55–70 °C (Chen et al. 2021a, 
b; Danso et al. 2018). MG8 identified from human saliva 
metagenome, exhibits optimal activity at 55 °C in the pres-
ence of sodium chloride (NaCl) at a concentration as high 
as 4 M (Eiamthong et al. 2022). Two psychrophilic enzymes 
from Antarctic bacteria show activity at 25 °C, with Mors1 
showing comparable activity to IsPETase (Blázquez-
Sánchez et al. 2022; Danso et al. 2018).

Substrate‑binding modes of poly(ethylene 
terephthalate)‑degrading cutinases

The substrate-binding pose of PET-degrading enzymes 
should be one of the most important subjects to address. 
For type I cutinases, molecular simulation and docking have 
been implemented to predict the substrate-binding pose of 
PET-degrading enzymes, mainly prompted by the attempt to 
identify the candidate residues for engineering (Chen et al. 
2022; Kitadokoro et al. 2012; Tournier et al. 2020). How-
ever, only a few complex structures that contain PET degra-
dation products have been reported: LCC-ICCG, a thermo-
stable variant of LCC that harbors F233I, D238C, S238C 
and Y127G alterations, in complex with MHET, wild-type 
and variant TfCut in complex with MHET and PHL-7 in 
complex with terephthalic acid (Richter et al. 2023; Yang 
et al. 2023; Zeng et al. 2022) (Fig. 4a). LCC-ICCG can 
decompose more than 90% PET at 72 °C in 10 h (Tournier 
et  al. 2020). In the crystal structure of the complex of 
LCC-ICCG and MHET, the MHET binds to a surface cleft 
termed + 1 subsite here, which is lined by Y95, T96, A97, 
H164, S165, M166, W190, V212, H242, I243 and N246. 
Y95, M166, W196 and V212 clamp the aromatic moiety 

of MHET, while others comprise a tunnel to accommodate 
the hydroxyethyl part. Notably, the F243I mutation widens 
the putative secondary subsite of the PET-binding tunnel, 
which was proposed to facilitate the binding of the bulkier 
PET and leads to higher PET hydrolytic activity (Zeng et al. 
2022). The highly identical interaction network is observed 
in the complex of PHL-7 and terephthalic acid (Richter 
et al. 2023). Interestingly, the I243-corresponding residue 
in PHL-7 is L210. This residue has been verified to account 
for the high degradation efficiency of PHL-7, as substituting 
L210 to Phe, an equivalent in a highly homologous PHL-3 
and most type I cutinases, reduced PET hydrolytic activity 
(Sonnendecker et al. 2022).

The overall fold and substrate-binding site composition 
of type II cutinases are highly identical to that of type I 
cutinases (Fig. 4b), but IsPETase has been found to exploit 
a unique substrate-binding behavior. The + 1 subsite com-
position of IsPETase has been revealed by the complex 
structures of MHET or other substrate analogues (Han et al. 
2017; Yang et al. 2023) (Fig. 4b). Notably, W185 which 
provides a T-stacking force to the aromatic moiety of MHET 
displays a unique conformation that has not been seen in 
all known canonical cutinases (Chen et al. 2021a, b; Han 
et al. 2017). This pose, termed “B-type,” is one of the three 
conformations that were reported in our previous study (Han 
et al. 2017) (Fig. 4c). The W185 corresponding Trp in all 
cutinases is constrained by two nearby residues, His and 
Phe, such that only “C-type” conformation can be observed 
(Fig. 4c). In IsPETase, the His and Phe are replaced by Ser 
and Ile, respectively, whose side groups are smaller to allow 
W185 to wobble freely (Fig. 4c). Structural comparisons 
suggest that MHET adopts a more relaxed angle in IsPETase 
relative to that in LCC-ICCG (Fig. 4c). This suggests that 
the MHET-binding Trp in the C-type conformation should 
lead to a more rigid substrate-binding groove, such that poly-
mers need to bend a bit to fit in. On the other hand, Trp in 
B-type renders the substrate-binding pocket higher flexibil-
ity. Notably, His-Phe is strictly conserved in all cutinases 
and Ser-Ile is an IsPETase-unique feature. Mutating His-
Phe to Ser-Ile, a strategy termed DM, in several canonical 
cutinases renders higher PET hydrolytic activity though the 
thermostability is reduced, possibly owing to a higher degree 
of protein flexibility (Chen et al. 2021a, b).

Additional substrate-binding sites other than + 1 subsite in 
these PET-degrading cutinase have been proposed in a study, 
which conducted computational docking of an oligomeric 
substrate 2-hydroxyethyl-(monohydroxyethyl terephthalate)4-
(2-HE(MHET)4) and claimed four MHET subsites (Joo et al. 
2018). This hypothesis has been argued by a solid-state nuclear 
magnetic resonance (NMR) study, which suggests that PET 
adopts a highly rigid conformation at the reaction temperature 
of IsPETase (30 °C) and hardly forms the suggested confor-
mation (Wei et al. 2019). A recent study revealed a similar 
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scenario in the type I cutianse TfCut2, which traces the PET-
binding mode of the enzyme in a real-time fashion with an 
advanced solid-state NMR method (Falkenstein et al. 2023). 
It suggests that only one PET monomer unit is bound to the 
enzyme during the degradation process while the rest of the 
PET chain is loosely confined to the active site.

Accordingly, the + 1 subsite shall be the most well-
defined substrate-binding site of PET-degrading cutinases 
based on the current knowledge. Nonetheless, the presence 
of multiple binding sites can still provide non-catalytic 
benefits, considering that more enzyme-plastic contacts 
should facilitate enzyme action. These results might be sup-
ported by kinetic investigations to some extent. The inverse 
Michaelis–Menten framework, which has been applied to 
evaluate interfacial catalytic reactions such as enzyme-
mediated degradation of cellulose or chitin, was applied 
to study the kinetics of IsPETase, which suggests the high 
efficiency of the enzyme at ambient conditions owing to a 
high kcat rather than a low KM (Bååth et al. 2021). In view 
of this, the Sabatier principle states that optimal catalysis 
occurs when interactions between catalyst and substrate are 
of intermediary strength, as the case in the heterogeneous 
catalyst of non-biochemical reactions might be appropriate 
to be applied to interfacial enzyme catalysis (Bååth et al. 
2022; Kari et al. 2018).

Engineering of poly(ethylene 
terephthalate)‑degrading enzymes

The PET hydrolytic activity of enzymes from various 
sources is still low and needs to be improved. Concerning 

the influence of polymer mobility on enzyme action and the 
durable reaction required for better decomposition, enhanc-
ing the enzyme thermostability is one major goal to pursue. 
Modifying the substrate-binding site is a logical rationale, 
given that PET is not the natural substrate for these enzymes. 
Structural analyses have illustrated the substrate-binding 
pattern in the + 1 subsite; thus, the + 1 subsite comprising 
residues are the most appealing targets of engineering to 
improve the enzyme activity. Increasing the protein ther-
mostability is another main direction because PET polymers 
that gain mobility at elevated temperatures should benefit the 
enzyme reaction. In addition, modifying enzyme surface to 
increase enzyme-PET contact has also been implemented. 
This is based on the hypothesis that the negative charge of 
the PET surface should gradually increase during catalytic 
reaction and the higher amounts of anionic carboxyl on PET 
would attract PET hydrolases with positive surface charge.

Type I enzyme engineering

LCC had been considered the most potent PET hydrolytic 
enzyme and thus was subjected to engineering to enhance 
its performance (Tournier et al. 2020). The PET-binding 
groove was predicted through modeling a PET analog, 
and saturation mutagenesis was conducted to modify 
eleven tunnel-forming residues including Y95, F125, 
Y127, W190, A213, T96, H164, V212, S101, F243 and 
N246. Among 209 variants generated, only variants F243I 
(127.5 ± 6.4%) and F243W (118.4 ± 6.8%) exhibit higher 
activity than the wild-type enzyme (Fig. 5a, i). Then, a 
disulfide bond was introduced to a divalent ion-binding 

Fig. 5   Strategies applied to modify poly(ethylene terephthalate) 
(PET)-degrading cutinases. Selected protein engineering strategies 
that show beneficial effects in improving the performance of a type 

I (represented by LCC; PDB ID, 4EB0) and b type II (represented by 
IsPETase; PDB ID, 5GX0) PET hydrolytic cutinases. Some involved 
residues are displayed by sticks
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site, a feature shared by several type I cutinases (Fig. 5a, 
ii), to free the enzyme from the metal ion-dependent 
thermostability (Miyakawa et  al. 2015; Ribitsch et  al. 
2017; Then et al. 2016). This disulfide bridge, termed 
DS3 herein, has been introduced in the equivalent loca-
tion in several cutinases to enhance their thermostabil-
ity, including LCC (D238C-S283C, ΔTm equals to 9.8 °C 
(Tournier et  al. 2020)), TfCut2 (D204C-E253C, ΔTm 
equals to 24.9 °C (Chen et al. 2022; Then et al. 2016)), 
Cut190 (D250C-E296C, ΔTm equals to 23.1 °C (Emori 
et al. 2021)) and PHL-7 (R204C-S250C, ΔTm equals to 
6.4 °C (Pfaff et al. 2022)). Introducing D238C-S283C 
mutations to the variant F243I lowered the enzyme Tm 
(ΔTm equals to 6.2 °C); thus, Y127G mutation that was 
identified in the first-round screening was introduced to 
rescue the protein thermostability (Fig. 5a, iii). Finally, the 
quadruple LCC-ICCG exhibits equal activity and 9.3 °C 
higher Tm relative to LCC and can depolymerize more 
than 90% PET (Xc lower than 15%) in 10 h at 72 °C with 
3 mgenzyme gPET

−1 enzyme. Furthermore, this study illus-
trates that terephthalic acid recovered from the enzyme-
mediated hydrolytic reaction can be used to resynthesize 
virgin PET, proving the viability of implementing enzyme-
mediated PET recycling.

In light of the beneficial effects of enhancing enzyme 
thermostability, LCC-ICCG was further subjected to struc-
ture-based rational design and machine learning-based mod-
ification (Ding et al. 2023; Zeng et al. 2022). Zeng et al. 
(2022) conducted rational design by adding non-covalent 
interactions to strengthen the interactions between the cen-
tral sheet and the nearby helices (Fig. 5a, iv). Among 27 
variants generated, six variants that exhibited improved 
thermostability were further combined to yield two triple 
mutants (A59K-V68I-N248P, A59R-V63I-N248P and A59K-
V75R-N248P), which exhibit Tm that approaches 99 °C. 
Ding et al. (2023) applied two strategies based on a deep 
learning-based prediction tool, Preoptem and the differen-
tial evolutional analytical methods to identify 36 potential 
beneficial variants (Ding et al. 2023). Through experimen-
tal validation, six variants including D53T, S67L, S133R, 
T192P, E208Q and N248P exhibited higher activity than 
LCC-ICCG at 75 °C. (The amino acid numberings shown 
here are adjusted based on the full-length protein sequence.) 
A variant termed LCC-ICCG_I6M carrying six mutations 
was generated, which produces 3.64 times more hydrolytic 
products from digesting ground PET water bottles (31.3% 
Xc) when compared with LCC-ICCG (Ding et al. 2023). 
Residue 192 is located opposing to G127, thus is proposed 
to widen the putative − 1 subsite (Fig. 5a, iii), while the 
mechanism underlying the other three mutations that are 
located on the protein surface remains elusive. Notably, both 
studies modified N248 to Pro (Fig. 5a, v), an amino acid 
found in the corresponding location in LCC-homologous 

BhrPETase that shows higher thermostability than LCC. The 
N248P-mediated stabilization effects on β8-α6 loop have 
also been structurally validated (Zeng et al. 2022).

Many of the abovementioned strategies also show prom-
ise in modifying other type I cutinases. The + 1 subsite of 
TfCut2 was modified by mutating G62 to Ala in accordance 
with A97 in LCC to yield a variant that exhibits 2.7 times 
higher activity (Wei et al. 2016). Chen et al. (2022) exploited 
a directional-path modification strategy aiming to optimize 
the direct and indirect enzyme–substrate contacts of TfCut2 
to generate a quadruple mutant Q92G-I213K-H184S-F209I 
(Chen et al. 2022). Residue H184, which is associated with 
W155 wobbling, was mutated to Ser, and residue F209, the 
equivalent of F243 in LCC, was mutated to Ile. The ben-
eficial effect of Q92G remains elusive as the equivalent 
mutation in LCC (Y127G) was found to cause about 35% 
reduction in activity (Tournier et al. 2020). These mutations 
were introduced in a thermostable variant that harbors DS3 
(generated by introducing D204C-E253C mutation) to afford 
TfCut2 4Mz. This variant is 30-fold more efficient than the 
wild type and can degrade 90% PET with 50 mgenzyme gPET

−1 
at 60 °C in 96 h (Chen et al. 2022). These four mutations 
also improve the performance of LCC, Est119 and Bhr-
PETase, indicating the universal benefit of these substitu-
tions in improving the properties of type I cutinases. TfCut2 
was subjected to a machine learning method to yield a vari-
ant that carries S121P, D174S and D204P, which exhibits 
9.3 °C higher Tm and 46.42-fold higher activity at 70 °C (Li 
et al. 2022). Notably, residue 204 is part of the DS3-forming 
residue of TfCut2, mutating D204 to Pro might provide local 
stabilization effects similar to that by introducing a disulfide 
bridge.

Type II enzyme engineering

Numerous efforts have been made to enhance the thermo-
stability of IsPETase, whose PET decomposition efficacy is 
limited by low protein stability (Kawai et al. 2019). Through 
structure-guided rational design, variants P181A, S121D, 
S121E, D186H and R280A were generated to strengthen 
the local interactions, and a variant termed ThermoPETase 
that carries S121E, D186H and R280A exhibits 8.81 °C 
higher Tm and 14-fold higher activity at 40 °C was eventually 
obtained (Son et al. 2019). S121 and D186 are located in the 
putative −1 subsite (Fig. 5b, i) while R280 is located on the 
β6-β7 connecting loop that can be stabilized by DS3 in other 
cases (Fig. 5b, ii). A variant termed DuraPETase derived 
from a computational redesign program named GRAPE car-
ries ten mutations and exhibits 31 °C higher in Tm (Cui et al. 
2021). Its performance can be further increased by introduc-
ing DS3, restoring W185 wobbling (H214S) (Fig. 5b, iii) 
and increasing surface positive charge by introducing muta-
tion S245R (Liu et al. 2022a) (Fig. 5b, iv). The resulting 
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variant DuraPETase-4 M degrades up to 70% PET film 
(10.2% Xc) at 60 °C in 96 h, higher than DuraPETase which 
causes 12.9% decomposition under the same condition.

Compared with rational design, directed evolution offers 
a more comprehensive engineering approach. It is powerful 
but labor-intensive and demands an efficient high-through-
put screening platform to evaluate the performance of many 
variants. This could be an obstacle for PET-degrading 
enzymes, as measuring PET hydrolytic products by high-
performance liquid chromatography (HPLC) analysis is the 
standard method to probe the efficacy of these enzymes. Shi 
et al. (2023) developed a novel PET analogous substrate, bis 
(2-hydroxyethyl) 2-hydroxyterephthalate (Shi et al. 2023). 
The enzyme activity can be quickly determined by meas-
uring the fluorescence emitted by the hydrolyzed product. 
With this method, the authors screened around 10,000 clones 
in three rounds of directed evolution and selected a variant 
termed DepoPETase that contains seven mutations (D186H, 
N233K, T88I, D220N, N246D, R260Y and S290P). This 
variant exhibits the same thermal profile and comparable 
activity of FAST-PETase (see below). A more straightfor-
ward screening method has been reported. Bell et al. incu-
bated the lysates of protein expression hosts with the amor-
phous PET disk in 96-well plates and analyzed the released 
MHET and terephthalic acid with an integrated, automated 
system containing Ultra Performance Liquid Chromatograph 
(Bell et al. 2022). The authors claimed that over 2,000 reac-
tions can be analyzed in two days. Using ThermoPETase as a 
starting template, six rounds of saturation mutagenesis were 
conducted to target residues involved in substrate binding or 
thermostability. After screening more than 13,000 variants 
using higher activity at elevated temperatures and extended 
reaction time as an evolutionary pressure, the authors even-
tually obtained a variant termed HotPETase that carries 
18 mutations. HotPETase has an optimal temperature at 
60–70 °C and exhibits higher activity than LCC-ICCG at 
70 °C. Notably, most of the mutations in HotPETase are 
located outside the active center and are considered to play a 
role in stabilizing the protein structure. Notably, HotPETase 
also harbors the DS3 rendered by N233C-S282C mutations, 
further indicating the transferability of this feature.

A machine learning-aided engineering with a three-
dimensional self-supervised, convolutional neural network 
termed MutCompute has been applied to identify subop-
timal amino acids that could be modified to fit better than 
the parental ones in IsPETase (Lu et al. 2022). Eight out of 
ten predicated mutations showed improved thermostability 
and activity. After experimentally characterizing 159 single 
or combined mutations, four mutations including S121E, 
T140D, R224Q and N233K were the most beneficial altera-
tions. Eventually, a variant termed FAST-PETase that was 
generated by introducing R224Q and N233K to Thermo-
PETase showed the highest performance. N233 is located 

on the DS3-equivalent site (Fig. 5b, ii), while the location of 
R224 does not belong to any category classified here. This 
variant shows superior PET hydrolytic activity relative to 
IsPETase and LCC variants, such that complete depolymeri-
zation of postconsumer-PET from 51 different PET products 
(Xc lower than 6.24%) can be achieved at 50 °C in one week.

The activity of CtPL derived from C. taiwanensis was 
increased by up to 7.5-fold by introducing the Ser-His muta-
tion (CtPL-DM) (Fig. 5b, iii) (Chen et al. 2021a, b). F235L 
alteration further elevates the activity by 60% at 60 °C, 
and introducing DS3 by R230C-S284C mutation enhances 
the enzyme activity at 70 °C by more than 2.5-fold (Li 
et al. 2023). Notably, CtPL-DM showed no activity when 
expressed in Pichia pastoris. This has been suspected due to 
steric hindrance mediated by the N-glycosylation on N181 
that constrains the flexibility of the + 1 subsite-forming Trp. 
N181A mutation that reduced glycosylation degree com-
pletely restored the enzyme activity (Li et al. 2023). These 
results have important application implications as P. pastoris 
is a workhorse in enzyme production industries and could be 
a candidate strain for large-scale production of PET decom-
posing enzymes. In this context, the influences of posttrans-
lational modifications of enzymes on their decomposition 
efficacies deserve more investigation.

PET2 identified from marine metagenome was engi-
neered by increasing positive charge on the protein surface. 
Two surface residues were mutated to basic amino acids 
in accordance with those in IsPETase (F105R and E110K) 
(Fig. 5b, iv). In addition, two amino acids located on loop 
regions were mutated to Pro (S156P and T297P), and one 
of the signature four-Gly residues that form an α-helix near 
the catalytic Ser was mutated to Ala for helix stabilization. 
In addition, introducing an additional disulfide bond termed 
DS4 via R47C and G89C mutation links the N-terminal loop 
and the β2-β3 loop slightly increased enzyme activity, indi-
cating that stabilization of this region also provides merits 
(DS4, Fig. 5b, v) (Nakamura et al. 2021). The resulting vari-
ant termed PET2 7 M showed 6.7 °C higher Tm, 2.7-fold 
higher PET-binding affinity and 6.8-fold higher activity. 
Notably, S156P and T297P are located in α2-β5 loop and 
the DS3-corresponding loop, respectively (Fig. 5b, vi and ii).

Strategies other than amino acid alteration have been 
applied to improve the performance of PET-degrading 
enzymes. The Antarctic type II cutinase Mors1 was sub-
jected to a chimeric design, which replaced the extended 
loop β8-ɑ6 of the enzyme with a shorter one from the ther-
mophilic LCC (Blazquez-Sanchez et al. 2023). The optimal 
operation temperature of the chimeric Mors1 is elevated 
from 25 °C to 45 °C. Notably, the type II-unique DS2 was 
restored by introducing A266C mutation because depleting 
DS2 caused the loss of activity, a phenomenon that has also 
been reported in IsPETase (Chen et al. 2018). More recently, 
constructing IsPETase or FAST-PETase in cyclic monomer, 
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cyclic dimer or catenane topology using SpyCatcher-Spy-
Tag, p53 dimerization domain or enhanced GFP-nanobody 
scaffolds to increase enzyme resilience to heat and mechani-
cal stresses have been reported (Hayes and Luk 2023; Sana 
et al. 2023). Sana et al. (2023) demonstrated that IsPETase 
in cyclic monomer shows higher thermostability but lower 
catalytic activity, while Hayes et al. (2023) indicated no 
enhancement in protein thermostability with all cyclization 
strategies.

Nonetheless, the latter report demonstrates that enzyme 
cyclization shows improvements toward agitation, which was 
proposed as a beneficial factor to the interfacial reactions. In 
comparison, using GFP-nanobody as a scaffold should be a 
promising strategy, such that the Tm of the dimeric enzymes 
of IsPETase and FAST-PETase are increased to 80 °C and 
85 °C without compromising the catalytic activity. Many 
biomass-degrading enzymes possess auxiliary domains to 
promote enzyme–substrate contact efficiency, while most 
PET hydrolytic enzymes lack such domains (Atthoff and Hil-
born 2007). Interestingly, carbohydrate-binding modules, the 
auxiliary domain of carbohydrate-degrading enzymes, have 
been reported to display PET-binding affinity (Weber et al. 
2019). Accordingly, a series of wild-type and engineered 
carbohydrate-binding modules and chitin-binding domains 
from various sources were fused to PET hydrolytic enzymes 
to enhance their PET degradation efficacy (Dai et al. 2021; 
Xue et al. 2021; Zhang et al. 2013). Hydrophobins that pro-
mote the attachment to the hydrophobic polymer surface 
have also been used in conjugation with PET hydrolytic 
enzymes to enhance PET decomposition activity (Puspi-
tasari et al. 2020, 2021; Ribitsch et al. 2015). In addition, 
amphiphilic anchor peptides have been fused to PET hydro-
lytic enzymes to promote their performance (Chen et al. 
2021a, b; Liu et al. 2022a, b).

Other polyesters

Poly(butylene adipate‑co‑terephthalate)

PET exhibits excellent material properties but is highly 
resistant to biological processes, while aliphatic polyesters 
such as polycaprolactone, which are more susceptible to 
biodegradation, might lack important properties for appli-
cations (Bartnikowski et al. 2019). To harness robust mate-
rial properties and better biodegradability, poly(butylene 
adipate-co-terephthalate) (PBAT) that contains flexible parts 
(butylene adipate) and rigid parts (terephthalic acid) was 
produced (Fig. 1), whose properties can be tuned by adjust-
ing the length of the aliphatic parts and the ratio of aliphatic 
to aromatic dicarboxylic acids (Mueller 2006; Müller et al. 
2001; Witt et al. 1997). One notable utility of PBAT is in 
plastic film mulching technology. Compared with conven-
tional PE mulch materials, the ester bond-based structure 

should render PBAT with a faster biodegradation rate (Kader 
et al. 2017).

The PBAT decomposition is mainly evaluated by measur-
ing the weight loss and the amounts of hydrolytic products. 
PBAT decomposition mainly involves the action of ester-
ases, but the cleavage of ester bonds in PBAT polymers 
yields more complicated hydrolytic products than PET. With 
respect to the completeness of decomposition and monomer 
recycling, potent PBAT-degrading enzymes should be able 
to produce terephthalic acid as a main product. The first 
reported PBAT-degrading microorganism was Thermomon-
ospora fusca isolated from a compost material (Kleeberg 
et al. 1998). Later, many other strains with various degrees 
of decomposition capacity have been identified to do the 
same (Jia et al. 2023; Meyer-Cifuentes et al. 2020; Muroi 
et al. 2017; Trinh Tan et al. 2008; Witt et al. 2001). Albeit 
lipase and esterase have also been demonstrated to exhibit 
PBAT degradation activity (Biundo et al. 2016; Perz et al. 
2016a, 2016b; Wallace et al. 2017), cutinase should be the 
most effective PBAT-degrading enzyme (Chen et al. 2008; 
Kleeberg et al. 2005; Perz et al. 2016b; Suzuki et al. 2014; 
Yang et al. 2023).

It has been suggested that the hydrolysability of PBAT 
is related to polymer flexibility, as the enzyme-mediated 
decomposition rate increases with the decrease in the tere-
phthalic acid-to-adipate ratio (Zumstein et al. 2017). This 
indicates that PET-degrading enzymes might be good can-
didates for PBAT decomposing enzymes. A recent study 
demonstrates that several PET hydrolytic enzymes including 
IsPETase, TfCut, TcCut and BurPL can decompose PBAT 
more efficiently relative to other esterases (Yang et al. 2023). 
Intriguingly, introducing IsPETase-unique Ser-Ile mutation 
to TfCut, TcCut and BurPL also elevates the PBAT decom-
position rate of these enzymes. Moreover, the Ser-Ile variant 
of Thermobifida cutinases produces terephthalic acid as a 
major end product. Crystal structures of wild-type and Ser-
Ile variant of TfCut in complex with MHET show the same 
substrate-binding pattern as in LCC-ICCG and IsPETase 
(Fig. 4c) (Yang et al. 2023). This supports that the wobbling 
Trp should afford a flexible substrate-binding site for tere-
phthalic acid moiety to bind in an extended conformation, 
which might render the enzyme a preference to cleave the 
terephthalic acid-adjacent ester bond and yield terephthalic 
acid.

Poly(lactic acid)

Poly(lactic acid) is an aliphatic polyester composed of lac-
tic acid that can be derived from microbial fermentation 
using renewable resources (Ahmad et al. 2021; Nandhini 
et al. 2023). Despite its limited commercial applications 
due to brittleness, poor elasticity and low thermal stability, 
poly(lactic acid) is attractive owing to its biodegradability. 
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Nonetheless, the natural degradation rate of poly(lactic acid) 
is still very slow and takes decades to achieve under envi-
ronmental conditions (i.e., lower than 37 °C) and around 
180 days in industrial composting facilities (i.e., higher 
than 60 °C) (Samantaray et al. 2021). Similar to the case 
for other plastics, the enzyme-mediated poly(lactic acid) 
decomposition efficacy is highly sensitive to the Xc of the 
materials (MacDonald et al. 1996; Reeve et al. 1994). It 
has been reported that the degradation rate of poly(lactic 
acid) drastically dropped with the Xc of around 26% (Li and 
McCarthy 1999).

Poly(lactic acid) depolymerases are mainly serine hydro-
lases that are classified as lipase-type (i.e., esterases, lipases, 
cutinases) (Akutsu-Shigeno et al. 2003; Hu et al. 2010; 
Masaki et al. 2005) and protease-type (Lim et al. 2005; Oda 
et al. 2000; Pranamuda et al. 2001; Williams 1981). These 
enzymes employ the same catalytic triad that comprises 
Ser-His-Asp to conduct bond cleavage (Fig. 2) but have dif-
ferent active site topologies and display different degrada-
tion activity toward two optical isomers of poly(lactic acid). 
Protease-type enzymes exclusively hydrolyze poly(L-lactic 
acid) and lipase-type enzymes are more flexible but pre-
fer to hydrolyze poly(D-lactic acid) (Fig. 1) (Kawai et al. 
2011; Reeve et al. 1994). Many crystal structures of these 
poly(lactic acid) depolymerases have been reported, but the 
information on substrate-bound complexes is scarce. The 
complex of protease-type poly(lactic acid)-depolymerase 
is not available, such that the substrate-binding behavior 
toward poly(lactic acid) can only be predicted through 
simulation (Kawai et al. 2011). The crystal structure of a 
cutinase termed Est119 that contains a D-type ethyl lactate 
and a lactate has been reported, consistent with the finding 
that the enzyme hydrolyzes poly(D-lactic acid) more easily 
than poly(L-lactic acid) (Hu et al. 2010; Kitadokoro et al. 
2019). A variant of cutinase Thc_Cut2 (R29N-A30V) was 
found to release 4.5 times more lactic acid from poly(L-
lactic acid) than the wild-type enzyme (Ribitsch et al. 2017). 
Small-angle X-ray scattering (SAXS) data collected from 
the enzymes in solution indicated that the mutations might 
change the electrostatic and hydrophobic properties in 
regions that involve polymer-binding surfaces.

Two microbial carboxylesterases that exhibit high poly(L-
lactic acid) depolymerization activity were identified from 
screening microbial hydrolases. The crystal structure of the 
one termed RPA1511 has been resolved, and the model of 
the other was predicted (Hajighasemi et al. 2016). Later, 
the same group solved the crystal structure of MGS0156, 
an esterase with potent poly(L-lactic acid) decomposition 
activity identified from a metagenome from paper mill 
waste-degrading microbial community (Hajighasemi et al. 
2018). All these enzymes cover the hydrophobic active site 
with a U-shaped lid domain. Although no complex struc-
ture is available, the role of the active site residues of these 

enzymes has been probed by mutagenesis experiments. 
It has been reported that variant V202A of RPA1511 and 
L169A of MGS0156 showed higher poly(L-lactic acid) 
decomposition activity (Hajighasemi et al. 2018). However, 
the underlying mechanism of the enhanced activity remains 
elusive.

Polyamide

Polyamide, known as nylon, is widely used in automotive, 
electrical, construction, packaging and fabric applications. 
As the world demand for polyamides increases yearly, the 
issue of recycling polyamide waste has attracted increasing 
attention. The majority of polyamide is composed of short 
aliphatic chains, including polycaprolactam (i.e., PA-6 or 
nylon-6) and polyhexamethylene adipamide (i.e., PA66 or 
nylon-66) (Fig. 1). Although the amide bond of polyamide 
is common to that links amino acids in proteins, the bio-
logical degradation rate toward PA-6 and PA66 is very low, 
such that complete depolymerization of polyamide fibers 
by enzymes has not been documented. This could be attrib-
uted to the high crystallinity of polyamide resulting from 
the abundant hydrogen bonds between polyamide chains.

Two types of enzymatic reactions are known to cause 
nylon degradation. One is hydrolases including proteases, 
cutinases and amidases. The action of these enzymes is lim-
ited to the polyamide surface, such that these enzymes can 
be applied to increase polyamide hydrophilicity to improve 
textile comfort by allowing better evaporation of perspi-
ration or to increase dyeability (Kanelli et al. 2017; Silva 
et al. 2005). The other type is ligninolytic enzymes includ-
ing laccases (EC 1.10.3.2) and manganese peroxidases (EC 
1.11.1.13) (Deguchi et al. 1998; Fujisawa et al. 2001; Linko 
1992; Negoro et al. 2021). Laccases are multicopper oxi-
dases that oxidize phenolic substrates using O2 as the elec-
tron acceptor (Janusz et al. 2020). The active site of these 
enzymes consists of a type 1 (T1) copper site where the sub-
strate is oxidized and a trinuclear copper cluster (T2 and T3) 
where the oxygen is activated and reduced. Laccases have 
broad substrate specificity but cannot oxidize substrates with 
high redox potential (e.g., non-phenolic substrates). This can 
be overcome by incorporating small aromatic molecules 
called “mediators.” In such a laccase-mediator system, lac-
cases first oxidize the mediator and then the oxidized small 
molecules act as chemical oxidants to oxidize substrates 
(Hilgers et al. 2018). A laccase-mediator system coupled 
with hydroxybenzotriazole markedly reduced the elongation 
and tensile strength of PA66, such that the molecular weight 
and polydispersity of polymers were altered (Fujisawa et al. 
2001). Manganese peroxidases are heme-containing peroxi-
dases that utilize H2O2 as a cosubstrate to generate reactive 
manganese (Mn) that can oxidize the substrate (Hofrichter 
et al. 2010). Based on current knowledge, these ligninolytic 
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enzymes should produce oxidative species to cause poly-
mer chain breakage indirectly, and no evidence of direct 
enzyme–substrate interactions is reported (Chen et al. 2020).

Polyurethane

Polyurethanes (PU) are the sixth most used polymers with 
an annual consumption of more than 20 million metric tons, 
which are mainly used to produce flexible foams (e.g., mat-
tresses and furniture) or rigid foams (e.g., insulation and 
construction materials) (Eling et al. 2020; Kemona and 
Piotrowska 2020). Polyurethane is composed of the car-
bamate-linked isocyanate and a polyester–(polyester PU) 
or polyether-containing diol (polyether PU), which com-
prise the hard and soft regions of the polymer, respectively 
(Fig. 1). Despite containing a heteroatom backbone, the 
biodegradation of polyurethane remains challenging and 
the current understanding of biological routes and enzymes 
from the degradative microbial communities is limiting (Liu 
et al. 2021). In most studies, polyurethane decomposition 
efficacy is probed using model substrates Impranil® DLN 
for aliphatic polyester PU and PolyLack for polyether PU. 
They can be dissolved as colloidal dispersions and become 
translucent when hydrolyzed, enabling a fast and easy obser-
vation of depolymerization events. Polyurethanes are highly 
recalcitrant to biodegradation, such that the best Impranil 
degrader ever reported, Cladosporium pseudocladospori-
oides strain T1.PL.1, demands two weeks to achieve 87% 
decomposition (Álvarez-Barragán et al. 2016).

Various enzyme activities have been proposed to account 
for the polyurethane decomposition in polyurethane-degrad-
ing microorganisms including esterase, lipase, protease, ami-
dase and urease (Magnin et al. 2020). Nonetheless, no direct 
evidence is available for urease-mediated polyurethane 
degradation. Enzymes with esterase activity can hydrolyze 
the ester bond in polyester PU and reduce the turbidity of 
Impranil® DLN (Akutsu et al. 1998; Álvarez-Barragán et al. 
2016; Schmidt et al. 2017). Similar effects were observed 
using amidase, also belonging to serine hydrolase, which 
might cleave both ester and urethane bonds (Gamerith et al. 
2016; Magnin et al. 2019). Cutinases can hydrolyze the ester 
bonds in the soft segments, releasing carboxylic acid and 
alcohol end groups. However, the overall decomposition 
efficacy is very low relative to PET, such that LCC leads 
to up to 4.9% weight loss in 200 h at 70 °C (Schmidt et al. 
2017). Some enzymes able to degrade polyurethane have 
been called polyurethaneases, but a detail characterization 
of their abilities to hydrolyze urethane bonds is not availa-
ble. A true urethanase that can directly degrade the urethane 
bonds in polyurethane polymers to release aromatic moie-
ties has not been undisputedly identified (Wei et al. 2020). 
Notably, thermophilic enzymes might be advantageous over 
those operating at lower temperatures, offering a possible 

direction to improving polyurethane decomposing enzymes 
(Schmidt et al. 2017). Relative to polyester PU, polyether PU 
is less susceptible to enzymatic attack and their degradation 
by reactive oxygen species produced by laccases and peroxi-
dases has been proposed, although the degradation effects 
are still very low (Mahajan and Gupta 2015).

Other polymers

Other major plastic polymers include polyethylene (PE), 
polystyrene (PS), polypropylene (PP) and poly(vinyl chlo-
ride) (PVC), with polyethylene and polystyrene account-
ing for about 40% of the total plastic production. Effective 
biodegradation of these polymers is still highly challenging 
because the C–C bond is inert to the enzyme reaction (Zhang 
et al. 2022a, b). The natural decomposition of polyolefins 
proceeds at an extremely low rate and should demand a 
concerted action of multiple microorganisms and enzyme 
systems (Ali et al. 2021; Chow et al. 2022; Ru et al. 2020). 
Most polyolefin decomposition studies focus on polyethyl-
ene, with few reports describing polystyrene degradation. 
Polypropylene and poly(vinyl chloride) are extremely stable 
and their biodegradation, if it occurs at all, takes months to 
decades to become apparent (Chen et al. 2020). Even for 
polyethylene, abiotic factors such as mechanical forces, UV 
irradiation and oxidizing agents are usually employed in 
conjunction with biological agents to achieve meaningful 
results (Restrepo-Flórez et al. 2014). These pretreatments 
mediate oxidation to introduce carbonyl or olefin functional 
groups into the polymer backbone, making them more sus-
ceptible to enzyme-mediated events. Therefore, measuring 
the carbonyl index of the polymer, which is usually analyzed 
by Fourier transform infrared spectroscopy, is utilized to 
evaluate the polymer decomposition. In addition, surface 
erosion, weight loss and reduction of average molecular 
mass of PE also serve as indicators.

Polyethylene comprises a linear chain of carbons and 
can be produced with different chain arrangements. Lin-
ear polyethylene has high symmetry, and it is commonly 
known as high-density polyethylene, which is harder, offers 
higher strength and has better heat resistance. Low-density 
polyethylene contains long and short irregular branches and 
is widely used in plastic bags owing to its light and flex-
ible properties. Current research on polyethylene decom-
position is mainly toward low-density polyethylene. Many 
polyethylene-degrading microorganisms have been reported 
(Gao et al. 2022; Jayan et al. 2023; Kumar Sen and Raut 
2015). Some show capability in metabolizing linear alkanes 
with a membranous enzyme alkane hydroxylase, a mem-
ber of the alkB family (EC 1.14.15.3) that plays a key 
role in the aerobic degradation of alkanes and β-oxidation 
of fatty acids in bacteria. A complete alkane hydroxylase 
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system contains three components: an electron-generating 
reductase (rubredoxin reductase, EC 1.18.1.1), an electron-
transporting small Fe-binding protein termed rubredoxin 
and a membrane-bound non-heme diiron monooxygenase 
(alkB) (Beilen and Funhoff 2007). The rubredoxin reductase 
reduces the Fe(III)-Cys4 site of rubredoxin to its Fe(II)-Cys4 
form, which, in turn, relays the electron to alkB. The reduced 
alkB then reacts with O2 to perform terminal or subterminal 
oxidation of hydrocarbon oligomers. The products can be 
further catalyzed to produce aldehydes and acids, eventually 
entering the intracellular β-oxidation process. This machin-
ery operates terminal oxidation and thus should proceed at 
a slow rate. It has been reported that the reconstitution of 
alkB in E. coli BL21 resulted in converting 30% of low-
molecular-weight polyethylene to CO2 in 80 days (Jeon and 
Kim 2015).

Microbial enzymes that can act to decompose plant lignin, 
including laccase, manganese peroxidase and lignin peroxi-
dase (EC 1.11.1.14), are the most reported enzymes related 
to polyethylene decomposition (Chen et al. 2020; Wei and 
Zimmermann 2017b). These enzymes act to produce oxi-
dative species to oxidize the polymer, but the degradation 
efficacy is still very low (Fujisawa et al. 2001; Santo et al. 
2013). Compared to peroxidases, more studies on laccase-
mediated PE decomposition are reported (Santo et al. 2013; 
Yao et al. 2022; Zhang et al. 2023). Laccase-mediator sys-
tem constructed by laccases from the fungus Botrytis aclada 
and a bacterium B. subtilis in combination with three syn-
thetic mediators shows oxidation, molecular weight reduc-
tion and surface erosion on low-density polyethylene films 
that were pretreated with high-temperature UV irradiation 
(Yao et al. 2022). A psychrophilic laccase from Antarctic 
bacterium Psychrobacter sp. NJ228 can achieve up to 13.2% 
weight loss of PE particles in 24 h (Zhang et al. 2022a, b). 
Two laccase-like multicopper oxidases induced in Rhodoc-
occus opacus that can utilize polyethylene as the only carbon 
and energy source to grow can afford polyethylene oxida-
tion, various alkyl compounds and oxygenated products in 
48 h (Zampolli et al. 2023). A thermophilic laccase from 
polyethylene-degrading bacterium Lysinibaccillus fusiformis 
(LfLAC3) that was expected to possess a relatively open 
catalytic pocket was selected by using the computer-aided 
discovery and activity-based screening (Zhang et al. 2023). 
The formation of various functional groups was detected and 
the surface damage on the polyethylene films was observed, 
though only 3.75% weight loss of polyethylene films was 
achieved at 28 °C in eight weeks. Although the substrate-
binding modes of LfLAC3 have been proposed by structure 
analysis, these enzymes possess small substrate-binding 
pockets that should only allow the accommodation of small 
molecules (Matera et al. 2008; Santacruz-Juarez et al. 2021; 
Sundaramoorthy et al. 2010). Therefore, the decomposition 
effects are more likely to occur indirectly.

Insects have been reported with the ability to degrade 
untreated polyolefins including polyethylene and polysty-
rene (Bombelli et al. 2017; Yang et al. 2020). Whether 
these capacities are mediated by the microorganisms in the 
worm gut, the invertebrate itself, or a concerted action of 
both has remained elusive. Recently, two enzymes belong-
ing to the hexamerin/prophenoloxidase family have been 
reported as the main components in the saliva of Galleria 
mellonella larvae (wax worm) to cause polyethylene dete-
rioration (Sanluis-Verdes et al. 2022). These enzymes are 
attractive for further applications as they cause oxidation 
and depolymerization of untreated polyethylene film within 
a few hours at room temperature. Although the mechanism 
of action of these enzymes in polyethylene modification 
remains unknown, targeting the aromatic additives blended 
in the plastics to form free radicals and initiate oxidative 
chain reactions is a possible route.

Conclusion

Enzyme-based decomposition and recycling of synthetic 
polymers, especially poly(ethylene terephthalate), have 
advanced at an unprecedented rate in recent years. These 
successes largely depend on developing technologies used 
in enzyme identification, molecular manipulation, protein 
engineering and high-throughput screening methods. The 
real-world application of the enzyme-mediated decompo-
sition and recycling of poly(ethylene terephthalate) could 
be expected to occur within the next few years, whereas 
a longer time is required for other types of plastics. The 
cost of enzyme production should be lowered to trigger eco-
nomic motivations, given that producing new plastic materi-
als is cheaper than recycling the waste at the current stage. 
Therefore, evaluating the effectiveness of enzyme produc-
tion on an industrial scale should be put on the schedule. 
Furthermore, pretreatments are required to unify the physi-
cal properties of postconsumer commodities, e.g., plastic 
size and crystallinity, to facilitate enzymatic degradation. 
It should be noted that enzyme-mediated degradation on 
nano- or microplastics that show a higher penetration rate 
to the living cells deserves more investigations (Anand et al. 
2023; Sharma et al. 2023), as more accessible sites on such 
kinds of plastics could increase the enzyme reaction rate. In 
order to realize the long-term objectives, it is imperative to 
continue research endeavors to uncover enzyme properties, 
polymer-enzyme interactions and polymer behavior during 
catalytic reactions while simultaneously striving to augment 
enzyme performance. Although enzyme-mediated depolym-
erization toward other plastics is still in its infancy, efforts 
to identify and improve enzyme performance should also be 
encouraged. In this context, the enzyme properties revealed 



	 Environmental Chemistry Letters

in poly(ethylene terephthalate)-related research might also 
benefit those for other types of plastics.
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