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Abstract
The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental 
catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants 
or produce chemicals without generating undesirable by-products. For example, catalysts derived from waste or inexpensive 
materials are promising for the circular economy. Here we review environmental photocatalysis, biocatalysis, and electroca-
talysis, with focus on catalyst synthesis, structure, and applications. Common catalysts include biomass-derived materials, 
metal–organic frameworks, non-noble metals nanoparticles, nanocomposites and enzymes. Structure characterization is done 
by Brunauer–Emmett–Teller isotherm, thermogravimetry, X-ray diffraction and photoelectron spectroscopy. We found that 
water pollutants can be degraded with an efficiency ranging from 71.7 to 100%, notably by heterogeneous Fenton catalysis. 
Photocatalysis produced dihydrogen  (H2) with generation rate higher than 100 μmol  h−1. Dihydrogen yields ranged from 27 
to 88% by methane cracking. Biodiesel production reached 48.6 to 99%.
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Abbreviations
CMC-Co  Carboxymethyl cellulose-stabilized 

cobalt nanoparticles
Co/NHC@mCs  Co/N-heterocyclic carbene-supported 

magnetic chitosan composite
TEMPO  2,2,6,6-Tetramethylpiperidinyloxy
TOCNF  2,2,6,6-Tetramethylpiperidinyloxy 

(TEMPO)-oxidized cellulose nanofibril

Introduction

Industrialization and urbanization have resulted in a sig-
nificant increase in the consumption of finite fossil fuel 
reserves, leading to a cascade of environmental issues that 

pose a considerable threat to human health, environmental 
preservation, and energy demand. Recent years have seen a 
growing emphasis on utilizing environmentally friendly, effi-
cient, and cost-effective technology to eliminate pollutants, 
produce clean energy, and synthesize valuable compounds. 
Among many methods, catalysis plays a major role in reduc-
ing production costs and boosting reaction efficiency, which 
will significantly advance the development of human society. 
Sustainability, on the other hand, is the development that 
meets the needs of the current generation without compro-
mising the ability of future generations to meet their own 
needs. Environmental catalysis involves developing catalysts 
to degrade undesirable substances or enable alternative cat-
alytic synthesis of essential molecules without generating 
environmentally unacceptable by-products, and their role in 
achieving sustainability is crucial. Environmental catalysts 
have made remarkable strides in pollutant elimination as 
well as energy and material production over the past dec-
ades. Novel environmental catalysts derived from waste or 
cost-effective materials reduce waste and promote a circular 
economy while improving catalytic performance.

Homogeneous catalysts have high catalytic perfor-
mance and well-defined structures, but their stability and 
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recyclability are low. Due to the significant potential for 
separation, reusability, and stability, heterogeneous cata-
lysts are subsequently considered efficient for environmental 
applications. Although much progress has been achieved in 
heterogeneous catalysts, producing catalysts with high cata-
lytic selectivity, high atom utilization efficiency, low cost, 
easy preparation, and well-defined active sites remains a 
significant challenge. For instance, designing catalytic sys-
tems such as single-atom catalysts enhance atom utilization 
efficiency to reduce catalytic costs and inherit the benefits of 
heterogeneous and homogeneous catalysts for several envi-
ronmental applications (Xu et al. 2022). Another example is 
biochar; due to its porous and functional structure along with 
superior performance, it has been widely employed in agri-
culture, composting, gas storage, animal feed, energy stor-
age, construction, and environmental remediation, with the 
potential to eliminate environmental contaminants, improve 
soil fertility, and reduce greenhouse gas emissions (Osman 
et al. 2022a). Adsorption is the most efficient method for 
decontaminating the environment; however, unsatisfied 
adsorption capacity, sluggish equilibrium rate, unstable 
adsorption conditions, and others continue to be obstacles 
to biochar adsorption applications (Song et al. 2022a).

Herein, we review the advances in photocatalysis, bioca-
talysis, and electrocatalysis as environmental catalysts and 
identify their promising and challenging issues. The main 
commonly used environmental catalysts discussed are bio-
mass- and carbon-based, metal–organic frameworks, nano-
composites, non-noble metal nanoparticles, and enzymes. 
The advances and challenges in preparation methods for 
environmental catalysis are also highlighted. In addition, 
linking the chemical structure of environmental catalysis 
with their catalytic performance is exhaustively analyzed 
and discussed. In addition, the applications of environmen-
tal catalysis in three major fields, namely recent progress in 
water and soil remediation, biomass valorization, product 
upgrading, and biofuel and hydrogen production, are sum-
marized and evaluated, as shown in Fig. 1.

Environmental catalysis

Photocatalysis

Photocatalysis has emerged as the most promising solution 
for the world’s current energy crisis, environmental pollu-
tion, and global warming (Byrne et al. 2018). Since 1972, 
when Fujishima and Honda discovered the photoelec-
trochemical properties of titanium oxide (Fujishima and 
Honda 1972; Byrne et al. 2018; Yap and Lim 2011, 2012), 
significant effort has been made to develop photocatalysts 
for efficient photocatalytic processes. Other semiconduct-
ing materials, including zinc oxide and cadmium sulfide, 

have also been proposed as potential photocatalysts due to 
their similar band gap to titanium oxide. In contrast, their 
chemical stability and environmental toxicity limit their 
application in environmental remediation. As a result, 
titanium oxide remains one of the most researched semi-
conductor photocatalysts in academia and industry, and 
its photocatalytic properties have been commercialized 
in air-purifying (nitrogen oxide and volatile organic com-
pounds conversion) and self-cleaning window film systems 
(Cha et al. 2019; Lyulyukin et al. 2018). Although their 
practical application in water and wastewater treatment 
is still limited, titanium oxide-based photocatalysts have 
been widely used in persistent pollution-burdened envi-
ronments, implying that titanium oxide systems may be 
a viable solution for the removal of widespread emerging 
pollutants from aquatic environments.

A photocatalytic reaction, in general, consists of three 
steps. First, photocatalysis is initiated by bombarding a 
photocatalyst with ultraviolet light photons. Second, sup-
pose the photon energy is greater than the band gap. In that 
case, these photons cause the generation of electrons  (e−) 
on the surface of the photocatalyst to become ‘excited’ in 
the valence band (VB), causing them to move to the con-
duction band (CB). Simultaneously, a positive hole  (h+

VB) 
is formed on the valence band. Electrons and holes are 
excited and migrate to the surface of photocatalysts, where 
they react with adsorbed electron acceptors and donors, 
respectively (Fig. 2).

In the preceding decades, bare titanium oxide nano-
materials have attracted considerable interest due to their 
potential applications in environmental pollution removal 
and photocatalytic hydrogen production (Osman et  al. 
2020a). Nevertheless, due to its relatively large band gap 
energy (3.2 eV and 3.0 V for anatase and rutile phases, 
respectively) (Fig. 3), it can only absorb approximately 
6% of the solar energy that reaches the earth at any given 
time. Thus, significant effort has been devoted to enhanc-
ing titanium oxide's absorption properties in the visible 
spectrum and developing new photocatalytic materials that 
can capture a broad range, from ultraviolet to visible light 
and even the near-infrared region. This strategy will lead 
to the efficient use of solar energy as a clean, abundant, 
and renewable energy source. The photocatalysts' surface 
modification, alteration, and structure design can be opti-
mized to increase and broaden light absorption.

Doping titanium oxide with non-metal dopants (such as 
carbon, nitrogen, sulfur, and fluorine) or metal dopants (such 
as iron, silver, chromium, and manganese) can narrow the 
band gap between the valence and conduction bands, thereby 
enhancing photocatalytic properties (Akpan and Hameed 
2011; Elbanna et al. 2016; Luo et al. 2019). There has been a 
growing interest in the development of novel photocatalysts, 
such as zinc oxide (Lee et al. 2016; Ani et al. 2018), zinc 
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Fig. 1  Applications of environmental catalysis, ranging from sus-
tainable applications and technologies to sustainable catalysis 
approaches. Using catalysts, such as biomass- and carbon-based cata-
lysts, metal–organic frameworks, nanocomposites, non-noble metal 
nanoparticles, and enzymes for environmental catalysis is a promis-
ing area of research. Notably, while some nano-based materials are 

sustainable, others are not and may be toxic or environmentally dam-
aging. Applying environmental catalysis in three main areas: water 
and soil remediation, biomass valorization, product upgrading, and 
biofuel and hydrogen production can provide valuable insights for 
achieving global environmental protection

Fig. 2  Photocatalytic redox reaction for the degradation of pollut-
ants. Photocatalysis is initiated by bombarding a photocatalyst with 
ultraviolet light. When the photon energy is greater than the band 
gap energy, electrons can be generated on the surface of the photo-
catalyst, where becoming excited in the valence band, which moves to 

the conduction band. Simultaneously a positive hole is formed on the 
valence band. Generated electrons and holes further developed super-
oxide anions and hydroxyl radicals used to remove pollutants.  H2O, 
 O2, OH,  H+, and  H2 refer to water, oxygen, hydroxyl, hydrogen ion, 
and hydrogen, respectively
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sulfide (Antoniadou et al. 2011; Hojamberdiev et al. 2020; 
Zhang et al. 2011), zirconium dioxide (Basahel et al. 2015; 
Tian et al. 2019; Pirzada et al. 2015), perovskites (Wei et al. 
2021a; Bresolin et al. 2020), molybdenum disulfide (Yuan 
et al. 2019; Li et al. 2018a; Chang et al. 2014), tungsten tri-
oxide (Wang et al. 2012a; Yu et al. 2017; Dutta et al. 2021), 
cadmium sulfide (Cheng et al. 2018a; Jing and Guo 2006; 
Zhu et al. 2019), and iron oxide (Hitam and Jalil 2020; Shi 
et al. 2012; Palanisamy et al. 2013) due to their potential to 
improve photocatalytic performance and efficiency.

In recent years, lightweight and abundant elements such 
as carbon, phosphorus, binary carbon nitride, hexagonal 
boron nitride, and boron carbide have given rise to a new 
class of metal-free materials opens up new photochemi-
cal possibilities. In photocatalytic fields, graphene has 
been extensively studied as an efficient electron acceptor 
capable of enhancing charge transfer and decreasing elec-
tron–hole pair recombination. Polymer graphite carbon 
nitride (g-C3N4), an analog of graphene, has become a hot 
material in photocatalysis due to its unique electronic band 
structure, low cost, and ease of preparation (Cao et al. 2015). 
The visible light can excite the graphite carbon nitride with 
a narrow bandgap of 2.7 eV, indicating its potential use in 
photocatalytic degradation, photocatalytic sterilization, 
hydrogen generation, and carbon dioxide reduction (Li et al. 
2016a; Zheng et al. 2012).

However, a narrower band gap restricts the reduction and 
oxidation of photogenerated electrons/holes. In addition, the 
rapid recombination of photogenerated electron–hole pairs 
in semiconductors with a narrow bandgap diminishes their 

photocatalytic activity. Thus, significant effort is being put 
into developing an efficient photocatalyst that uses dop-
ing, coupling with other nanomaterials, precipitation with 
metal particles, crystal growth designs, and heterojunc-
tions. Compared to single-phase semiconductor photocata-
lysts, hybrids of two or more semiconductor systems, such 
as heterojunction, appear to be one of the most promising 
methods for optimizing solar light utilization efficiency. In 
addition, the design of heterojunctions prevents photogen-
erated electron–hole pair recombination and permits rapid 
charge transport. Based on their adjacent band structures, 
heterojunctions can be classified as conventional type-I and 
type-II heterojunctions, Z-scheme heterojunctions, p-n heter-
ojunctions, and homojunction band alignments (Wang et al. 
2012a; Wang et al. 2012b; Su et al. 2011; Liu et al. 2011). 
Recent advances in heterojunction-based photocatalysts 
indicate a promising strategy for boosting photocatalytic 
activity in environmental pollution degradation, hydrogen 
production, and carbon dioxide reduction (De Wolf et al. 
2012). While significant progress has been made in photo-
catalysis over the past few decades, its practical application 
is currently limited due to insufficient activity, poor stability, 
and high cost. There is still a great deal of work to improve 
photocatalyst systems.

Electrocatalysis

In recent years, there has been a growing interest in elec-
trochemical processes for treating polluted waters. The 
ability of electrochemical systems to operate at ambient 

Fig. 3  Band gaps of non-metal oxide and metal oxide photocata-
lysts at a pH of 7. Other non-metals and metals have various band 
gap energies than titanium dioxide. Solar energy can be more effec-
tively adapted to prepare visible-light-driven photocatalysts using 
their properties, which require narrow band gap energy. Additionally, 
doping with other non-metal dopants can narrow the band gap energy 

between the valence and conduction bands. The unit used herein is 
eV (electron volt), which is a unit of energy commonly used in photo-
catalysis research to express the energy of photons or electron excita-
tions. It measures the amount of energy gained or lost by an electron 
when it moves between energy levels in a material.  H2O,  O2, OH, and 
 H2 refer to water, oxygen, hydroxyl, and hydrogen
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temperature and pressure, as well as their robust perfor-
mance and adaptability to changes in the influent compo-
sition and flow rate, are a few advantages over alternative 
methods (Chen 2004). In addition, they typically do not 
require additional chemicals and produce no waste. Besides, 
electrochemical processes can be easily integrated with other 
technologies, such as electrochemical advanced oxidation 
processes (e.g., anodic oxidation, electro-Fenton, and elec-
trocoagulation) (Sirés et al. 2014). Furthermore, the cou-
pling efficiency with biological technologies (e.g., aerobic, 
anaerobic, membrane bioreactors, and microbial fuel cells) 
is also evaluated (Mousset et al. 2021).

In the 1920s, Bowden and Rideal developed electroca-
talysis to measure hydrogen evolution reactions (Wu and 
Hu 2021; Popovski 2004; Boudjemaa 2020). Since then, 
electrochemistry has been extensively studied for energy 
conversion devices (such as batteries, fuel cells, and solar 
cells), electroanalytical sensors, organic synthesis, corrosion 
science, and wastewater treatment applications (Carlesi Jara 
et al. 2007; Zhang et al. 2019a; Comninellis 1994). Using 
palladium dioxide anodes, the degradation of phenolic com-
pounds was studied, creating new opportunities for electro-
chemical applications in wastewater treatment (Wu and Hu 
2021; Nilsson et al. 1973). The ability of electrocatalysis to 
remove various organic and inorganic contaminants, includ-
ing dyes, phenols, pesticides, herbicides, and antibiotics, was 
then investigated (Comninellis 1994; Quiroz et al. 2014; 
Ansari and Nematollahi 2020; Xing et al. 2018).

Electrocatalysis is responsible for initiating or accel-
erating redox reactions in the presence of electrodes by 
supplying an external potential, which an electric field can 
provide. As depicted in Fig. 4, micropollutant degradation 
in an electrocatalysis system is primarily accomplished by 
direct and indirect oxidation processes. Electrocatalytic 
degradation processes consider several variables, includ-
ing electrode materials, electrolytes, water matrices' physi-
cal and chemical properties (e.g., pH, coexisting ions, and 
ionic strength), and operating conditions. An electrode 
conducts electricity, initiates reactions, accelerates elec-
tron transfer, and selectively promotes electrochemical 
reactions. Moreover, catalysts are essential components 
of the electrodes used in the electrocatalytic degradation 
of environmental contaminants.

The choice of electrode material affects the efficiency 
of electrochemical treatment and the possibility of byprod-
uct formation. Electrocatalysts are categorized as either 
metal oxides such as ruthenium dioxide, iridium dioxide, 
lead dioxide, or tin dioxide, or carbon, e.g., boron-doped 
diamonds. Metal-oxide electrodes are categorized as either 
active anodes, such as iridium dioxide and ruthenium diox-
ide, or inactive anodes, e.g., ruthenium dioxide, lead diox-
ide, and tin dioxide. Titanium/lead dioxide is an excellent 
electrode, for instance, due to its high oxygen evolution 

potential, excellent electrical conductivity, chemical stabil-
ity, and low cost. However, the widespread use of titanium/
lead dioxide electrodes is limited due to their distinct disad-
vantages, including relatively high interface resistance, toxic 
lead ion leaching, film instability, and low current efficiency. 
To overcome this disadvantage, either a three-dimensional 
ordered microporous lead dioxide film based on a porous 
titanium substrate (Liu et al. 2017) or an aluminum-doped 
lead dioxide electrode via doping was synthesized (Chen 
et al. 2015). Tin dioxide-based electrodes are commonly 
used, but their wide band gap (3.6 eV) restricts their appli-
cations. Due to its high oxygen evolution potential, stabil-
ity, and excellent electrocatalytic properties, antimony is 
the most used dopant. A tin dioxide-antimony/titanium 
electrode was synthesized using the sol–gel method for the 
electrochemical oxidation of antibiotics (e.g., ciprofloxacin) 
(Wang et al. 2016a). Recently, a titanium/carbon nanotube/
tin dioxide-antimony-erbium electrode was prepared as the 
anode, with the carbon nanotube exhibiting a high specific 
surface area and high oxygen evolution potential in increased 
hydroxyl radical production at the anode (Lei et al. 2020).

In addition, carbon-based electrodes such as boron-
doped diamond, graphite, and carbon nanotubes are com-
monly used due to their low resistance and high chemical 
stability. Still, there is a high cost associated with boron-
doped diamond electrodes. Boron-doped diamond is the 
most frequently used carbon-based electrode due to its high 
oxygen evolution potential, high corrosion resistance, wide 
electrochemical potential window, excellent electrochemi-
cal stability, and low background current, which produces 
more reactive radicals to achieve a higher mineralization 
rate of antibiotics (such as sulfamethoxazole and trimetho-
prim) than other carbon-based electrodes (de Amorim et al. 
2013). However, the reported catalysts for electrochemical 
have been evaluated for environmental remediation applica-
tions; limited efforts have been made for the toxic assess-
ment of pollutants that are not efficiently mineralized via 
electrochemical and electrode materials, which should be 
considered in future research.

Biocatalysis

Biocatalysis is an integral component of the 'green chem-
istry' concept pioneered in the 1990s, and its impact on 
sustainability is now established beyond dispute, as shown 
in Fig. 5 (Alcalde et al. 2006). Compared to conventional 
physical and chemical methods, which have several signifi-
cant drawbacks, such as insufficient purification, low effi-
ciency, high costs, the production of hazardous byproducts, 
and application to a narrow concentration range for miner-
alizing organic compounds from wastewater, this method 
has several significant advantages (Bilal et al. 2019a; Wong 
et al. 2019). To overcome these obstacles, environmental 
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engineers and biotechnologists are developing an innova-
tive bioremediation technique that is efficient, cost-effective, 
and environmentally safe. Enzymes provide new options 
for treating effluent streams containing organic contami-
nants resistant to treatment (Bilal et al. 2019a). Enzymes 
are preferred environmental candidates over whole organ-
isms because isolated enzymes are more specific and easier 
to handle, and their activity can be tailored to the reaction 
conditions more precisely (Sutherland et al. 2004; Pieper 
et al. 2004). Numerous biocatalysts, including hydrolases, 
oxidoreductases, laccases, and peroxidases, are actively 
involved in biological treatment (Kadri et al. 2017).

In addition, it was determined that other microorgan-
isms, such as fungi, algae, and bacteria, could use a cata-
bolic process to degrade pollutants. Recent interest has 
centered on microbial lipolytic enzymes because of their 

ability to catalyze biotransformation reactions involving 
compounds with ester bonds (e.g., converting waste into 
biofuel or other value-added products such as fatty acid 
esters, mono- and diacylglycerols, and others), as listed 
in Table 1 (Kumar et al. 2020a, b). Since enzyme cata-
lysts are typically water-soluble and difficult to recover 
from aqueous solutions, using modified and immobilized 
enzymes is one of the emerging strategies for treating 
target wastes and lipids today. Enzymes were immobilized 
using various techniques (Bilal et al. 2017a, b, c, 2018; 
Zhang et al. 2015) to reuse expensive biocatalysts. It was 
found that enzyme attachment on solid carriers, either 
through physical adsorption or covalent bonds, is one of 
the most practical techniques (Bilal et al. 2018). There-
fore, lipolytic enzymes can reduce the massive amount of 

Fig. 4  Electrocatalytic system's direct and indirect oxidation mecha-
nisms. The anode surface and the target contaminants undergo direct 
oxidation, whereas the anions or  OH− generated on the anode surface 

interact with the contaminants via indirect oxidation.  e−,  OH−,  H+, 
 Fe+2, and  H2O2 refer to electrons, hydroxide ions, ferrous ions, hydro-
gen ions, and hydrogen peroxide, respectively
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Fig. 5  Biocatalytic evaluation and improvement strategies. Bio-
catalysis involves the application of microbes and biocatalysts (or 
enzymes). Many biocatalysts have been engineered by rational and 
directed evolution, contributing to the catalytic activity, enantiose-
lectivity, and stability that are essential for biocatalytic applications. 

This evolution allows using of biocatalysts for the biosynthesis of 
value-added pharmaceuticals and fine chemicals. Investigation of the 
modification of biocatalysts in a short time and recovery of water-
soluble enzymes by enzyme immobilization or assistance with solid 
support attachment greatly enhances the catalytic features of enzymes

Table 1  Waste as a source of lipolytic enzymes and high-value products produced using microbial lipases (Kumar et  al. 2020a). Several 
microbes produces high-economic-value products using lipases as biocatalysts

Waste source Microorganism High economic value Reference

Coconut oil mill waste Staphylococcus pasteuri Lipase and other important extra-
cellular hydrolytic enzymes

Kanmani et al. (2015)

Agro-industrial hydrocarbons and 
oily substances

Two yeast isolates of Yarrowia 
lipolytica

Lipase and citric acid Mafakher et al. (2010)

Grease waste Penicillium chrysogenum Lipase Kumar et al. (2011)
Olive mill wastewater and olive 

oil cake
Yarrowia lipolytica Lipase production Moftah et al. (2013)

Polluted waters by fat materials 
from the Mascara region

Pseudomonas sp. Streptococcus sp. Lipase production Hachemi et al. (2017)

Agro-industrial wastes Engineering Yarrowia lipolytica Lipase and single-cell protein 
production

Yan et al. (2018a)

Waste grease Penicillium chrysogenum Fatty acid Kumar et al. (2011), Pilusa 
et al. (2013), Kumar and Negi 
(2015), Kumari et al. (2017)

Dairy wastewater Penicillium sp. Biogas Rosa et al. (2009)
Slaughterhouses and meat process-

ing wastes
Lipase from Candida rugosa Biogas Cavaleiro et al. (2013)

Poultry slaughterhouse lipid-rich 
waste

Staphylococcus xylosus strain 
exhibiting lipolytic activity

Biogas Affes et al. (2017)
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lipid waste environmentally friendly and address energy 
security concerns.

Furthermore, various soil-derived enzymes, such as 
lipases, dehydrogenases, ureases, and catalases, have 
been proposed as bioindicators for pollution assessments 
(Margesin et al. 2000). Lipase@ZIF-8 nanoparticle-based 
biosensor was used to directly detect methyl parathions 
and organophosphorus pesticides with higher sensitivity 
and lower cost than laboratory-based methods (Herranz 
et al. 2018). However, lipase-based biosensors for biore-
mediation are not yet suitable for commercial use, and 
additional research is necessary for implementation.

Common environmental catalysts

Fields associated with the environment and energy have 
adopted the fostered approaches that use benign sol-
vents and mild reaction conditions and produce limited 
amounts of waste using cost-effective techniques (Chen 
et al. 2017a). The utilization of environmental catalyst 
materials contributes to numerous aspects of the United 
Nations’ seventeen Sustainability Development Goals, 
particularly Goal 12 (enabling responsible production) 
and Goal 13 (climate action). Short preparation time, 
ambient temperature, less hazardous solvents, solvent-
free conditions, simple methods, low energy consump-
tion, and fewer by-products are generally considered to 
be among the most essential characteristics of a green 
synthesis route (Guesh et al. 2017). Remarkably, environ-
mental catalysts materials have been utilized in various 
applications, such as electrocatalysis, organic synthesis, 
biocatalysis, desulfurization, water and soil remediation, 
biomass valorization, biofuel, and hydrogen production, 
among others. To reduce environmental pollution and 
achieve sustainability objectives, numerous materials 
have been engineered to serve as environmental catalysts 
instead of traditional catalysts. Metal–organic frame-
works, biomass- and carbon-based materials, non-noble 
metal nanoparticles, nanocomposites, and enzymes are 
frequently used as environmental catalysts among these 
materials. A diagrammatic illustration of commonly used 
environmental catalysts is shown in Fig. 6.

Biomass‑derived carbon materials

To scale up the technology, scientists must prioritize several 
essential criteria, such as production cost, efficiency, durabil-
ity, and environmental impact. Recently, biomass-derived 
carbon-based materials have been heavily utilized in many 
applications, including energy storage and conversion, sens-
ing, catalysis, and environmental applications (Park et al. 

2022). This was attributed to the outstanding properties of 
carbonaceous materials in terms of good mechanical stabil-
ity, unique electronic properties of carbon atoms, electrical 
conductivity, and structural tenability (Xiao et al. 2022). 
Notably, researchers have introduced many fabrication 
strategies to scale carbonaceous materials, such as arc dis-
charge, laser ablation, chemical vapor deposition, pyrolysis, 
and electrochemical methods, depending on non-renewable 
petroleum carbon sources such as methane, ethylene, and 
other petrochemicals (Wang et al. 2021a). However, these 
strategies unveiled some negative aspects, such as high 
energy consumption, emission of a large amount of green-
house gas carbon dioxide, and environmental pollution. 
For instance, the production of activated carbon consumes 
large amounts of energy (97 MJ/Kg) with an emission of 
6.6 kg/Kg of carbon dioxide. Similarly, graphene produc-
tion's energy demand was 1100–1640 MJ/Kg with a high 
carbon dioxide emission (80 kg/Kg) (Boyjoo et al. 2021). 
On this basis, researchers have attempted to produce novel 
next generations of carbon materials with desirable char-
acteristics such as affordable cost, facile and sustainable 
fabrication strategies, low energy consumption, and eco-
friendly merit. From an economical and sustainable point 
of view, researchers have considered biomass an excellent 

Fig. 6  Common environmental catalysts. Metal–organic frameworks 
are synthesized via metal-linker coordination, forming a uniform 
porous structure. Carbon-based catalysts are widely used as envi-
ronmental catalysts in environmental applications. Non-noble metal 
nanoparticles are considered environmental catalysts under green 
conditions. Nanocomposites have exhibited remarkable performance 
in many environmental applications, and enzymes are biological cata-
lysts consisting of protein and active metal sites
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alternative, renewable organic feedstock to crude oil and 
natural gas (Osman et al. 2022b; Farghali et al. 2022). This 
is ascribed to the abundance of enormous biomass resources, 
including plant and animal-derived materials.

The worldwide annual disposal of food waste was found 
to be equivalent to a third of food production (1300 mil-
lion tons) (Matharu et al. 2016); also, agricultural practices 
generate 570 million tons of waste annually (Morrison and 
Golden 2015). For instance, plant-derived biomass com-
prises three components: (1) inedible portions (lignin, cel-
lulose, and hemicellulose); (2) edible portions (starch, free 
sugars, protein, and vegetable oils (triglycerides); and (3) 
essential oils and other secondary metabolites of high value 
(Sherwood 2020). Accordingly, the exclusion of unnecessary 
wastes and the rational upcycling of those wastes guarantee 
viable, high-quality products, minimize the environmental 
problems related to unwise waste disposal, i.e., waste man-
agement, and achieve the circular economy aspects (Sher-
wood 2020; Clark et al. 2016; Peng et al. 2023).

Recently, biomass-derived carbon materials were estab-
lished as the most sustainable and scalable strategy due to 
the enormous annual production of biomass from agricul-
ture and forestry (104.9 billion tons/year) (Field et al. 1998). 
Interestingly, there are numerous macrostructures with tun-
able porosity in biomass-derived carbon materials, includ-
ing spherical (Xia et al. 2012), reticular (Ubeyitogullari and 
Ciftci 2016), fibrous (Hu et al. 2016), ribbon-like (Ai et al. 
2018), bubble-like (Xie et al. 2018), and plate-like materials 
(Ling et al. 2015), expanding their applications. Besides, the 
remarkable characteristics of such materials outperform the 
noble metals in many aspects, including (1) cost-effective-
ness, i.e., carbon price is 0.03$ per gram while gold price 
is 60$ per gram, silver price is 25$ per gram, and platinum 
price is 34$ per gram; (2) ease of fabrication due to the 
abundance of raw materials; (3) tailorable structure due to 
the presence of heteroatoms, for example nitrogen, oxygen, 
and sulfur, that facilitate the functionalization and enhance 
the catalytic activity (Li et al. 2020; Wu and Zhang 2020). 
However, the synthesis strategy played a crucial role in car-
bon materials' porosity and surface chemistry. Therefore, a 
challenging issue is fabricating a uniform porous structure 
with a well-defined shape of sustainable biomass-derived 
carbon materials.

The world demand for energy has become a quintes-
sential priority for better and sustainable life for humanity. 
The massive emissions of carbon dioxide into the atmos-
phere, which amount to about 30 billion tons annually, have 
severely threatened the environment with issues like global 
warming and air pollution as a result of the overuse of fos-
sil fuels as a major source of energy (about 80%) to sup-
port the industrial revolution and satisfy population growth 
(Seh et al. 2017; Zhang et al. 2020; Panwar et al. 2011). 
According to the international energy agency, atmospheric 

carbon dioxide concentration increased from 280 to 480 ppm 
in 2019 (Chu et al. 2017; Swann et al. 2016). As a result, 
this dangerous environmental crisis has drawn considerable 
public concern. Therefore, many researchers have devoted 
their efforts to creating innovative technologies and strat-
egies and generating an alternative, green, and renewable 
energy source.

The exploitation of hydrogen gas as a clean energy 
source has become a promising approach owing to its non-
toxic combustion by-product and the higher caloric value 
(142 MJ/kg) comparable to fossil and hydrocarbon fuels 
(Muradov and Veziroğlu 2008; Schlapbach and Züttel 
2011). Therefore, great efforts have been exerted to foster 
an alternative strategy instead of the conventional methods 
like steam reforming fossil fuel and water electrolysis, which 
consume a large amount of energy and money (Karayilan 
et al. 2019; Hosseini and Wahid 2016). Subsequently, pho-
tocatalytic water splitting has gained significant interest as 
a sustainable and green strategy to produce hydrogen (Gopi-
nath and Nalajala 2021). Especially, photocatalytic water 
splitting has demonstrated an excellent efficiency of solar 
energy conversion into hydrogen, reaching 5–10%, indicat-
ing its proficiency and possible application on a large scale 
(Arunachalam et al. 2021; Wang et al. 2019a).

Three-dimensional biomass-derived carbon materials 
revealed an excellent performance in different catalytic 
applications due to their large specific surface area, high 
porosity, good conductivity, and propitious thermal and 
chemical stability, as shown in Table 2. In this perspective, 
a sustainable and cost-effective three-dimensional carbon 
aerogel support from seaweed biomass (carrageenan) was 
prepared to boost the efficiency and photostability of cad-
mium sulfide photocatalyst (CdS@CAs) (Quan et al. 2018). 
Carrageenan provided a non-toxic sulfur source, i.e., sulfated 
galactons, that extended across the double helix structure of 
carrageenan and was integrated by cadmium cations, result-
ing in photocatalysts with interconnected macropores and 
mesopores that accelerated the mass transfer of reactants. 
The results exhibited an excellent hydrogen evolution rate of 
113.5 µmol  h−1 with a photocurrent density of 100 µA  cm−2. 
This finding may be attributed to the good electrical con-
ductivity of the photocatalyst that accelerated the photogen-
erated charge separation and the photocorrosion resistance 
of cadmium sulfide. A certain carbon coating thickness for 
cadmium sulfide inhibited the self-oxidation of cadmium-
sulfur bonds by the photogenerated holes. Therefore, cad-
mium sulfide photocatalyst achieved excellent photostability 
after 4000 s under light illumination.

Further, a sustainable strategy for the catalytic hydroly-
sis of ammonia borane (ammonia, borane trihydridoboron, 
ammonia borane) was proposed using magnetically recover-
able ruthenium and cobalt (Ru and Co) bimetallic nanoparti-
cles supported on costless cotton-derived carbon fibers (Ru@
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Co/CCF) (Yang et al. 2018a). Transmission electron micro-
scope and elemental mapping images revealed the uniform 
dispersion of ruthenium and cobalt bimetallic nanoparticles 
with an average diameter of 5–15 nm onto helical-shaped 
carbon fiber support. This was related to the large number 
of –OH functional groups on the surface of the carbon fibers 
that uniformly adsorbed  Co2+. Interestingly, ruthenium and 
cobalt on cotton-derived carbon fibers showed a satisfactory 
turnover frequency (139.59  molH2  molRu

−1  min−1) at 30 °C. 
Due to the cobalt nanoparticles' ferromagnetic properties, 
ruthenium and cobalt on cotton-derived carbon fibers were 
involved in several catalytic cycles with good catalytic activ-
ity and facile recovery by an external magnet. The chemical 
storage of hydrogen could be a promising strategy rather 
than the traditional storage methods such as compression, 
liquefication, and adsorption due to its high volumetric and 
gravimetric hydrogen content (i.e., ammonia. borane trihy-
dridoboron has a molecular weight of 30 g  mol−1 with a 
hydrogen content of 19.6 wt%) (Sadhasivam et al. 2017).

Metal–organic frameworks

Metal–organic frameworks are a dominant category of catal-
ysis owing to their unparalleled characteristics that are not 
wholly exploited, including flexibility, superb reusability, 
immense surface area, unique physicochemical properties, 
and intrinsic structures. In addition, metal–organic frame-
works are synthesized via metal-linker coordination bonds 
in three directions, forming a uniform porous structure (Vas-
anthakumar et al. 2020). Solvothermal is generally the most 
common method to fabricate metal–organic frameworks; 
however, it involves dissolving metals and ligands in organic 
solvents such as dimethyl formamide (Omer et al. 2021; Abd 
El-Monaem et al. 2022). Notably, dimethyl formamide is a 
quite detrimental solvent that decomposes to dimethylamine 
at high temperatures, causing environmental and handling 
problems (Chen et al. 2017a). Hence, for applying the con-
cept of sustainability and avoiding environmental issues, the 
preparation of metal–organic frameworks via solvent-free 
approaches has become a research hotspot. The alternative 
green synthesis methods of metal–organic frameworks are 
sorted into two categories according to solvent amount and 
energy consumption; the first one includes aging (Cliffe et al. 
2012; Mottillo et al. 2013), mechanochemical (Užarević 
et al. 2016; Do and Friščić 2017), and thermochemical 
(Lanchas et al. 2012). In comparison, the second category 
contains microwave-assisted (Liang et al. 2013; Klinowski 
et al. 2011), sonochemical (Song et al. 2016; Yuan et al. 
2016), and electrochemical (Liang et al. 2013; Klinowski 
et al. 2011). Overall, to fabricate metal–organic frameworks 
in a sustainable and green approach, Julien et al. (2017) sum-
marized the main aspects that should be considered (Fig. 7); 
(1) utilizing biocompatible building blocks, (2) eschewing 

bulk solvents, (3) utilizing supercritical liquids or water as 
a solvent, and (4) rationalizing the energy inputs.

Indeed, metal–organic frameworks' heterogeneous 
character and porous nature render them outstanding 
catalysts compared to other catalysts, such as alumino-
silicates, zeolites, and others. (Table 3). In addition, the 
synergistic effect between the Brønsted acid (linker) and 
Lewis acid (metal node) greatly promotes the strength of 
catalytic reactions (Jiang et al. 2014). More importantly, 
the functionality of metal–organic frameworks endows 
them one more merit than conventional catalysis since it 
facilitates the modification of metal–organic frameworks 
with active species, enhancing their catalytic performance 
(Chen et al. 2017b). The introduction of active species to 
metal–organic frameworks typically takes place via three 
strategies: post-synthetic approach, encapsulation of active 
species into metal–organic frameworks, and functionaliza-
tion via the unsaturated metal sites or the organic ligand 
(Dhakshinamoorthy and Garcia 2014; Liu et al. 2014a).

Despite the merits mentioned above of metal–organic 
framework-based catalysts, they suffer a critical short-
coming: the poor stability of their structure, particularly 
in organic solvents and water, limiting their applications 
in water treatment (Tan et al. 2015). The robustness study 
of metal–organic frameworks in water, acidic and basic 
media, and water vapor found that the weak coordination 

Fig. 7  Environmental criteria for metal–organic framework-based 
catalysts. Green metal–organic can be obtained using green solvents 
and less toxic metal salts. The linker should be eco-friendly and pro-
duces biodegradable products with less hazardous by-products. The 
process should be energy efficient, and the metal–organic framework-
based catalysts should have good recyclability and be applied in green 
applications
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bond between metal and linker is the leading cause of oxi-
dative leaching of metal nodes. Thus, the metal-linker coor-
dination bonds' strength has controlled the metal–organic 
frameworks' stability (Rashid et al. 2020). Nevertheless, 
few metal–organic frameworks possess high stability in 
water, especially MIL-family, such as MIL-101 (chro-
mium, iron, aluminum), MIL-100 (chromium, iron), and 
MIL-53 (chromium, aluminum), as well as zirconium-based 
metal–organic frameworks (Schoenecker et al. 2012; Lan 
et al. 2016). Furthermore, porous coordination network-222 
and porous coordination network-224 showed relatively 
high stability in both acidic and basic conditions, while the 
linker protonation of aluminum- metal–organic frameworks 
endows excellent stability in the acidic medium (Feng et al. 
2013; Feng et al. 2012). The stability of zeolitic imidazolate 
frameworks was examined in boiling water, sodium hydrox-
ide, and benzene at different temperatures for seven days. 
The results revealed the superb structural stability of ZIF-8 
in boiling benzene and water for seven days and only 24 h 
in sodium hydroxide solution (Panda et al. 2019). Several 
studies have focused on enhancing the metal–organic frame-
work's stability, suggesting that the linker's basicity is the 
key parameter in the robustness of the metal–organic frame-
work since it controls the bond strength between metal and 
linker (Ali et al. 2021). Owing to these unparalleled advan-
tages, metal–organic frameworks are intensively utilized in 
diversified applications as follows:

Pascanu et al. (2013) fabricated palladium-loaded MIL-
101(Cr)-NH2 composite (Pd@ MIL-101(Cr)-NH2) with 
different loading ratios of Pd (4, 8, 12, and 16 wt%). It was 
observed a diminution in the specific surface area  (SBET) of 
MIL-101(Cr)-NH2 from 2869 to 1321  m2/g and pore vol-
ume from 1.403 to 0.625  m3/g with the increase in the Pd 
loading ratios from 4 to 16 wt%, respectively. This finding 
may be attributed to the particle aggregation of the extra 
amount of Pd. Furthermore, the catalytic activity of the as-
fabricated Pd@ MIL-101(Cr)-NH2 composite was exam-
ined in the Suzuki–Miyaura cross-coupling reaction. It was 
found that the optimal Pb-loading ratio was 8 wt% since 
aryl and heteroaryl bromides and chlorides were coupled in 
eco-friendly solvents  (H2O and ethanol) within a quite short 
reaction time and at an ambient temperature of 80 °C. More 
importantly, the recyclability study depicted the promising 
catalytic activity of 8 wt% for Pd@MIL-101Cr-NH2 even 
after the 10th cycle.

In that context, Nuri et al. (2020) investigated the cata-
lytic activity of Pd-supported amino magnetic MIL-101(Cr) 
composite (Pd@Fe3O4-NH2@MIL-101(Cr)-NH2) toward 
Mizoroki–Heck Cross-Coupling reaction of iodobenzene 
and methyl acrylate. They recorded a decline in the satura-
tion magnetization (Ms) of iron oxide  (Fe3O4) after blind-
ing with Pd and MIL-101(Cr). However, the Ms of Pd@
Fe3O4-NH2@MIL-101(Cr)-NH2 was still sufficient for the 

separation by an external magnet instead of the conventional 
techniques that consumes a long time. Such perfect and easy 
separation is the prominent role of iron oxide since it does 
not possess catalytic activity toward Heck cross-coupling 
reaction. The reusability study displayed the ability of Pd@
Fe3O4-NH2@MIL-101(Cr)-NH2 to reuse for seven cycles 
with no significant decrease in its activity. Furthermore, it 
was suggested that the reduction of the catalytic activity of 
the as-fabricated magnetic composite is most likely due to 
the Pd leaching. Notably, Pd@Fe3O4-NH2@MIL-101(Cr)-
NH2 revealed a high catalytic activity and stability toward 
cross-coupling iodobenzene and methyl acrylate since the 
turnover frequency reached 2438   h−1 within 30  min at 
120 °C.

In one investigation, Alamgholiloo et al. (2021) inspected 
the catalytic activity of magnetic ZIF-67 composite  (Fe3O4/
ZIF-67) toward the degradation of ciprofloxacin through 
peroxymonosulfate activation. The rhombic dodecahedron 
ZIF-67 was greenly synthesized in a benign solvent (meth-
anol). However, ZIF-67 was successfully synthesized via 
a green approach in an eco-friendly solvent, and the yield 
was low (about 57%). Consequently, the green strategies for 
metal–organic framework preparation need further develop-
ments to be applicable in industrial applications.

Notably,  Fe3O4/ZIF-67 composite showed high efficiency 
in degrading ciprofloxacin since the degradation rate reached 
98% during 48 h using 0.4 g/L  Fe3O4/ZIF-67 and 0.5 g/L 
peroxymonosulfate. Furthermore, the pure  Fe3O4 and ZIF-67 
revealed a lower ciprofloxacin degradation efficiency com-
pared to the  Fe3O4/ZIF-67 composite, reflecting the syner-
gistic effect between the pristine components. To determine 
the predominant radical species in the degradation of cip-
rofloxacin, the scavenger effect was studied in the presence 
of isopropyl alcohol, benzoquinone, and ethanol. The result 
clarified that both  SO4·− and ·OH are the controlled radi-
cals. Besides, Electron spin resonance confirmed the same 
result since only the characteristic signals of  SO4·− and ·OH 
appeared in the  Fe3O4/ZIF-67/peroxymonosulfate system. 
These findings indicated that the degradation mechanism of 
ciprofloxacin most probably occurs via the radical pathway.

In another investigation, Chandra et al. (2019) adopted 
the green synthesis approach to fabricate another ZIF MOF 
to photodegrade methylene blue from an aqueous solu-
tion. The core–shell tin dioxide  (SnO2)-ZIF-8 composite 
was fabricated with various ratios of tin dioxide, revealing 
a decrease in the degradation efficiency of methylene blue 
with the increase in the ratios of tin dioxide due to particle 
aggregation. It was reported that the photocatalytic degrada-
tion mechanism of methylene blue using tin dioxide-ZIF-8 
composite occurred as follows: the movement of the gen-
erated  e− and  h+ in the conduction and valance bands of 
tin dioxide to ZIF-8, reducing the recombination of  e− and 
 h+ pair. Then, this  e− and  h+ pair could form ·OH via the 



1332 Environmental Chemistry Letters (2023) 21:1315–1379

1 3

oxygenation of  H2O. Thus, ·OH is the responsible radical for 
the photocatalytic degradation of methylene blue, agreeing 
with several previous studies (Chandra and Nath 2017; Jing 
et al. 2014; Kim et al. 2016).

Further, Gong et al. (2019) successfully prepared a mag-
netic core–shell  Fe3O4@GO@MIL-100(Fe) microsphere 
catalyst using water as a solvent instead of dimethyl forma-
mide in a green and sustainable route. The scanning electron 
microscope and transmission electron microscope images 
of the synthesized materials demonstrated that  Fe3O4 parti-
cles have rough surface spheres with particle sizes ranging 
from 300 to 350 nm. However, a crinkled surface texture 
was obtained after being wrapped with graphene oxide (GO) 
with a 4.5 nm thickness of the GO layer. Upon coating with 
MIL-100(Fe), the MOF layer was 61 nm thick, confirming 
the formation of magnetic core–shell Fe3O4@GO@MIL-
100(Fe) microspheres. The fabricated catalyst was used for 
2,4-dichlorophenol (2,4-DCP) degradation via the photo-
Fenton process with almost 100% efficiency in 40 min. 
The reusability tests revealed that the magnetic core–shell 
 Fe3O4@GO@MIL-100(Fe) catalyst has good stability and 
recycling ability.

Non‑noble metals nanoparticles

Undoubtedly, metal nanoparticles have received immense 
interest in the last few years in the catalysis field owing to 
their unique physical and chemical properties (Song et al. 
2015). Interestingly, it was deduced that the metal catalysts 
in a nano-size possess advanced catalytic performances 
compared to their bulk equivalents since the size and shape 
play significant roles in the chemical activity of the cata-
lyst (Table 3). The catalyst shape impacts its activity and 
selectivity toward the catalytic reactions, while the catalyst 
size controls its specific surface area (Mandić et al. 2017). 
Nonetheless, the fabrication of shape-controlled metal nano-
particles is still a big challenge and a complicated process. 
For this purpose, several strategies have been developed to 
synthesize stable metal nanoparticles with a defined shape, 
such as the addition of inorganic capping agents, organic 
ligands, colloids, polymers, or the fabrication of core–shell 
materials (Campelo et al. 2009).

Among the metals nanoparticles, noble metals have 
revealed exceptional catalytic performance in various 
potential applications (Wang and Astruc 2017). However, 
they could not be classified as sustainable catalysts due to 
their high price, rare abundance on earth, and detrimental 
impacts on the biological system. Contrariwise, the avail-
ability, premium activity, and selectivity of non-noble metals 
have acquired considerable fame among the diverse as more 
favorable catalyst types (Ilies et al. 2020). Therefore, exten-
sive studies have been implemented focusing on preparing 

non-noble metal nanoparticle-based catalysts under green 
conditions, considering using nontoxic solvents and consum-
ing low energy. In addition, the utilization of bio-reducing 
agents such as algal, sugars, glutathione, and mainly plant 
extract (Fig. 8) instead of the toxic reducing agents such as 
sodium borohydride or lithium borohydride. For instance, 
Lohrasbi et al. (2019) fabricated an iron nanocatalyst using 
Plantago as a bio-reducing agent. The transmission electron 
microscope image revealed that the particles are uniform 
spherical with a size range between 4.6 and 30.6 nm.

Furthermore, Din et al. (2018) utilized the wild plant 
Calotropis gigantea as a bio-reducing and stabilizing agent 
to fabricate nickel nanocatalysts. The various characteriza-
tion tools inferred the successful fabrication of nickel in 
a nano-size of 20–40 nm. Thus, such bio-reducing agents 
could fabricate non-noble metal nanoparticles with con-
trolled particle size and shape in some cases (Murphy 2008).

Unfortunately, there are some flaws in non-noble metal 
nanoparticles as catalysts, including their rapid deactivation, 
poor recyclability, and difficult separation. Several previous 
studies have reported that using supported nanoparticles is 
the most effective method among the other approaches to 
overcome these demerits of non-noble metals (Wang et al. 
2021b). However, supported metal nanoparticles provoke 
researchers' anxiety about whether the quite active and dis-
persed supported metal nanoparticles are harmful to human 
tissues or not. On the other hand, no cytotoxicity or cel-
lular oxidative stress was inferred for the unsupported met-
als, although they were retained in human tissues (Campelo 
et al. 2009). In this perspective, Musa et al. (2017) fabricated 
copper nanoparticle-supported nanocrystalline cellulose 
(Cu@NCC) for the catalytic reduction of methylene blue 
in the presence of sodium borohydride  (NaBH4) as a reduc-
ing agent. The following equations represent the proposed 
preparation mechanism of copper nanoparticle-supported 
nanocrystalline cellulose;

To infer the successful preparation of copper nanopar-
ticle-supported nanocrystalline cellulose, the elemental 
composition was examined by X-ray fluorescence, clarify-
ing the presence of Cu in nanocrystalline cellulose (NCC). 
Moreover, the thermogravimetric analysis elucidated an 
improvement in the thermal behavior of NCC after blind-
ing with Cu nanoparticles, proving the interaction between 
NCC and Cu nanoparticles. At the same time, a noticeable 

(1)Cu2+ + NCC →
[

(NCC)∕Cu
]2

(2)
[

(NCC)∕Cu
]2+

+ 2NaOH →
[

(NCC)∕Cu(OH)2
]

(3)

[

(NCC)∕Cu(OH)2
]2+

+ N2H4 →
[

NCC∕Cu
]

+ N2 ↑ + 2H2O + H2
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decline in the surface area of copper nanoparticle-sup-
ported nanocrystalline cellulose was recorded compared 
to that of NCC, most likely due to the dispersion of Cu 
nanoparticles onto the NCC surface and its pores (Ghosh 
et al. 2015). Results confirmed the auspicious catalytic 
activity of copper nanoparticle-supported nanocrystalline 
cellulose toward reducing methylene blue since the reac-
tion completely terminated within merely 12 min. In com-
parison, the unsupported Cu nanoparticles reduced meth-
ylene blue within 44 min. This finding revealed that the 
supported nanoparticles possessed higher catalytic activ-
ity than the unsupported ones. Contrariwise, Kamal et al. 
(2019) pointed out that the unsupported carboxymethyl 
cellulose-stabilized cobalt nanoparticles (CMC-Co) con-
tained higher catalytic activity toward reducing methylene 
blue than the supported carboxymethyl cellulose-stabilized 
cobalt bacterial-cellulose nanofibers (CMC-Co-bacterial 
cellulose nanofibers). This behavior may be explained by 
the availability of the whole surface area of cobalt nano-
particles of carboxymethyl cellulose-stabilized cobalt 
nanoparticles to adsorb the methylene blue molecules. 
In contrast, in carboxymethyl cellulose-stabilized cobalt-
bacterial cellulose nanofibers, the cobalt nanoparticles are 
partly available.

In another attempt, Wang et al. (2017) adopted an innova-
tive technique to prepare an electrocatalyst for the oxygen 
reduction reaction. The platinum-coated cobalt nanoparticles 
(Co@Pt) were fabricated via in situ seed growth approach. 
Such a preparation method enables self-nucleation and 
growth by adjusting the Pt deposition rate to be slower than 
its diffusion rate on the surface (Park et al. 2016). Besides 
the generated CO during the Co growth from cobalt carbonyl 
facilities, the coating of Pt on the Co. Transmission electron 
microscope image inferred the core–shell-like structure of 
platinum-coated cobalt with an average diameter of 10 nm, 
whereas the diameter of the platinum shell was 1 nm. It was 
found that the catalytic activity of platinum-coated cobalt for 
oxygen reduction reaction was enhanced 10 times compared 
to pure platinum.

Furthermore, platinum-coated cobalt exhibited a high sta-
bility potential cycling since the non-noble Co nanoparticles 
were conserved from leaching out by the noble platinum 
nanoparticles shell. This result was consistent with Park 
et al. (2016), which enhanced the durability of nickel–plati-
num (Ni–Pt) electrocatalyst for oxygen reduction reaction 
by coating it with a thin layer of platinum. It was deduced 
that Ni–Pt@Pt protected Ni nanoparticles from leaching; 
however, 11% of Ni was leaching from Ni–Pt. In addition, 
the activity of Ni–Pt dwindles by about 75% after 10,000 

Fig. 8  Synthesis of non-noble metal nanoparticles from plant materi-
als, such as leaves, seeds, flowers, stems, roots, or fruits. The plant 
extract contains a variety of bioactive agents, such as polyphenols and 
flavonoids. These bioactive agents can reduce the metal ions to pro-

duce metallic nanoparticles. The capping agents in the plant extract 
act as capping agents for the metallic nanoparticles. These non-noble 
metal nanoparticles are suitable more preferably-type catalysts.  M0 
refers to metal nanoparticles
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cycles of the oxygen reduction reaction, while the activity 
of Ni–Pt@Pt decreased by only 25%.

Nanocomposites

Using any pure substance as a catalyst has advantages and 
disadvantages, so combining two or more to form compos-
ites is a superior avenue in modern technology. Such an 
approach enables the exploitation of the best merits of each 
substance by overcoming some of its demerits (Ates et al. 
2017). Composites are classified into three groups based on 
their size; micro-composites, macro-composites, and nano-
composites (Paul and Robeson 2008). The extremely high 
surface area, strong interaction between the matrix, and high 
stability of nanocomposites have revealed remarkable activ-
ity (Yu et al. 2006; Xu et al. 2015a). Notably, it was evinced 
that the combination of two active components dramatically 
enhances their catalytic activity (Lin et al. 2019a).

Nonetheless, the rapid growth of nanocomposites dur-
ing the preparation results in hazardous environmental 
issues due to their complex decomposition (Ates et al. 
2020). One of the most feasible solutions to this prob-
lem is utilizing templates to control the size and shape of 
nanocomposites and protect their surfaces, thereby pre-
venting particle aggregation (Yadav et al. 2019). Diversi-
fied commercial temples have been utilized as functional-
izing agents to ameliorate nanocomposites' morphology, 
size, and properties (Table 3). Still, they have revealed 
a fatal environmental risk due to their difficulty degrad-
ing or removing. Hence, synthesizing nanocomposites 
using bio-renewable resources like starch, chitin, vegeta-
ble oils, lignin, natural rubber, and cellulose has drawn 
vast concern to fabricating catalysts with no harsh syn-
thetic approach (Borah et al. 2017). Such nanocomposite-
based sustainable catalysts possess outstanding features, 
including easy preparation, excellent biocompatibility, 
low density, good biodegradability, low cost, flexibility, 

and suitability for modifications (Fig. 9) (Ulu et al. 2018). 
However, these fabricated nanocomposites from bio-
renewable resources still suffer drawbacks limiting their 
industrial applicability, such as low thermal, chemical, and 
mechanical stability (Ates et al. 2020).

Nanocomposites derived from bioresources have exhib-
ited remarkable performance in diverse potential applica-
tions. For instance, Wang et al. (2019b) fabricated chelated 
copper onto polydopamine-coated sand composite (Cu-
PDA@Sand) for the catalytic degradation of the anionic 
Congo red and cationic methylene blue as well as reduc-
tion of 4-nitrophenol. It was found that 4-nitrophenol was 
wholly reduced to 4-aminophenol within 13 min. Further-
more, the color of Congo red vanished after only 6 min, 
while the color of methylene blue dye disappeared after 
9 min, suggesting the reduction of methylene blue (Kim 
et al. 2016; Subair et al. 2016). Moreover, to examine the 
applicability of copper onto polydopamine-coated sand 
composite in industrial applications, the long-term cata-
lytic activity was studied after 30 days. It recorded a slight 
diminution in the apparent reaction rate of 4-nitrophenol, 
Congo red, and methylene blue (about 6%), inferring the 
stability of the copper onto polydopamine-coated sand 
composite. Interestingly, the reusability test showed that 
the catalytic activity of copper onto polydopamine-coated 
sand composite toward the reduction of 4-nitrophenol did 
not decrease yet, even after 20 cycles. These findings con-
firmed the superb catalytic activity, stability, and reusabil-
ity of copper onto polydopamine-coated sand composite.

In another study, Hajipour and Malek (2021) inspected 
the catalytic performance of Co/N-heterocyclic carbene-
supported magnetic chitosan composite (Co/NHC@mCs) 
toward Suzuki and Sonogashira reactions of aryl chlorides. 
Several key parameters were studied to determine the opti-
mal condition for both reactions, including solvent, base, 
catalyst dose, and reaction temperature. It was recorded that 
Suzuki cross-coupling reaction of 1-chloro-4-nitrobenzene 

Fig. 9  Characteristics of the nanocomposite-based sustainable cata-
lysts fabricated from renewable resources. Bio-renewable resources 
such as lignin, starch, and chitin are widely used in nanocomposite-
based sustainable catalysts preparation. Nanocomposite-based cata-
lysts should be flexible and suitable for modifications. Biodegrada-

bility is the primary condition for nanocomposites to be considered 
sustainable catalysts. Low density, biocompatibility, and ease of prep-
aration are among the main criteria of nanocomposite-based sustain-
able catalysts
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with (4-methoxyphenyl) boronic acid achieved a high yield 
(90%) in polyethylene glycol as a reaction medium and 
at 70 °C within 8 h using 3 mol% of Co/NHC@mCs. On 
the other hand, the best yield (84%) in Sonogashira cross-
coupling between 1-chloro-4-nitrobenzene and 1-ethy-
nyl-4- methoxybenzene was obtained in polyethylene gly-
col at 100 °C, using 6 mol% of Co/NHC@mCs. Notably, 
both reactions proceeded without adding Co/NHC@mCs, 
and no product was obtained in these cases. Importantly, 
the recyclability test pointed out the propitious recyclabil-
ity of Co/NHC@mCs since its catalytic activity dwindled 
to only 7% after the seven cycles. Furthermore, the used 
Co/NHC@mCs were characterized by transmission electron 
microscope, and scanning electron microscope displayed no 
change in the morphology compared to the fresh Co/NHC@
mCs. Additionally, the Co-leaching amount that inductively 
coupled plasma mass spectrometry recorded was less than 
2%. At the same time, X-ray diffraction revealed no change 
in the peak intensity after using Co/NHC@mCs for 7 cycles. 
These results suggested the excellent efficiency, stability, 
and reusability of Co/NHC@mCs. In addition to the sustain-
ability of the earth-abundant Co-based catalyst instead of the 
high-cost Pt-based catalysts.

In this perspective, Mohammadinezhad and Akhlaghinia 
(2017) fabricated a costless and efficient nanocatalyst 
 (Fe3O4@Boehmite-NH2-CoII) for both Hecks–Mizoroki and 
Suzuki–Miyaura reactions. The transmission electron micro-
scope image showed the core–shell structure of  Fe3O4@
Boehmite-NH2-CoII, where  Fe3O4 is the core and Boehmite 
is the shell. Furthermore, the particle size of  Fe3O4@Boe-
hmite-NH2-CoII was found to be in the range of 13–54 nm. 
Field emission scanning electron microscope revealed an 
excellent distribution of  Fe3O4@Boehmite-NH2-CoII with 
an average particle size of 20–30 nm. To determine the opti-
mum conditions of the Suzuki–Miyaura coupling reaction 
between 4-iodobenzene and phenylboronic acid, the effect 
of solvents was studied in the presence of dimethyl sulfox-
ide, n-hexane, polyethylene glycol, n-hexane, toluene, tet-
rahydrofuran, n-hexane, ethanol, acetonitrile, and water. It 
was found that water could be utilized as a benign, costless, 
efficient solvent for the reaction. Furthermore, the optimal 
dose of  Fe3O4@Boehmite-NH2-CoII was 0.33 mol%, while 
the further increase in the catalyst dose (22 mol%) did not 
change the rate or the yield of the reaction. However, the 
lower catalyst dose (0.22 mol%) significantly diminished 
the reaction yield. Moreover, to prove the synergistic effect 
between the components of the catalyst, the reaction has 
proceeded in the presence of pristine  CoCl2·6H2O,  Fe3O4, 
magnetic  Fe3O4@Boehmite,  Fe3O4@Boehmite-Pr-Cl, and 
 Fe3O4 @Boehmite-NH2 as catalysts, revealing incomplete 

coupling between 4-iodobenzene and phenylboronic acid 
with conversion yields of 40, 20, 20, 5, 5 and 5% after 24 h, 
respectively.

In another study, Basaveni et al. (2019) fabricated nickel 
(Ni) nanoparticle-based catalyst encapsulated in a support-
ing and stabilizing matrix hyperbranched poly-aromatic 
polymer anched poly-aromatic polymer for the catalytic 
transfer hydrogenation of alkenes and nitroarenes. The 
hyperbranched poly-aromatic polymer matrix acted as a 
control matrix for the nickel nanoparticles' particle size. The 
nickel nanoparticles' size was controlled by encapsulation 
into the cavities of hyperbranched poly-aromatic polymer 
that prevent their aggregations. The ni-hyperbranched poly-
aromatic polymer had high activity and good air stability. 
The catalytic transfer hydrogenation was carried out under 
base-free conditions without the need for high pressure, 
highly acidic conditions, or a strongly flammable hydrogen 
source. The Ni-hyperbranched poly-aromatic polymer cata-
lytic system showed good tolerance toward alkyne, hydroxyl, 
or halogen substituents.

Enzymes

Enzyme biocatalysis has drawn vast attention in industrial 
applications, such as producing antibiotic precursors and 
synthesizing valuable chemical products such as acryla-
mide, detergents, and others (Ottone et al. 2021; Madhavan 
et al. 2021). Enzymes are biological catalysts that consti-
tute a complex protein chain connected to active metal sites 
offering unique selectivity toward the substrate molecules 
and good catalytic activity (Yi et al. 2021; Nazor et al. 
2021). Besides, enzymes have demonstrated excellent cata-
lytic activity in various chemical conversions from simple 
hydrolysis to reaction syntheses, outperforming other tra-
ditional chemical processes (Bell et al. 2021). Therefore, 
enzymes have been involved in many applications, as listed 
in Table 4. Thanks to their intrinsic properties, high selectiv-
ity and turnover number, cost-effectiveness, sustainability, 
and eco-friendly advantage (Zhang et al. 2021a). Owing to 
the biodegradability and sustainability of enzymes, they 
have been extensively utilized in environmental applications 
such as the bioremediation of water and soil pollution (Singh 
et al. 2021; Sellami et al. 2022). Additionally, enzymes have 
exhibited an auspicious catalytic performance in the biore-
finery of waste polysaccharides and agro-industrial residues 
into valuable products such as bioplastics, biofuels, and 
sweeteners (Shiva et al. 2022; Mirpoor et al. 2021; Baptista 
et al. 2021) as well as the revalorization of lignocellulose 
or cellulose wastes into costless biofuels (Fig. 10) (Mathew 
et  al. 2021; Li et  al. 2021). Notably, the high reaction 
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kinetics, selectivity, cost-effectiveness, recyclability, and 
non-toxicity of enzymes render them promising candidates 
in wastewater remediation.

Due to the extensive production of oils, greases, and fats 
over the past few years, estimated as 20–3.8 million met-
ric tons of edible vegetable oils in 2018 (Luo et al. 2020), 
large amounts of waste oil containing organic and inorganic 
loads have been disposed into the aquatic environment, pro-
ducing filamentous microorganism blooms onto the water’s 
surface (Feng et al. 2021). Activated sludge was involved 
in mitigating such aquatic problems, but the floating oil 
effluent limited performance, causing poor sedimentation 
and reduced sludge biomass (Cammarota and Freire 2006). 
Lipases exhibited efficient biodegradation of triglycerides 
(i.e., vegetable oils, fats, greases) rather than traditional 
activated sludge. For example, Meng and co-workers inves-
tigated the anaerobic degradation of three different types of 
triglycerides (animal fat, vegetable oil, and floatable grease) 
involving lipase derived from three different sources, namely 
Aspergillus (lipase I), Candida (lipase II), and Porcine 
pancreatic (lipase III) (Meng et al. 2017). Lipase I and II 
showed an efficient biodegradation rate under appropriate 
hydrolysis conditions (24 h, 1000–1500 µL of lipase vol-
ume, and 40–50 °C), producing byproducts of long chains 
of fatty acids.

In contrast, lipase III showed a modest biodegradation 
performance. These findings confirmed the influence of 
the enzyme’s source on their activity. In another attempt, 
Theerachat et al. (2017) exhibited excellent degradation 
efficiency (93%) of palm oil mill effluent with a high oil 
concentration (7762 mg  L−1) using lipase derived from can-
dida rugosa-cultured yeast cells. However, these enzymatic 
treatments were considered primary processes and needed to 
be accompanied by another treatment process, such as acti-
vated sludge or anaerobic fermentation, to attain complete 
treatment of the fatty acids and glycerol byproducts.

Despite the harsh removal of many micropollutants due 
to their resistance to natural biodegradation, toxicity, and 
presence in nanogram or microgram concentrations in the 
aquatic medium, enzymes demonstrated proficient catalytic 
degradation performance against a diverse range of micro-
pollutants such as pharmaceuticals, pesticides, phenolic 
compounds, and organic dyes. However, their vulnerable 
stability under extreme pH and temperature conditions 
and their poor reusability due to the difficult separation of 
enzymes from reaction media remain challenging. Accord-
ingly, directed evolution and genetic engineering techniques 
(i.e., tuning the sequential structure of genes) have been 
conducted to boost enzymes' stability and catalytic per-
formance (Saravanan et al. 2021; Palomo 2021). Recently, 

Fig. 10  Applications of enzymatic biocatalysis for sustainability. 
Enzymes are utilized in the bioremediation of industrial wastewa-
ter and biofuel production from lignin residues and waste oil. Many 

enzymes are used in the biorefinery field. Enzymes have shown excel-
lent activity in chemical conversion processes
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researchers found that immobilization of enzymes into solid 
support such as organics (natural or synthetic polymers), 
inorganics (silica, zeolites, graphene, titania, alumina), or 
organic–inorganic hybrid materials improves the catalytic 
performance of enzymes, the biocompatibility as well as 
the stability and the reusability considering the economic 
point of view (Ashkan et al. 2021; Zahirinejad et al. 2021). 
Notably, the immobilization strategy and the type of enzyme 
carrier represent crucial factors that directly affect the sta-
bility of the enzymes due to the possible undesired interac-
tions with the solid support and the sluggish mass transfer of 
the target molecules retarding the catalytic interaction with 
enzymes (Nunes et al. 2021). In this context, Mahmoodi 
and Saffar-Dastgerdi (2020) developed a novel biocatalyst 
of laccase covalently immobilized onto zeolite (NZ)-gra-
phene oxide (GO) for the effective removal of Direct red 
23 organic pollutants. Covalent immobilization of laccase 
through salinization and crosslinking of the surface sup-
port via (3-aminopropyl) trimethoxy and glutaraldehyde, 
respectively, provided super stability and higher loading of 
the enzyme. Laccase covalently immobilized onto zeolite 
(NZ)-graphene oxide (GO) exhibited higher degradation 
efficiency by increasing the graphene oxide content from 
3 to 7% due to the accelerated electron transfer from the 
enzyme to the support. Besides, graphene oxide content the 
loading amount of enzyme (350 mg/g) compared to bare 
zeolite support (180 mg/g) (i.e., 1.7 times higher than zeo-
lite). This was attributed to the increased surface area of 
the NZ-GO nanocomposite support concerning bare zeolite, 
enabling a greater loading amount of enzyme.

Interestingly, Laccase covalently immobilized onto zeo-
lite (NZ)-graphene oxide (GO) demonstrated remarkable 
retained efficiency of 95% over 5 cycles, verifying the out-
standing stability of the immobilized laccase. Additionally, 
the immobilized enzyme revealed its superior storage stabil-
ity than the free enzyme, achieving higher catalytic activity 
of 83% after 8 days of incubation comparable to the latter 
(60%). It is worth noting that covalent immobilization pas-
sively affects the catalytic activity of enzymes due to the 
conformational distortion and change in the chemical struc-
ture of enzymes after covalent attachment.

In this stream, Ahmed et al. (2018) exhibited an inno-
vative strategy to immobilize cellulase for sustainable cel-
lulose biorefinery into valuable products. Considering the 
advantage of enzyme immobilization via physical adsorp-
tion, retaining the structured entity, and catalytic activity of 
enzymes, cellulase was successfully immobilized onto UiO-
66-NH2 (cellulase@UiO-66-NH2) under mild conditions. 
Brunauer–Emmett–Teller (BET) measurements declared 
cellulase@UiO-66-NH2 possessed a lower specific surface 
area (269.3  m2  g−1) than pristine UiO-66-NH2 (593  m2  g−1), 
attributed to the pore-clogging by the loaded enzymes, con-
firming the successful immobilization approach. In fact, 

UiO-66-NH2 offered large numbers of -NH2 adsorptive 
sites compared with UiO-66 and achieved a greater cellulase 
loading capacity (350 mg/g) than UiO-66 (102 mg/g). Cel-
lulase@UiO-66-NH2 accomplished outstanding hydrolysis 
of cellulose (85%) rather than free cellulase (60%) under 
conditions of 80 °C and pH = 3–6 in 30 min due to the extra 
stability of the immobilized cellulase. Besides, cellulase@
UiO-66-NH2 demonstrated 72% conversion efficiency after 
10 cycles, outperforming covalently loaded cellulase onto 
 Fe3O4@ UiO-66-NH2 via precipitation and glutaraldehyde 
crosslinking that attained 70% after only 5 cycles. These 
findings established that physical adsorption is a decent 
strategy for improving the catalytic performance of immo-
bilized enzymes.

Synthesis of environmental catalysts

The methods to prepare environmental catalysts are essential 
determinants of their catalytic behavior. Integrating green 
chemistry principles during large-scale syntheses, such as 
moderating energy input, organic solvent issues, and prob-
lematic wastes, is a significant challenge (Rodríguez-Padrón 
et al. 2019a). Jahangiri et al. (2014) defined a triangular 
concept to be tailored in catalyst design to achieve optimal 
performance, which included: (1) chemical-physical proper-
ties (i.e., surface area, porosity, dimension, acidity, composi-
tion, density), (2) catalytic properties (i.e., activity, selectiv-
ity, stability), and (3) mechanical properties (i.e., strength, 
attrition).

Furthermore, these materials' electronic and optical 
properties can be crucial in catalyst optimization (Rod-
ríguez-Padrón et al. 2019a). Each catalyst's synthesis may 
involve a series of complex processes, some of which may 
be unknown (Schwarz et al. 1995). A minor alteration in 
the preparation details can result in a significant change in 
the final catalyst properties. Typically, the trial-and-error 
method was determined to be a viable solution. The conven-
tional procedures for environmental catalyst preparation are 
precipitation (Geus and Van Dillen 2008; Wang et al. 2021c; 
Munnik et al. 2015), impregnation (via deposition, grafting, 
ion exchange, and others) (Munnik et al. 2015; Hafdi et al. 
2021; Baeza et al. 2016), precipitation-impregnation (Ayati 
et al. 2014; Orooji et al. 2021), sol–gel (Mahy et al. 2021; 
Esposito 2019), chemical deposition (Tuna et al. 2022), 
hydrothermal (Mamaghani et al. 2019; Ayati et al. 2015), 
microwave-assisted (Ahmad and Hossain 2022), along with 
other methods (Zhang 2020; Yin et al. 2022). Because of 
its ease of use and low cost, precipitation is the most com-
monly used in preparing environmental catalysts (Rajput 
et al. 2022), where anions and cations combine in solution 
and form insoluble solids or supersaturated forms. Reagent 
addition, precipitate formation by pH, temperature and/or 
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concentration adjustment, flocculation, sedimentation, and 
solid–liquid separation are all steps involved (Rajput et al. 
2022; Wang et al. 2005), as shown in Fig. 11. It typically 
suffered from the separation of the product after precipita-
tion and large volumes of salt-containing solutions (Hutch-
ings and Védrine 2004). It has been extensively used to syn-
thesize single-component, supported, and mixed catalysts 
(Perego and Villa 1997). For example, Chetri et al. (2014) 
successfully used this method to fabricate core–shell  TiO2/
SnO2 and  SnO2/TiO2 nanocomposites with high potential for 
dye degradation under visible light irradiation. Magdalane 
et al. (2019) prepared the tin (IV) oxide/titanium dioxide 
nanostructure via a low-temperature precipitation method 
using tin chloride and titanium isopropoxide as main precur-
sors and starch as a template.

Coprecipitation is one of the most practical approaches 
for fabricating bi-metallic catalysts (Munnik et al. 2015; 
Yao et al. 2018). The coprecipitation technique and depo-
sition–precipitation for the fabrication of supported bime-
tallic catalysts are illustrated in Fig. 12. In this approach, 
the nucleation and growth of combined active metal and 
support are obtained in a single step in the solutions con-
taining both active metal and support salts (Benhiti et al. 
2020; Chen et al. 2016).

Impregnation is another method for improving the 
dispersion of an active phase on either inert or active 

Fig. 11  Parameters affecting the catalyst characteristics using the pre-
cipitation method. All these parameters must be optimized to obtain 
the catalyst-specific features. They can impact the nucleation and/
or crystal growth of structures. So, the size and porosity of catalysts 
can be tuned by the variation of these parameters. Amongst, the solu-
tion composition and precipitating agent play the central role. For 
instance, the type of precipitation agent, such as sodium carbonate, 
sodium bicarbonate, sodium hydroxide, and ammonium  carbonate, 
significantly impacts the final catalyst's characteristics

Fig. 12  Synthesis of a supported bimetallic catalyst via a coprecipita-
tion and b deposition precipitation. The support precursor is added to 
precipitated metal precursors in the coprecipitation approach. In con-
trast, the support material is added to the pH-adjusted metal precur-

sor and urea solution in the deposition precipitation technique. After 
drying, the second metal is deposited by deposition precipitation with 
urea
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support that already possesses desired porous texture and 
mechanical toughness (Hutchings and Védrine 2004). It 
involves three steps (1) contacting the support with the 
solution containing a precursor, (2) drying, and (3) activat-
ing by calcination, reduction, or other suitable treatment 
(Hutchings and Védrine 2004; Perego and Villa 1997). 
The impregnation method can be divided into equiva-
lent impregnation, using a particular carrier quality, and 
excessive impregnation, employing more than the amount 
of impregnation liquid metal salt solution volume. The 
impregnation method produces a catalyst with large par-
ticle size, easy recovery, and reagent-saving advantages. 
Alumina is commonly used support (Kim et al. 2022; Ler-
ici et al. 2022), and silica (Xu et al. 2016; Gai et al. 2022), 
titania (Huang et al. 2022; Lincho et al. 2021; Martín-
Hernández et al. 2012), carbon nanotubes (Afifeh et al. 
2019; Li et al. 2022), metal–organic frameworks (Beni 
et al. 2020), cerium(III) oxide (Liu et al. 2015; Wang et al. 
2016b), are some other employed supports in the synthesis 
of environmental catalysts via the impregnation way.

Actual ion exchange reactions between the precursor 
ions and those of the support surface are required for 
effective interaction in the impregnation process. By add-
ing other competitive adsorption and exchange ions, the 
exchange process can be delayed to improve dispersion 
on the support. In preparing supported Pt° particles, for 
example,  Cl− or  NH4+ ions are commonly added to the 
precursor solutions to improve particle dispersion (Hutch-
ings and Védrine 2004). The literature (Schwarz et al. 
1995; Hutchings and Védrine 2004; Quiton et al. 2021) 
examines the impact of several effective parameters in the 
impregnation approach.

The mechanochemistry synthesis of catalysts for envi-
ronmental applications has also gained the scientific com-
munity's interest as a promising strategy (He et al. 2020a; 
Muñoz-Batista et al. 2018). This alternative solvent-free 
route has the advantages of high versatility, simplicity, and 
reproducibility (Rodríguez et al. 2007). It relies on directly 
absorbing mechanical energy by reagents, usually solids, 
during milling or grinding (Głowniak et al. 2021). Several 
mechanochemical methodologies, including top-down and 
bottom-up, have been developed based on milling equipment 
to transform precursors into the desired structures.

The commonly laboratory-level mechanochemistry syn-
thesis are planetary ball mills, shaker mills, and attritor 
mills (Yin et al. 2022). Each mill possesses its advantages 
and disadvantages, which are extensively compared in the 
review articles (Yin et al. 2022; Espro and Rodríguez-Padrón 
2021). Various mechanochemical synthesis techniques have 
recently progressed, such as solid-state grinding and liquid-
assisted grinding (Xu et al. 2015b).

The mechanochemical routes have been employed to fab-
ricate various environmental catalysts (Ralphs et al. 2013; 

Szczęśniak et al. 2020). High efforts have been made in the 
mechanochemical approach to narrow titanium oxide and 
zinc oxide bandgap and improve its photocatalytic behavior 
through its anionic and cationic doping through a ball mill 
(Pillai et al. 2020; Wu et al. 2019a; Reddy et al. 2019), or it's 
incorporated with various semiconductors, such as iron(III) 
oxide/titanium oxide (Subramonian et al. 2017), hexagonal 
boron nitride/titanium oxide (Fu et al. 2013), vanadium(V) 
oxide/titanium oxide (Mondal et al. 2020), and silver phos-
phate/zinc oxide (Liu et al. 2013a) hybrid composite. This 
considerable enhancement could be due to the decrease 
in particle size and therefore increase in surface area and 
enhancement of charge separation associated with the two 
components.

Similarly, by high-energy ball milling (8 days) and wet 
milling (1 h) to exfoliate graphite carbon nitride, higher pho-
tocatalytic efficiencies were achieved compared to that of 
pristine bulk (Ma et al. 2021). The different graphite carbon 
nitride heterojunctions could form under ball millings, such 
as ultrathin layer sheets (Wei et al. 2021b), sandwich-like 
three-dimensional structures (Ni et al. 2021), and multi-layer 
core–shell structures (Zhou et al. 2015). Also, the synthesis 
or decoration of carbonaceous material [e.g., graphite oxide 
(Ahmad et al. 2018), biochar (Yu et al. 2021a; Fawzy et al. 
2021), and carbon nanotubes (Panahian and Arsalani 2017)] 
using high-energy ball milling provides a rapid and solvent-
less process to intensify their environmental catalytic activ-
ity. Ball milling or liquid-assisted grinding was remarkably 
used as a promising alternative for metal–organic framework 
synthesis and modifications (Głowniak et al. 2021; Chen 
et al. 2019a; Stolar and Užarević 2020). Yin et al. (2022) 
well-reviewed the mechanochemical synthesis of various 
catalysts and reagents for water decontamination.

The conventional sol–gel process based on forming oxo 
bridges by hydrolysis and polycondensation of molecular 
precursors is a widely spread technique employed to syn-
thesize inorganic and organic–inorganic hybrids catalytic 
materials (Debecker et al. 2013; Ciriminna et al. 2011). It 
has the inherent advantages of versatility, controlling the 
composition, structure, and morphology of the final materi-
als, and high product homogeneity and purity, allowing the 
direct production of materials cast upon substrates (Agrafio-
tis et al. 2002). Due to the easy availability of molecular sili-
con sources with moderate reactivities, the most extensive 
research on the sol–gel synthesis of environmental catalysts 
has been conducted on silicate systems (e.g., tetraalkoxysi-
lanes) (Kajihara 2013). The polycondensation and hydrolysis 
of tetraalkoxysilanes resulted in silica gels, which can be 
converted into silica glasses. It involves the partial hydroly-
sis of metallic alkoxides, condensation to create M–O–M 
bonds, and formation of sol by dealcoholation or dehydra-
tion, and finally, the formation of a cross-linked gel during 
aging or drying.
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The most critical parameters in this process are the type 
and number of the alkyl group, water-to-alkoxide ratio, oxi-
dation state and size of cation, pH, time, and temperature. 
Occasionally, chelating agents, such as glycol, acetylacetone, 
and acetyl acetoacetate, are exploited to prevent agglomera-
tion and control crystallite morphology (Kazemi et al. 2020; 
Kim et al. 2020; Debecker 2018). The slow rate of hydrolysis 
and condensation resulted in sols. In contrast, precipitates 
form at slow hydrolysis and fast condensation, polymeric 
gels are synthesized at rapid hydrolysis and slow condensa-
tion (Hutchings and Védrine 2004), and colloidal gels are 
formed at fast hydrolysis and condensation processes. Fig-
ure 13 shows the differences between colloidal and poly-
meric sol–gel methods.

There are many studies carried out on the sol–gel syn-
thesized dopants titanium oxide, such as Rh-doped titanium 
oxide-anatase nanoparticulate (Borlaf et al. 2012), Cerium-
doped titanium oxide nanoparticulate (Xu et al. 2009), and 
some other metal cations (iron, silver, copper, zinc, chro-
mium, aluminum, manganese or cobalt) doped titanium 
dioxide, to decrease the band gap of titanium dioxide and 
enhance its photocatalytic activity in degradation of dif-
ferent organic molecules (Mahy et al. 2018). For example, 
Ping et al. (2002) showed that the  Eu3+ and  Fe3+ doping 
of titanium dioxide nanoparticles improves the photoin-
duced charge separation in semiconductors and the inter-
facial charge transfer process at the semiconductor/solution 
interface. The sol–gel-assisted microwave or hydrothermal 

treatment has also been employed to accelerate the synthesis 
and prepare the model catalysts with ordered mesoporosity 
(Debecker et al. 2013; Falk et al. 2017; Falk et al. 2018). 
Additionally, the binary and ternary oxide catalysts have 
been prepared by the sol–gel process, while by controlling 
the relative reactivities of the two alkoxides, the homogene-
ity of the mixed oxide gels can be engineered (Padmanabhan 
et al. 2022; Ramakrishnan et al. 2021; Mahdi et al. 2022; 
Shubha et al. 2022). As shown in Table 5, a large variety of 
catalytic materials were prepared by the sol–gel approach.

Hydrothermal synthesis is another method induced by 
temperature under aging in the presence of the mother liquor, 
used to modify precipitates, gels, or flocculates, and in par-
ticular, the preparation of mixed oxides zeolites, and other 
molecular sieves (Mamaghani et al. 2019; Yang et al. 2013). 
The concentration, pH, temperature, pressure, and time are 
the most crucial variable in given catalysts (Wang et al. 
2021d, 2022). It is also carried out during other prepara-
tion procedures, such as precipitation, drying, washing, and 
extrusion (Ayati et al. 2015). The molecular sieve materials 
were well synthesized hydrothermally. It involves a classi-
cal precipitation method at a given pH under atmospheric 
pressure. For example, Khan et al. (2020) hydrothermally 
prepared the MFI TS-1 molecular sieve nanosheets using a 
tailored diquaternary ammonium surfactant as the structure-
directing agent. Introducing  Ni2+ cations at its ion-exchange 
sites remarkably enhanced its aerobic alcohol photo-oxida-
tion. In another study, Zhou et al. (2022) synthesized the 

Fig. 13  Comparison between colloidal and polymeric sol–gel meth-
ods. The sol–gel technique creates metal oxides, mainly silicon (Si) 
and titanium (Ti). During the procedure, monomers are transformed 
into a colloidal solution (sol), which serves as the precursor for an 
integrated network (or gel) of discrete particles or network polymers. 

In colloidal sol–gel, the hydrolysis of the metal precursor is fast and 
uncontrolled via the charge generated by the catalyst. On the other 
hand, in the polymeric route, the partial hydrolysis of the metal pre-
cursor is provoked by slow and controlled hydrolysis. The catalyst 
facilitates the hydrolysis reaction in this approach
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controllable MnSAPO-18 molecular sieves at the optimum 
crystallization time of 2 h for ammonia-selective catalytic 
reduction. This massive effort in hydrothermally synthesized 
materials resulted in numerous new structures with a large 
variety of monodisperse pore sizes, mono or tridimensional 
networks, and acidic or redox properties, which has opened 
tremendous hope for new catalysts.

While the synthesis and growth of nanostructures are 
highly sensitive to the reaction conditions, microwave and 
ultrasound irradiation's efficient and controlled energy can 
be a great promise (Gawande et al. 2014). Numerous studies 
have focused on the microwave-assisted method as a power-
ful approach (Kokel et al. 2017) in smart nanoarchitecture 
materials synthesis, particularly environmental catalysts 
(Kumar et al. 2020c). Compared to conventional heating, 
microwave heating operates in deep “inside-out,” high tem-
perature and selective heating mode (Polshettiwar et al. 
2009; Baig and Varma 2012) via the chemical polarity in 
the target compound (Kunal and Toops 2020). So, it is con-
sidered a fast, high-yield, high-purity product, highly repro-
ducible, easily optimized, and more efficient synthesis route, 
which requires lower energy than the conventional methods.

A thorough review of the increasing growth of this 
research field and its performance is provided in the literature 
(Gawande et al. 2014; Kokel et al. 2017; State et al. 2019). 
Nanostructured photocatalysts, including oxides, sulfides, 
and nanocomposites, were fabricated using microwave-
assisted methods (Singh et al. 2019). For instance, ceric 
oxide  (CeO2),  CexSm1−xO2 (Polychronopoulou et al. 2017), 
and copper oxide (CuO)-promoted  CeO2–MxOy (M = Zr, La, 
Pr, and Sm) (Reddy et al. 2012) were fabricated by micro-
wave-assisted method and exploited for carbon monoxide 
oxidation. The tin dioxide quantum dots (Liu et al. 2013b), 
titanium dioxide- reduced graphene oxide  (TiO2-rGO) 
photocatalyst, synthesized through the reduction of gra-
phene oxide in titanium dioxide slurry (Yang et al. 2011), 
ZnO–Y3Al5O12:  Ce3+, UiO-66-NH2 (Solís et al. 2022), and 
dichalcogenide  (NiTe2) (Hussain et al. 2022) some of the 
environmental photocatalysts were prepared under micro-
wave conditions. (Yang et al. 2014) utilized the microwave-
assisted hydrothermal route to prepare permeable titanium 
dioxide microspheres as an efficient photocatalyst to degrade 
a binary of chromium (Cr(VI)) and methyl orange dye.

The uniform distribution of different metal oxides is a 
significant challenge in preparing improved mixed metal 
oxides catalysts. For example, due to the differences in salt 
solubility, preparing homogeneous mutual-dispersed cata-
lysts is difficult through coprecipitation (Chen et al. 2017c). 
The double hydrolysis reaction is a simple, efficient, and 
environmentally friendly metathesis reaction involving the 
ionic compounds swapping their ionic partners (Bai et al. 
2005). A low-cost and speedy preparation method was 
sought for thermally stable alumina-based two-component 

and multi-component materials with high specific surface 
area and loading (Bai et al. 2005; Bai et al. 2009; Do et al. 
2022). (Ullah et al. 2016) exploited the double hydroly-
sis method to synthesize Ni/ZnO-Al2O3, which exhibited 
improved reactive adsorption desulfurization behavior. In 
another study, Do et al. (2022) used this approach to prepare 
highly active Ru-free Ni/Al2O3 for ammonia  (NH3) decom-
position. Recently, (Dong et al. 2022) reported the loading 
of  Nb2O5 nanoparticles on the surface of graphite carbon 
nitride using in-situ hydrolysis-calcination, which showed 
exemplary behavior in the rate of photocatalytic  NH3 decom-
position. The hydrolysis-driven method (Ling et al. 2021) 
was also reported in the highly efficient synthesis of homo-
geneous distributed Mn-Fe binary oxides, which showed a 
more exposed surface area and lower crystallinity.

The flame aerosol processes, including liquid-fed and 
vapor-fed, are the most well-known technologies for the 
large low-cost industrial-scale production of nanocatalysts 
(Sheng et al. 2018; Li et al. 2016b). As an important com-
petitive advantage compared to traditional wet chemistry 
synthesis methods, this approach promotes the ability to 
form both active species and support in a single step (see 
Fig. 14) (Liu et al. 2021b). It gives further flexibility to tailor 
the catalyst structure with desirable performance (Zhao et al. 
2019a; Schimmoeller et al. 2010; Schimmoeller et al. 2011). 
Its most notable challenges are the requirement of volatile 
metal precursors and achieving homogeneous distributions 
in multicomponent catalysts. Figure 15 shows a dependency 
on catalyst characteristics and flame synthesis parameters.

The liquid-fed flame aerosol is the most famous indus-
trial continuous method for large-scale production of tita-
nium dioxide, photocatalysts and fumed silica (Liu et al. 
2021b; Teoh et al. 2010; Kho et al. 2010), and the vapor-fed 
flame aerosol was widely applied to synthesize high sur-
face area oxides, such as iron(III) oxide, aluminum oxide 
(Pratsinis 1998), the aluminum oxide-supported (Jensen 
et al. 2003) and titanium dioxide-based (Almquist and Bis-
was 2002) catalysts. The liquid-fed flame aerosol can select 
a more comprehensive range of precursors (Sheng et al. 
2018). It includes the sub-classes of flame spray pyrolysis 
and flame-assisted spray pyrolysis (Campagnoli et al. 2005), 
depending on the precursor solution combustion enthalpy, 
which is well-reviewed by Liu et al. (2021b). Most kinds of 
homogeneous and highly crystalline nanocatalysts in terms 
of composition have been prepared by flame spray pyrolysis 
by far (Sheng et al. 2018), particularly a wide spectrum of 
metal oxide and noble metal nanoparticles or composites, 
which are in growing in the catalytic processes. Some envi-
ronmental catalysts prepared via flame aerosol processing 
are listed in Table 6. Some of the most recently synthesized 
photocatalysts and electrocatalysts prepared by flame spray 
pyrolysis are also presented in Table 7.
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Fig. 14  Catalyst synthesis procedures of the flame aerosol process (a) 
versus typical conventional wet impregnation methods (b). The use of 
flame aerosol processing provides additional freedom for customizing 
catalyst properties by adjusting a process parameter. The flame aero-

sol process approach allows active species to nucleate from individual 
atoms. Wet chemical techniques sometimes need several posttreat-
ment procedures, such as solvent washing and calcination, which may 
modify the composition and structure of the catalyst

Fig. 15  Effective process property parameters for catalyst design 
through flame aerosol processing. The flame temperature and resi-
dence time are the main factor affecting particle formation. However, 
they are individually dependent on some other factors. Therefore, 

the actual relationship is much more complex. Their interpretation is 
essential to prepare nanocatalysts with desirable characteristics and 
behavior



1347Environmental Chemistry Letters (2023) 21:1315–1379 

1 3

Table 6  Environmental catalysts synthesized by flame spray pyrolysis

Flame spray pyrolysis produced the majority of homogenous and highly crystalline nanocatalysts, especially a variety of metal oxide and noble 
metal nanoparticles or composites, which are increasingly used in catalytic processes.T, CO, and NO refer to temperature, carbon monoxide, and 
nitric oxide, respectively

Catalyst (actives/support) Characteristics Reaction Optimized catalytic perfor-
mance

Reference

Particle size (nm) 
(actives/support)

Specific 
surface area 
 (m2  g−1)

Au–Pd/TiO2

(gold–palladium/titanium dioxide)

1 ~ 2/17 104 Acetylene hydro-
genation

45%  C2H2 conversion, 96% 
ethylene selectivity at 40 °C

Pongthawornsakun 
et al. (2018)

Pt/TiO2

(platinum/titanium dioxide)

2.47/5 ~ 25 64 CO oxidation T50 ≈ 110 °C,  T100 ≈ 120 °C; 
CO reaction rate 
0.13 ×  10−7 mol  s−1  gcatalyst

−1

Zhao et al. (2018)

Pt/Al2O3

(platinum/aluminum oxide)

1.8 ~ 7.7/not 
reported

220 CO oxidation;
NO oxidation

T50
b ≈ 104 °C,  T100 ≈ 108 °C 

CO conversion;
70% NO conversion at 290 °C

Ogel et al. (2019)

Pt/TiO2

(platinum/titanium dioxide)

1.2 ~ 5.45/not 
reported

64 CO oxidation T100 ≈ 100 °C after 300 °C 
calcination;

T100 ≈ 200 °C after 600 °C 
calcination;

Bi et al. (2019)

Pt/TiO2-Co
(platinum/titanium dioxide–cobalt)

0.72/5 ~ 25 60 CO oxidation T50 ≈ 40 °C,  T100 ≈ 70 °C; 
CO reaction rate 
5.46 ×  10−7 mol  s−1  gcat

−1

Pt/TiO2-N
(platinum/titanium dioxide–nitrogen)

1.34 ~ 4.29/not 
reported

61 CO oxidation T100 ≈ 120 °C after 300 °C 
calcination;

T100 ≈ 150 °C after 600 °C 
calcination;

CuO/TiO2

(copper oxide/titanium dioxide)

 < 4/15 ~ 20 70 ~ 98 CO oxidation T50 ≈ 92 °C,  T100 ≈ 120 °C Chen et al. (2019b)

CuO/CeO2

(copper oxide/ceric oxide)

NA/25.6 ~ 32.8 39 ~ 54 CO oxidation T50 ≈ 70 °C,  T100 ≈ 120 °C; 
keep 90% conversion for 
23 h at 1.7% water vapor 
condition

Zhao et al. (2019b)

CuO/CeO2-Mn
(copper oxide/ceric oxide–manganese)

NA/27 ~ 37 31 ~ 45 CO oxidation T50 ≈ 93 °C,  T90 ≈ 131 °C; 
keep 100% conversion for 
9 h at 1.7% water vapor 
condition

Zhao et al. (2019a)

Hopcalite 5 ~ 10 111 ~ 178 CO oxidation in a 
humid atmos-
phere

T90 ≈ 90 °C at dry condition; 
Keep above 50% CO conver-
sion for 1 h in 75% humidity 
at 50 °C

Wegner et al. 
(2019)

Hopcalite 5.2 ~ 5.7 133 ~ 193 CO oxidation in a 
humid atmos-
phere

Keep above 65% CO conver-
sion for 1 h in 75% humidity 
at 50 °C

Wegner et al. 
(2018)

Ru/SiO2-Al2O3

(ruthenium/silicon dioxide–aluminum oxide)

5.4 ~ 7/18 ~ 22 133 ~ 243 Fischer–Tropsch 
synthesis

37% CO conversion at 240 °C Wang et al. (2020)

LaCoO3

(perovskite-type oxide)

6.14 ~ 9.39 23 ~ 95 CO oxidation T100 ≈ 175 °C Angel et al. (2020)

La1-xAxBO3

(perovskite-type oxide)

11 ~ 14 55 ~ 79 CO, NO, 
 CxHy three-way 
oxidation

85% CO, 60% NO, 80% 
 CxHy conversion at 500 °C

Simmance et al. 
(2019)

Bi-Mo-Fe-Co oxide
(Multicomponent oxide catalysts)

5 ~ 30 52 Propylene oxida-
tion to acrolein 
and acrylic acid

90% propylene conversion, 
around 40% acrolein, and 
50% acrylic acid selectivity 
at 330 °C

Sprenger et al. 
(2018)
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Analysis of catalyst structure

It is well established that the activity and the selection of 
a particular catalytic application of the catalyst strongly 
depend on its structure and intrinsic properties. On this 
basis, the structural characterization of a catalyst is a cen-
tral topic to be considered. Moreover, different charac-
terization techniques should be involved to assess the suc-
cessful fabrication of heterogeneous catalysts and explore 
their inherent properties. Thus, the following section 
will discuss some intrinsic properties of heterogeneous 

catalysts such as surface area, porosity, crystallinity, ther-
mal stability, and electronic properties based on several 
characterization tools, including Brunauer–Emmett–Teller 
analysis, powder X-ray diffraction, thermogravimetric 
analysis, electron microscopy, and X-ray photoelectron 
spectroscopy as follows:

Brunauer–Emmett–Teller isotherm analysis

The catalytic activity of heterogeneous catalysts is con-
trolled by two intrinsic properties: (1) the high surface area 

Table 7  Some recently used photocatalysts and electrocatalysts prepared by flame spray pyrolysis

H2, CO, NO, and ww refer to hydrogen, carbon monoxide, nitric oxide, and warm white, respectively
“–” not reported

Catalyst Reaction Structure Optimal catalytic performance Reference

Dopant content 
(wt% or mol%)

Particle size 
(nm)

Specific 
surface area 
 (m2  g−1)

Zinc oxide (ZnO) Carbon diox-
ide reduction

– 16.8 ~ 21.6 Not reported H2:CO≈1 with a current den-
sity of 40 mA  cm−2 at 2.6 V 
for 18 h

Daiyan et al. 
(2020)

Nitrogen-doped titanium 
dioxide (N-TiO2)

Phenol degra-
dation

0.5 ~ 7 42 ~ 88 16 ~ 26 50% yield under six F8T5 ww 
lamps

Boningari et al. 
(2018a)

Nitrogen-doped titanium 
dioxide (N-TiO2)

Phenol degra-
dation

– 6 ~ 88 17 ~ 22 50% yield under six F8T5 ww 
lamps

Smirniotis et al. 
(2018)

Sulfur-doped titanium 
dioxide (S-TiO2)

Acetaldehyde 
degradation

0.18 ~ 0.38 122 ~ 311 4.8 ~ 12.3 60% yield under six F8T5 ww 
lamps

Boningari et al. 
(2018b)

Palladium-doped 
titanium dioxide (Pd-
TiO2)

NOx removal 0.1 – 87 80% NO conversion, 50% aver-
age  NOx removal efficiency 
in 5 h under sunlight

Fujiwara and 
Pratsinis 
(2018)

Platinum-doped 
titanium dioxide (Pt-
TiO2)

Steam reform-
ing methanol

0.5 1.3/10 ~ 25 70 – Chiarello et al. 
(2018)

Silver-doped titanium 
dioxide (Ag-TiO2)

Nitrate reduc-
tion

0.1 21 61 14.5%  NO3– conversion, 
0.175 mmol/hour  gcatalyst rate 
at 5.11 pH under 200 W Hg 
light

Bahadori et al. 
(2019)

Copper oxide-titanium 
dioxide (CuO-TiO2)

Water splitting 
hydrogen

2 6 ~ 40 144 112.6 μmol  h−1 h production 
rate under 300 W Xe lamp

Yang et al. 
(2018b)

Cerium-doped titanium 
dioxide (Ce-TiO2)

Methylene 
blue degrada-
tion

24 5 ~ 45 Not reported 70% methylene blue degrada-
tion efficiency after 3 h under 
150 W Xe lamp

Mikaeili et al. 
(2018)

Tin dioxide
(SnO2)

Carbon diox-
ide reduction

– 9 ~ 14 81 ~ 146 85% formate conversion 
with a current density 
of − 23.7 mA  cm−2 at − 1.1 V

Daiyan et al. 
(2019)

Iron-doping in 
double perovskite 
 (PrBaCo2(1-x)Fe2xO6-δ)

Oxygen evolu-
tion reaction

– 5 ~ 30 43 ~ 56 50 mV  dec−1 Tafel slope, 19.7 
A  g−1 current density at 1.55 
 VRHE

Kim et al. 
(2019)

Platinum on graphite 
carbon nitride (Pt-g-
C3N4)

Water splitting 
hydrogen

3 10 ~ 20 81.85 41.18 μmol  g−1  h−1  H2 produc-
tion rate under 400 W R7S 
lamp

Papailias et al. 
(2020)

Perovskite structures 
 (LaCo1-xFexO3)

Oxygen evolu-
tion reaction

0 ~ 60 Fe 6 ~ 7 Not reported 10 mA  cm−2 current density at 
1.64 V

Alkan et al. 
(2019)

Ethanol oxida-
tion

10 mA  cm−2 current density at 
1.58 V
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of the catalyst that offers large numbers of active sites, and 
so boosting the catalytic performance; and (2) the sufficient 
pore size of the catalyst that facilitates the diffusion of reac-
tants to the internal active sites. Brunauer–Emmett–Teller 
isotherm measurement is the most commonly used tool to 
assess heterogeneous catalysts' specific surface area, pore 
volume, and pore size distribution. It measures the amount 
of nitrogen gas molecules adsorbed on the surface of porous 
material at liquid nitrogen temperature, so the sample capac-
ity to adsorb certain amounts of nitrogen gas molecules rep-
resents the specific surface area. For instance, surface analy-
sis shows a type I adsorption–desorption isotherm model 
with microporous nature of citrate-capped  Fe3O4@UiO-
66-NH2 nanocomposite (MU-2) (Prakash Tripathy et al. 
2022). Remarkably, MU-2 exhibited higher specific surface 
area and pore sizes (572.13  m2/g, 1.65 Å, 6.72 Å) than pris-
tine UiO-66-NH2 (510.38  m2/g, 1.58 A°, 6.23 A°), confirm-
ing the in situ growth of the UiO-66-NH2 particles onto the 
magnetic nanoparticles without clogging the metal–organic 
frameworks’ pores. Accordingly, MU-2 demonstrated higher 
photocatalytic hydrogen evolution (417 µmole  h−1) rate than 
UiO-66-NH2 (115 µmole  h−1).

Thermogravimetric analysis

Thermogravimetric analysis is the most commonly used tool 
to inspect the thermal stability of heterogeneous catalysts. 
The thermogravimetric analysis explores the weight loss (%) 
over different temperatures. The weight loss profile for a 
material is usually donated in the first derivative form, and 
the peak position refers to a specific component decomposi-
tion temperature (Zhang et al. 2019b). Notably, the thermal 
assessment environment (i.e., air, oxygen, nitrogen) plays a 
crucial role in the thermal behavior of the catalyst.

Powder X‑ray diffraction

It is noteworthy that the crystal phase directly influences het-
erogeneous catalysts' adsorption and catalytic performance. 
Besides, the catalytic process possibly changes the structural 
integrity and crystallinity of the catalyst. Powder X-ray dif-
fraction provides a powerful route to recognize the crystal-
lographic structure, purity, and crystal phase of the prepared 
catalysts, as well as the crystal phase stability and integrity 
after the catalytic process. In addition, powder X-ray diffrac-
tion can primarily measure the crystalline particle size using 
Scherrer’s equation (D = Kλ/β cosθ, where D represents the 
mean size of crystallite domains, K represents a dimension-
less shape factor, λ represents X-ray wavelength, β represents 
the broadening of the diffraction peak at its half maximum, 
and θ is the Bragg angle). Song et al. (2022b) studied the 
effect of different crystalline phases on the photocatalytic 
performance of Ni-MOF. Based on density functional theory 

(DFT) calculations, Ni-MOF(H2O) with rhombic crystalline 
phase attained more negative adsorption energy for carbon 
dioxide molecules (− 0.85 eV) than monoclinic Ni-MOF 
(− 0.62 eV).

Moreover, the Ni-C bond in Ni-MOF(H2O) (1.87 Å) 
was shorter than Ni-MOF (1.95 Å). These findings veri-
fied the better carbon dioxide adsorption performance of 
Ni-MOF(H2O) than Ni-MOF and the decisive role of the 
crystal phase differences. Accordingly, Ni-MOF(H2O) 
accomplished 1.8 times higher photocatalytic conversion of 
carbon dioxide into carbon monoxide (34 µmole after 6 h) 
than Ni-MOF.

Morphological characterization

Scanning electron microscopy has been commonly used 
to visualize the nanocatalyst's crystalline morphology and 
ascertain the catalyst's structural stability beyond the cat-
alytic reaction. Wu et al. (2019b) used scanning electron 
microscopy to explore the morphology of Ni nanoparticles 
entrapped in microporous graphene-like carbon (Ni@MGC). 
Scanning electron microscope images depicted that the 
MGC support showed a crystalline morphology similar to 
NaY zeolite. Notably, Ni@MGC revealed structural defects 
after the catalytic carbon dioxide methanation process, 
which was attributed to the reaction of the carbon material 
with the by-product water at high temperatures. It should 
be noted that the electron beam scanning the surface of the 
specimen may cause damage, producing a distorted image. 
Field emission scanning electron microscope overcomes this 
issue, engaging a highly focused electron beam that raster 
the surface of the specimen, forming a spot (0.4–5 nm) and 
generating a high-quality three-dimensional image for the 
sample.

Transmission electron microscopy involves a highly 
accelerated electron beam that passes through a thin speci-
men or fine powder, providing information about the internal 
structure and morphology, size of tiny particles, dispersity of 
the metal nanoparticles onto a solid support, and the atomic 
arrangement.

X‑ray photoelectron spectroscopy

X-ray photoelectron spectroscopy is a non-destructive tech-
nique that studies the electronic state, composition, and con-
tent of the elements of the surface atoms. X-ray photoelec-
tron spectroscopy can not only identify the elements but also 
can recognize the other elements bonded to these elements. 
Based on the photoelectric effect, X-ray photoelectron spec-
troscopy measures the kinetic energy and number of emitted 
core electrons from the surface atoms, giving a composi-
tional analysis of the surface elements (i.e., element con-
tent and oxidation state). Furthermore, X-ray photoelectron 
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spectroscopy can elucidate the catalytic mechanisms and 
stability of the catalyst by tracking the change in the oxida-
tion states of each element after the catalytic reaction. For 
example, Wang et al. studied the mechanism of the catalytic 
peroxymonosulfate activation using mesoporous carbon 
framework-supported Cu–Fe oxides (Wang et al. 2022b). 
The intensity of the two peaks corresponding to  Cu2+ and 
 Cu+ at 934.4 eV (26.2–12.4%) and 933 eV (36.4–47.5%) 
of Cu  2p3/2 spectrum changed after the catalytic reaction. 
But, the Fe 2p3/2 spectrum survey showed a slight change in 
the peak’s intensity, revealing the remarkable activity of Cu 
instead of Fe within the mesoporous carbon support.

Moreover, the O is spectrum survey assured the catalytic 
contribution of the surface –OH groups, exhibiting observ-
able changes in the terminal and bridging -OH groups at 
532.9 eV and 531.2 eV, respectively. It is worth noting that 
X-ray photoelectron spectroscopy is a surface-sensitive tech-
nique that can only recognize the elemental composition 
of the atoms at only 0–10 nm depths. Nevertheless, X-ray 
photoelectron spectroscopy can identify the content and 
chemical composition of the deeper atomic layer using the 
ion-beam etching method. Such an approach has paved the 
way to study the electronic properties of several types of 
samples, such as thin films, graphene, and aligned carbon 
nanotubes at different depths.

Applications

Water remediation

In light of recent demographic developments, the global 
population is projected to increase by 29.9%, or 9.8 billion 
people, by 2025 (Bielecki et al. 2020). Similarly, numerous 
studies indicate that 30% of the world's population lacks 
access to safe drinking water (Wan and Wang 2021a, a, b, c, 
b). This is attributable to improperly discharging contami-
nated effluents into aquatic environments (Liu et al. 2021c). 
Organic and inorganic pollutants and dangerous biological 
infections are the primary contributors to water contamina-
tion (Lim et al. 2011). Heavy metals, dyes, and emerging 
organic contaminants (i.e., antibiotics, detergents, veteri-
nary, pesticides, personal care, insecticides, oil spills, and 
food additives industries) are a diverse category of highly 
toxic water pollutants that have attracted significant atten-
tion from the legislative and scientific communities due to 
their widespread presence in the environment (Elgarahy 
et al. 2021a; Hüesker and Lepenies 2022; Cheng et al. 2020; 
Singh et al. 2020). Researchers have studied a multitude of 
operational methods, such as filtration (Zhang et al. 2021b), 
ion exchange (Liu et al. 2021d), coagulation (Cui et al. 
2020), and chemical precipitation (Kalaitzidou et al. 2020) 
for wastewater treatment.

Recent years have seen the widespread application of 
environmental catalysis in various commercial and industrial 
sectors to protect the environment and enhance the quality 
of our lives. It can effectively mitigate water pollution, oxi-
dize organic particles, reduce nitrogen oxide emissions from 
power plants, and regulate volatile organic compound emis-
sions. Researchers have extensively researched water and 
wastewater remediation (Ali et al. 2021; Ihsanullah 2020). 
Among various scenarios, catalytic oxidation or reduction 
strategies (i.e., photocatalysis and advanced oxidation pro-
cesses) have substantially progressed in treating wastewater 
containing pollutants (Kumar et al. 2020d; Russo 2021).

Advanced oxidation pathways (i.e., catalytic wet oxida-
tion, electrochemical oxidation, sonochemical oxidation, 
photochemical oxidation, and ozone oxidation) can gener-
ate active transient species such as hydroxyl (HO·), chlorine 
(Cl·), alkoxyl (R·), hydroperoxyl  (HO2·), superoxide  (O2·−), 
and sulfate  (SO4·−), based on the employed catalyst or the 
oxidant type, and breakdown the hazardous pollutants into 
safe and biodegradable intermediate molecules (i.e., acetone, 
acetic, and oxalic acids) (Antonopoulou and Konstantinou 
2019). Carbon dioxide, water, and inorganic ions are oxi-
dation end products with no sludge formation. The pro-
cess involving a catalyst may be suppressed whenever the 
catalyst is removed from the reaction or by the action of 
inhibitors (i.e., alcohols, phenols, and sugars, among others). 
The catalysis process can generally be classified as either 
homogenous or heterogeneous. During homogenous cataly-
sis, the catalyst is dispersed in an aqueous solution or gas 
mixture with the reactants (i.e., a single phase of catalyst and 
reactants). In contrast, heterogeneous catalysis occurs when 
there are multiple phases (i.e., the catalyst is solid, and the 
reactants are liquid) (Antonopoulou et al. 2021). Advanced 
oxidation processes have evolved into promising wastewater 
remediation technologies in this context.

Fenton catalysis

Because of its broad applicability, the Fenton catalysis pro-
cess is regarded as one of the most promising advanced 
oxidation technologies for cleaning aquatic systems. These 
reactions generate transient species, primarily through 
decomposing the oxidant  H2O2 into hydroxyl radicals (·OH), 
which further attack and oxidize the target pollutants. Its 
distinguishing characteristics are its operational capabilities 
under ambient conditions, the nonselective nature of ·OH 
radicals, and the conversion of contaminants into harmless 
byproducts of carbon dioxide and  H2O. Combining these 
procedures with others, such as ultraviolet or sonic irradia-
tion, which produce more OH· and facilitate the regenera-
tion of the  Fe2+ catalyst from  Fe3+, can improve their effi-
cacy (Bokare and Choi 2014; Ochando-Pulido et al. 2017). 
For instance, the mechanism of  OH• formation via Fenton 
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catalysis can be classified into homogenous and heterogene-
ous processes (Brink et al. 2017; Vorontsov 2019). In turn, 
the homogeneous process is subdivided into conventional 
and modified (i.e., Photo-Fenton, Electro-Fenton, Sono-
Fenton, and combinations/hybrid Fenton pathways) pro-
cesses (Zhang et al. 2019c; Nidheesh et al. 2018; Miklos 
et al. 2018), whereas the heterogeneous process utilizes 
zero-valent state metal catalysts, synthesized iron support-
ing catalysts, iron minerals and waste-derived catalysts, and 
nanomaterials (Thomas et al. 2021). The entire homogenous 
Fenton catalysis is highly complex, involving oxidation and 
coagulation processes as presented in Eqs. (4–17) (Babupon-
nusami and Muthukumar 2014; Garcia-Segura et al. 2016).

Numerous variables (i.e., catalyst concentration, surface 
area, solution pH, oxidant, and ionic strength) significantly 
impact the efficacy of Fenton reactions. In addition to the 
differences in operational parameters and wastewater char-
acteristics, the need for optimization studies before their use 

(4)
Fe2+ + H2O2 → Fe(OH)2+2 → Fe3+ +∙ O H + OH− k = 40 − 80 L ⋅mol−1 ⋅ s−1

(5)Fe3+ + H2O2 → Fe2+ +∙ O2H + H+ k = 10−3 − 10−2 L ⋅mol−1 ⋅ s−1

(6)
R +∙ O H → R∙ + H2O k = 107−1010 L ⋅mol−1 ⋅ s−1

(7)R +∙ O H → R∙O H k = 107 − 1010 L ⋅mol−1 ⋅ s−1

(8)R∙ + Fe3+ → R+ + Fe2+

(9)R+ + OH−
→ R−OH

(10)Fe2+ +∙ O H → Fe3+ + OH− k = (2.5 − 5.0) × 108 L ⋅mol−1 ⋅ s−1

(11)
Fe

2+ +∙
O

2
H → Fe

3+ + HO
−
2

k = (0.7 − 1.5) × 10
6
L ⋅mol

−1
⋅ s

−1

(12)
Fe

3+ +∙
O

2
H → Fe

2+ + O
2
+ H

+

k = (0.3 − 2.1) × 10
6
L ⋅mol

−1
⋅ s

−1

(13)∙O H +∙ O2H → H2O + O2 k = 1.4 × 1010 L ⋅mol−1 ⋅ s−1

(14)
2∙O2H → H2O2 + O2 k = (0.1 − 9.7) × 107 L ⋅mol−1 ⋅ s−1

(15)2∙OH → H2O2 k = (5.0 − 8.0) × 109 L ⋅mol−1 ⋅ s−1

(16)∙OH + H2O2 →
∙ O2H + H2O k = (1.7 − 4.5) × 107 L ⋅mol−1 ⋅ s−1

(17)
∙O2H + H2O2 →

∙ O H + H2O + O2 k = 3.0 L ⋅mol−1 ⋅ s−1

in wastewater treatment is emphasized by the differences in 
operating parameters (Guo et al. 2018). Table 8 displays the 
wastewater remediation applications of homogenous (i.e., 
conventional and modified) Fenton catalysis processes.

The heterogeneous process operates on the same princi-
ples as the homogeneous process; however, the generation 
of ·OH is catalyzed on the surface of heterogeneous catalysts 
(X), as depicted in Eqs. (18–19). Both Fenton catalysis and 
reactant adsorption occur concurrently on the binding sites 
on the substrate's surface. After completing the process, 
the produced molecules are released (desorbed) from the 
binding sites, allowing new reactant molecules to bind to 
the vacant adsorptive sites (Queirós et al. 2015; Sreeja and 
Sosamony 2016).

The as-used catalyst should possess several desirable 
physicochemical properties, including cost-effectiveness, 
high reactivity for ·OH generation, a large surface area, a 
porous structure, physical and chemical stability, resist-
ance to attrition and poisoning phenomena, and reusability. 
Table 9 summarizes the wastewater reclamation applications 
of the heterogeneous Fenton catalysis method. In addition, 
the heterogeneous Fenton process has several advantages 
over the widespread process, such as operational capacity 
over a broad pH range, a reduction in the formation of iron 
sludge and the associated cost issues, easy handling, and 
efficient recovery of as-used catalysts.

Photocatalysis

Photocatalysis is a photo-promoted chemical reaction that 
occurs on the surface of the semiconductor substrate, i.e., 
photocatalyst, to produce reactive species, which are primar-
ily forwarded to various applications, i.e., water pollutants 
degradation, microbes’ disinfection, and hydrocarbon fuels 
production. The induced electrons (e−) and holes (h+) result-
ing from the photo-excitation state migrate to the surface of 
the catalyst, undergo a series of reactions, and produce non-
selective oxidizing active radicals, which react with various 
water pollutants, i.e., heavy metals, organic dyes, pesticides, 
herbicides, phenols, antibiotics, and others, via various redox 
reactions (Ohtani 2013). One way to operate photocatalysis is 
to utilize solar energy to produce chemical energy from the 
collected solar energy, transfer the simulated electron through 
photocatalysis, and eliminate organic pollutants (Huang et al. 
2021). Several variables influence the efficacy of the degrada-
tion process, including solution pH, system temperature, initial 
pollutant concentration, irradiation intensity, catalyst type, cat-
alyst dose, radiant flux, and oxygen concentration (Anwer et al. 

(18)X − Fe2+ + H2O2 → X − Fe3+ +∙ O H + OH−

(19)Fe3+ + H2O2 → X − Fe2+ +∙ O2H + H+
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2019; Adeel et al. 2021; Nisar et al. 2022). Equations (20–26) 
represent the overall photocatalysis process (Antonopoulou 
and Konstantinou 2019; Wang and Zhuan 2020).

(20)Photocatalyst + hv → Photocatalyst +
(

e
−
CB

+ h
+
VB

)

Table 8  Applications of homogeneous (i.e., conventional and modi-
fied), Fenton catalysis process for wastewater remediation. BOD5, 
COD, BOD, AOX, and TOC refer to five-day biochemical oxy-

gen demand, chemical oxygen demand, biological oxygen demand, 
adsorbable organic halides, and total organic carbon, respectively. 
 H2O2 refers to hydrogen peroxide

Wastewater type Target parameter Running condition Removal (%) Reference

Pulp bleaching wastewater BOD5/COD pH = 2.0, time = 10.0 min, temperature = 60.0◦C, 
 [Fe2+] concentration = 12.5 mM, and 
 [H2O2] = 169.0 mM

0.05–0.09 Ribeiro et al. (2020)
COD 8.0
AOX 82.2
Color 2 folds higher

Benzene dye production BOD5/COD pH = 4.1, time = 60.0 min, temperature = 25.0◦C, 
 [Fe2+] concentration = 360.0 mM, and 
 [H2O2] = 1000.0 mM

0.08–0.49 Guo et al. (2018)
TOC 75.2
COD 85.3
Color 99.9

Containers and drum cleaning BOD5/COD pH = 3.0, time = 160.0 min, temperature = 25.0◦C, 
 [Fe2+] concentration = 4.92 mM, and 
 [H2O2] = 1324.0 mM

0.38–0.42 Güneş et al. (2019)
COD 86.8
BOD5 89.1
TOC 89.6

Recovered paper mill wastewater COD pH = 3.8, time = 60.0 min, temperature = 25.0◦C, 
 [Fe2+] concentration = 3.60 mM, and 
 [H2O2] = 13.24 mM

63.0 Brink et al. (2017)
Phenol  > 85.0

Municipal landfill leachate COD pH = 4.0, time = 24.0 h, temperature = 25.0◦C, 
 [Fe2+] concentration = 24.35 mM, and 
 [H2O2] = 800.0 mM

94.0 Trapido et al. (2017)
BOD5 99.0
Phenol 100

Pharmaceutical TOC pH = 3.3, time = 2.2 h, temperature = 25.0◦C, 
 [Fe2+] concentration = 19.05 mM, and 
 [H2O2] = 384.0 mM

71.6 Xie et al. (2016)
AOX 90.8

Textile Color pH = 3.5, time = 30.0 min, temperature = 25.0◦C, 
 [Fe2+] concentration = 4.2 mM, and 
 [H2O2] = 4.0 mM

77.0 Bae et al. (2015)
Aromatics 78.0
COD 84.0

Slaughterhouse wastewater COD pH = 3.0, time = 60.0 min, temperature = 25.0◦C, 
 [Fe2+] concentration = 2.0 mM, and 
 [H2O2] = 130.0 mM, and ultrasound = 40.0 kHz

77.0 Rahmani et al. (2019)

Paper mill wastewater TOC pH = 3.0, time = 12.0 h, temperature = 25.0◦C, 
 [Fe2+] concentration = 0.5 mM, 
 [H2O2] = 0.0 mM, and Current Den-
sity = 20 mA  cm−2

83.0 Klidi et al. (2019)

Pulp and paper mill
wastewater

COD pH = 2.5, time = 20.0 min, tempera-
ture = 25.0◦C,  [Fe2+] concentration = 0.0 mM, 
 [H2O2] = 29.41 mM, and Current intensity = 1.0 
A

91.7 Altin et al. (2017)

Pulp bleaching
wastewater

BOD5/COD pH = 2.0, time = 10.0 min, tempera-
ture = 60.0◦C,  [Fe2+] concentration = 1.0 mM, 
 [H2O2] = 178.0 mM, and ultraviolet lamp = 150.0 
W

0.05–0.09 Ribeiro et al. (2020)
COD 20.0
Color 76.0
AOX 89.4

Landfill leachate BOD5/COD pH = 3.5, time = 45.0 min, tempera-
ture = 25.0◦C,  [Fe2+] concentration = 1.07 mM, 
 [H2O2] = 264.7 mM, and Current Density = 2.3 A

0.18–0.40 Seibert et al. (2019)
Suspended solids 26.3
BOD5 30.2
COD 68.0
Aromatics 89.2
Color 92.4
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First-generation, second-generation, and third-gener-
ation photocatalysts are distinguished from one another. 
Examples of first-generation photocatalysts include metal 
oxides, sulfides, phosphates, and nitride compounds.  TiO2, 

(21)
Photocatalyst

(

h
+
VB

)

+ H2O → Photocatalyst + H+ + HO∙

(22)Photocatalyst
(

h
+
VB

)

+ OH−
→ Photocatalyst + HO∙

(23)Photocatalyst
(

e
−
CB

)

+ O2 → Photocatalyst + O∙−
2

(24)O∙−
2
+ H+

→ HO∙
2

(25)2 HO∙
2
→ O2 + H2O2

(26)H2O2 + O∙−
2

→ HO∙ + OH− + O2

as previously mentioned, is the most common and well-
known single-component (first-generation) type. The pri-
mary drawback of the first-generation kind is the large band 
gap (i.e., > 3 eV) and the rapid recombination of photoin-
duced  (e−) and  (h+), which reduces the catalytic efficiency 
(Li et al. 2015; Intarasuwan et al. 2017). Several second-gen-
eration photocatalyst modifications, such as heterojunction 
construction, co-catalyst loading, quantum dot sensitization, 
and metal oxide doping with metals/nonmetals, have been 
implemented to address the issues mentioned above (Luo 
et al. 2021).  BiVO4/Ag3VO4,  WO3/NiWO, graphite carbon 
nitride/Ag3VO4, and  Bi2O2CO3/Bi2S are typical examples 
of second-generation photocatalysts used for photocatalytic 
degradation of methyl red, methylene blue, malachite green, 
and rhodamine B, with the activity of 78%, 92%, 97%, and 
98%, respectively (Yan et al. 2016; Mohamed et al. 2014; 
Wang et al. 2014; Wang et al. 2013). However, the disadvan-
tages of second-generation photocatalysts include difficulties 

Table 9  The applications of heterogeneous Fenton catalysis process for wastewater remediation. Several wastewater organics contents and other 
parameters can be reduced using catalysts

BOD5, COD, BOD, DOC, and TOC refer to five-day biochemical oxygen demand, chemical oxygen demand, biological oxygen demand, dis-
solved organic carbon, and total organic carbon, respectively.  H2O2 refers to hydrogen peroxide

Wastewater type Target parameter Running condition Removal (%) Reference

Tannery wastewater COD pH = 4.8, time = 120.0 min, tempera-
ture = 25.0◦C, mixed-iron coated olive 
stone catalyst dosage = 4 g  L−1, and 
 [H2O2] = 37.42 mM

58.4 Vilardi et al. (2018)
Phenol 59.2

Olive mill wastewater BOD5/COD pH = 3.5, time = 60.0 min, tempera-
ture = 25.0◦C, ion exchange dosage = 40.0 g 
 L−1,  [Fe2+] concentration = 0.895 mM, and 
 [H2O2] = 735.3 mM

0.38–0.50 Reis et al. (2018)
BOD5 75.0
COD 81.0
Phenol 97.0

Pulp bleaching
wastewater

COD pH = 3.0, time = 120.0 min, tempera-
ture = 24.0◦C,  [Fe0] concentration = 8.95 mM, 
and  [H2O2] = 29.41 Mm

58.4 Sevimli et al. (2014)

Textile wastewater DOC pH = 2.8, time = 74.0 min, temperature = 25.0◦C, 
 [Fe3+: oxalate] concentration = 1.79:5.37 mM, 
 [H2O2] = 53.0 Mm, and solar irradia-
tion = 20.2 kJ  L−1

74.0 Manenti et al. (2015)
Color 100.0

Textile wastewater BOD5/COD pH = 3.0, time = 30.0 min, temperature = 25.0◦C, 
magnetic biochar composite catalyst concen-
tration = 1.0 g  L−1, and  [H2O2] = 8.824 Mm

0.26–0.68 Zhang et al. (2018a)
COD 47.0
TOC 49.0

Textile wastewater BOD5/COD pH = 3.5, hydraulic retention time = 60.0 min, 
temperature = 25.0◦C,  [Fe2+] concentra-
tion = 0.36 mM, and  [H2O2] = 2.0 Mm

0.21–0.39 Karthikeyan et al. 
(2011)Suspended solids 6.3

BOD5 83.0
TOC 83.0
COD 91.0
Aromatics 100.0

Plywood manufacturing wastewater COD pH = 3.0, time = 24.0 h, temperature = 22.0◦C, 
 [Fe2+] concentration = 7.073 mM, and 
 [H2O2] = 90.62 Mm

80.0 Bolobajev et al. (2014)

Semicoke landfill leachate BOD7/COD pH = 3.0, time = 24.0 h, temperature = 22.0◦C, 
 [Fe2+] concentration = 6.446 mM, and 
 [H2O2] = 59.29 Mm

20.0 Bolobajev et al. (2014)
COD 65.0
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in separation and recovery of as-used photocatalysts, high 
operational costs (i.e., high energy and pressure require-
ments), and the possibility of catalyst leaching into the 
aqueous medium, and a decrease in the catalytic activity 
of reusable photocatalysts (Munshi et al. 2017). Immobiliz-
ing photocatalysts on solid substrates has been proposed to 
overcome these obstacles with photocatalysts of the third 
generation. Metallic nanocrystals, carbon nitrides, and boron 
nitrides are some of their varieties. The photocatalysis appli-
cations for the degradation of various water pollutants are 
presented in Table 10.

Electrocatalysis

Electrocatalysis is a chemical-free electrochemical process 
in which an electrode at the electrode–electrolyte interface 
serves as both an electron donor or acceptor and a catalyst 
(i.e., accelerates the rate of charge transfer). Similar to the 
photocatalytic process, where the cathodes and anodes repre-
sent the reduction and oxidation reaction sites, respectively. 
The only variation is when reduction and oxidation reactions 
occur separately on separate electrodes. Electrocatalysts are 
substrates that can reduce the activation energy of a reaction 

by modulating the binding energies without altering the ther-
modynamics of the reaction (Qian et al. 2021). The homoge-
nous electrocatalysts are not commercially applicable but are 
of scientific interest. Generally, high-quality catalysts should 
be cost-effective, chemically and physically stable, and pos-
sess excellent porosity for efficient mass transfer. Enzymes 
and inorganic coordination complexes are homogenous elec-
trocatalyst examples, whereas nanomaterials, metal–organic 
frameworks, and carbon-based materials are heterogenous 
electrocatalyst examples (Khan et al. 2018b).

Biomass valorization and product upgrading

Sustainability is the development that meets the current gen-
eration's needs without compromising the ability of future 
generations to meet their own needs. The role of environ-
mental catalysis in achieving sustainability is crucial. The 
valorization of biomass is one of the most significant issues 
addressed by environmental catalysis (Rodríguez-Padrón 
et al. 2019b). Biomass is one of the most abundant and 
renewable sources of energy. The majority of biomass, 
about 60–80% is composed of carbohydrates, which can be 
divided into structural polysaccharides such as chitin, cel-
lulose, and hemicellulose, and storage carbohydrates, i.e., 

Table 10  Applications of photocatalysis for the degradation of water pollutants

Catalysts can be used to degrade antibiotics, several dyes, pesticides, heavy metals, and other chemical contaminants. “–” not reported

Target water pollutant Photocatalyst material Surface 
area 
 (m2  g−1)

Band gap 
energy 
(eV)

Degrada-
tion (%)

Reference

Ciprofloxacin Photocatalyst/cadmium sulfide
(Bi3TaO7/CdS)

32.87 2.98 27.0 Xu et al. (2020)

Methylene blue dye Carbon nanotubes (CNTs)/ titanium dioxide 
 (TiO2)/ silver (Ag) nanoparticles/surfactant

nanocomposites

146.0 2.25 100.0 Azzam et al. (2019)

Phenol Graphite carbon nitride on carbon nanotubes/ 
 BiVO4

34.99 2.70 75.0 Samsudin et al. (2019)

Gemifoxacin Zn-colayered double hydroxide
composite

95.76 1.83 60.4 Gholami et al. (2020)

Chromium (VI) Titanium dioxide @carbon/cadmium sulfide
(TiO2@C/CdS)

81.06 3.14 96.0 Yin et al. (2020)

Methylene blue dye Copper sulfide—cadmium sulfide nanocom-
posite

(CuS-CdS)

27.11 2.2 99.0 Mahanthappa et al. (2019)

Tetracycline Calcite/titanium dioxide  (TiO2) 130.33 – 90.6 Belhouchet et al. (2019)
Glyphosate Bismuth oxybromide (BiOBr)/magnetite 

 (Fe3O4)
47.38 1.75 97.0 Cao et al. (2019)

Phenol Cerium oxide – – 92.24 Ahmad et al. (2020)
Malathion Tungsten trioxide/titanium dioxide

(WO3/TiO2)
99.3 3.11 63.0 Ramos-Delgado et al. (2013)

Iodosulphurum Nitrogen-doped titanium dioxide  (TiO2) 150.0 – 74.0 Kralchevska et al. (2012)
Acephate Mesoporous material/ cobalt tetraoxide

(MCM-41/Co3O4)
608 1.51 81.0 AbuKhadra et al. (2020)

Sulphamethaxazole Zinc oxide (ZnO) nanostructures 7.5 – 84.0 Makropoulou et al. (2020)
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starch, sucrose, and inulin (Sheldon 2016). Lignocellulosic 
biomass, the fibrous substance that makes up plant cell 
walls, is composed of lignin, hemicellulose, and cellulose 
of (10–25%), (15–30%), and (40–60%), respectively (Wang 
et al. 2017b; Osman et al. 2020b). Due to its accessibil-
ity, biomass feedstock has become one of the most valu-
able sources for obtaining alternative fuels and commodity 
chemical compounds, including alcohols, alkanes, bio-
hydrocarbons, glycerol, succinic acid, lactic acid, olefins, 
levulinic acid, vanillin, muconic acid, furfural, sorbitol, and 
others (Bayu et al. 2019; Elgarahy et al. 2021b). Since then, 
biomass valorization has been regarded as an intriguing 
subject. The effective upcycling of waste biomass (such as 
corn stover, rice husks, and wheat straw) into valuable bio-
fuels, biomaterials, and commodity chemicals can be accom-
plished via so-called chemo-catalytic and bio-catalytic strat-
egies, depending on the biomass type, availability, desired 
end products, and process economics. The pretreatment 
(fractionation process) is an essential step for modifying 
the lignocellulosic structure into the primary constituents, 
thereby generating highly reactive lignocellulosic materials 
for subsequent catalytic upgrading to valuable biofuels and 
chemicals (Jing et al. 2019).

Chemical pretreatments, e.g., acid, alkaline, organosolv, 
ionic liquid, co-solvent, and deep eutectic solvents, physical 
pretreatments, e.g., steam explosion, ammonia fiber explo-
sion, liquid hot water, and supercritical fluid, and biological 
pretreatment stages can be distinguished, i.e., enzymatic, 
and whole microbes (Bhatia et al. 2020; Chuetor et al. 2021). 
By utilizing thermochemical treatments, e.g., pyrolysis and 
gasification, and biological treatment, e.g., hydrolysis, fer-
mentation, and anaerobic digestion, lignocellulosic feed-
stock valorization by fractionation, depolymerization, and 
upgrading can be accomplished (Akor et al. 2021). Each 
product of pyrolysis and gasification, such as bio-oil and 
syngas, can be further processed to generate liquid fuels or 
leading chemicals. Syngas can be used as a fermentation 
feedstock to produce acids, diols, and other compounds 
(Widayatno et al. 2016; Kurnia et al. 2017).

The lignocellulosic feedstock can also be hydrolyzed 
into lignin, cellulose, hemicellulose, and residual proteins. 
Their further hydrolysis may yield the monosaccharides 
pentose (C5) and hexose (C6), which constitute their pri-
mary structural components. Several platform lignin-derived 
commodities can be obtained via aqueous phase reforming, 
i.e., alkanes, hydrolysis, i.e., hydroxymethylfurfural, and 
separate hydrolysis and the fermentation/simultaneous sac-
charification and fermentation by diverting (processing) the 
intermediates resultant monosaccharides, i.e., acids, alco-
hols, and diols (Ishola et al. 2013). The use of catalysts, i.e., 
homogeneous, heterogeneous, and enzymatic, has a signifi-
cant effect on optimizing process parameters and enhancing 
the distribution and quality of the products. Typically, an 

efficient catalyst should be supported by three essential char-
acteristics: activity, stability, and selectivity. For instance, 
various types of catalysts have been adopted, including 
alkali or alkaline metals, activated carbon, fly ash, dolo-
mite, zeolites, i.e., natural, hierarchical, two-dimensional, 
and three-dimensional, and others (Yu et al. 2021b; Duan 
et al. 2021; Islam 2020; Mardiana et al. 2022; Trinh and 
Chang 2021; Gao et al. 2011; El-Nahas et al. 2020).

Biofuels, e.g., bio-ethanol, biodiesel, jet fuel, bio-butanol, 
and biogas, as well as petroleum hydrocarbons, e.g., eth-
ylene, propylene, butenes, butadiene, ethanol, propanol, 
butanols, furfural, gasoline, kerosene, aromatics (BTX), 
isoprene, isobutene, butadiene, and farnesene, can be pro-
duced through depolymerization, isomerization, epimeriza-
tion, dehydration and hydration, retro-aldol, and reduction or 
oxidation reactions, operated by diverse chemo-catalytic and 
bio-catalytic pathways (Yang et al. 2016b; Delidovich and 
Palkovits 2016; Bayu et al. 2018). Moreover, the resultant 
monosaccharide sugar units produced from the depolym-
erization of biomass content can be converted into count-
less value-added chemicals such as hydroxymethylfurfural, 
levulinic acid, 2,5-Furandicarboxylic acid, γ-valerolactone 
(GVL), and others (Mariscal et al. 2016).

Lignin is considered one of the most promising renewable 
resources for producing abundant bio-products such as aero-
gels, bioplastics, carbon-derived materials, dye dispersants, 
guaiacol, and vanillin. In addition, the lignin content can serve 
as a suitable carbon precursor for producing various carbona-
ceous nanomaterials, including carbon nanotubes, fullerene, 
graphene, and graphene quantum dots. Due to their unique 
properties, these materials have gained great attention and are 
employed in various industrial sectors of energy storage mate-
rials, i.e., supercapacitors, photocatalysts, and lithium-ion bat-
teries. Alternatively, lignin-based compounds, such as sodium 
lignosulfonate and hydroxypropyl sulfated alkaline lignin, can 
be used as dyes dispersing substrates due to their high adsorp-
tion dispersive efficiency, potent thermal stability, and durabil-
ity (Liu et al. 2019). Economically, biodegradable lignin-based 
bioplastics are viewed as a viable alternative to non-biodegrad-
able conventional plastics, i.e., petroleum-based polymers, due 
to the presence of multiple reactive moieties, i.e., carboxyl 
and hydroxyl, reasonable glass transmission temperatures, and 
their thermoplastic properties. Aerogels are a distinct class of 
advanced solid-state materials with exceptional physicochemi-
cal properties, such as an open mesoporous framework, a large 
surface area, enormous pore volumes, and a very low density. 
They can be used in numerous industries, such as adsorbents, 
acoustics, electromagnetic interference shielding, and others 
(Cho et al. 2018).

It is believed that biomass-derived cellulose is the most 
sustainable material capable of producing inexpensive bio-
derived ionic liquids, i.e., cellulose-tetrabutylammonium 
bromide and cationic cellulosic poly ionic liquid. They 
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have proven to be effective carbon dioxide absorbers with 
enhanced recyclability. In addition, they have exceptional 
loading capacities for various water pollutants, superior 
selectivity, accelerated loading rates, and excellent recycla-
bility. In addition, biocompatible cellulose-based compos-
ites can be utilized as catalysts, supercapacitors, drug car-
riers, antibacterial, and batteries, among other applications 
(Suhas et al. 2016). Due to their low cost, large surface area, 
potential for functionalization, and fluorescence, carbon dots 
derived from cellulose could be utilized in several scien-
tific fields, including biosensors, bioimaging, photocataly-
sis, solar cells, and optoelectronic devices. Cellulose-based 
aerogels are primarily used in thermal insulators, electrode 
materials, and wastewater treatment applications due to their 
hydrophilicity, biodegradability, low thermal conductivity, 
sonic velocity, and refractive index (Long et al. 2018).

Compared to lignocellulosic and cellulosic bioproducts, 
hemicellulose-derived bioproducts are the most limited. Due 
to their cost-effectiveness, biocompatibility, and renewabil-
ity, they are ideally suited for certain potential applications, 
such as the production of pharmaceutical carriers. The 
hemicellulose-based films are excellent packaging materials, 
wound dressings, and drug capsules. In addition, hemicel-
lulose-derived hydrogels served as pharmaceutically viable 
candidates for drug delivery systems due to their tolerance 
to various pH, solvent composition, temperature, and ionic 
strength variables (Sun et al. 2013). In addition, the biosor-
bents derived from hemicellulose exhibit significant adsorp-
tion capacities for various water pollutants (i.e., dyes, heavy 
metals, phenol, and others) (Xiang et al. 2022).

Biofuel and hydrogen production

Biofuel production

Biomass is viewed as a promising resource for producing 
biofuels, one of the best alternatives to fossil fuels for sus-
tainable energy production. Attempting to generate energy 
from biomass components (such as lignin, cellulose, and 
hemicellulose, among others) simultaneously reduces waste 
production and satisfies our future energy demand. Biomass 
can be converted into valuable biofuels such as bioethanol, 
biodiesel, and biohydrogen via multiple bio-refinery and bio-
transformation scenarios. Biomass is a renewable, sustain-
able, and cost-effective resource (Cai et al. 2017; Li et al. 
2018b; Al-Mawali et al. 2021; Al-Muhtaseb et al. 2021). 
Due to the inexhaustible supply of feedstock, biofuels can 
be utilized in various contexts. Depending on feedstock 
type, biofuels can be divided into the first, second, third, 
and fourth generations (Osman et al. 2021a). The first gen-
eration is produced directly from edible biomass (starch), 
whereas the second generation uses non-edible biomass, 
i.e., crop wastes. Marine-derived raw materials, i.e., algal 

biomass, can be incorporated into the third generation of 
biofuel production. Lastly, the fourth-generation harnesses 
bioengineered (genetically modified) microorganisms to pro-
duce biofuels (Osman et al. 2021a).

To produce biofuels, thermochemical, i.e., combustion, 
hydrothermal liquefaction, torrefaction, pyrolysis, and gasi-
fication, biochemical, i.e., anaerobic digestion and micro-
bial fermentation, and chemical, i.e., transesterification, 
conversion techniques are widely utilized (Osman et al. 
2021b; Najeeb et al. 2021). Using either homogeneous or 
heterogeneous catalysts throughout the process, the catalytic 
conversion of biomass is a rapid and effective expanding 
technique for biofuel production. Homogeneous catalysts, 
e.g., acid and base catalysts, enzyme-based biocatalysts, e.g., 
lipase-based and acyl acceptor catalysts, and heterogeneous 
catalysts are among the various types of catalysts, i.e., solid 
acid catalysts, solid base catalysts, and ion exchange resin 
catalysts. The heterogeneous solid acid catalysts are divided 
into metal-based and carbon-based catalysts. In contrast, the 
heterogeneous solid base catalysts are divided into oxide-
based, boron-based, carbon-based, and waste-derived cata-
lysts (Vasić et al. 2020). They have been studied to convert 
biomass into biofuels efficiently. Fundamentally, there are 
challenges associated with using homogeneous catalysts, 
such as the energy-intensive separation process. However, 
they yield better yields in a shorter amount of time.

In contrast, heterogeneous catalysts are inexpensive and 
environmentally benign materials with simple product sepa-
ration, but they pose a challenge for rational nanoscale cata-
lyst design (Najeeb et al. 2021; Bohlouli and Mahdavian 
2021). Typically, homogeneous catalysts are used to convert 
biomass into biofuels. The primary disadvantages of these 
homogeneous catalysts are soap production under alkaline 
catalytic conditions and the caustic nature of the acidic cata-
lyst. Typically, the reaction rate of biocatalysts is slow, but 
they have high selectivity for product synthesis and minimal 
environmental impact. Heterogeneous catalysis is chosen 
over homogeneous and biocatalyst catalysis because it is 
more effective in selectivity and reactivity. In the presence 
of heterogeneous catalysts, thermochemical processes may 
improve product selectivity and increase energy efficiency 
by decreasing activation energy.

The catalytic pyrolysis process has been identified as an 
efficient and effective method for producing biochar, liquid 
oil, and syngas from biomass in an oxygen-free environ-
ment using supporting catalysts. Approximately 40% of the 
produced biofuels (crude bio-oil) contain oxygenated com-
pounds. In addition to its physicochemical properties, the 
bio-oil production yield depends heavily on the feedstock 
source and the various operational parameters, i.e., heating 
temperature, heating rate, inert gas type, inert gas flow rate, 
and others. Numerous studies have applied solid acid cata-
lysts such as silica (Tan et al. 2018), zeolites (Paysepar et al. 
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2018), Nickel-supported catalysts (Santamaria et al. 2019), 
and silicoaluminophosphate (SAPO) catalysts (Chen et al. 
2018) during the conversion of biomass into hydrocarbons 
(i.e., pyrolysis) with varying selectivity. The gasification 
of biomass is a subject of significant scientific interest at 
present. Producing gaseous fuel by burning biomass in a 
gasification medium, i.e., air, oxygen, and steam, at high 
temperatures, i.e., 500–1500 ℃, and pressures, i.e., 30–40 
bars, maximizes the released gas.

Several studies have been performed on biomass gasifi-
cation (Zhu and Zhuang 2012). Calcined dolomites or their 
related minerals, i.e., magnesite, calcite, and limestone, are 
frequently employed for hot gas cleaning (Gil et al. 1999). 
Some common catalysts (such as Ni- and Re-based catalysts) 
are also used to limit the coke production from tar (Kıpçak 
and Akgün 2018; Jin et al. 2018). Moreover, the introduced 
noble metal Rh catalyst admirably decreased the tar content 
in the product (Zhang et al. 2018b). Various types of cata-
lysts such as native/modified zeolites, metal oxides, metal 
phosphates, metal–organic frameworks, and siliceous sup-
porting materials are used to decompose biomass feedstock 
at moderate running (hydrothermal conditions) temperatures 
into phenolic compounds and sugars, i.e., mono- or oligosac-
charides, which are then catalyzed to produce  C5–C6 sugars 
(Li et al. 2016c; Huang and Fu 2013).

In the transesterification process, the triglycerides in veg-
etable oils, animal fats, or waste cooking oil feedstocks typi-
cally react with alcohols, i.e., methanol, ethanol, butanol, 
and hexanol, via a series of chemical reactions in the pres-
ence of an acid or base catalyst to form fatty acid methyl 
esters (FAME biodiesel) and glycerol (reaction byproduct). 
Diverse critical parameters, including catalyst loading, cat-
alyst porosity, catalyst surface area, catalyst particle size, 
hydrophilic or hydrophobic characteristics of catalyst, cal-
cination temperature, leaching phenomenon, reaction time, 
working temperatures, alcoholic factor, blending and stir-
ring, and alcohol: oil molar ratios, have a significant impact 
on the biodiesel production yield and quality (Kumar and Ali 
2013; Dhamodaran et al. 2017). The catalyst in the reaction 
provides a greater number of active sites for the catalytic 
reaction process, resulting in increased catalytic activity 
and a higher biodiesel conversion yield. However, adequate 
quantities of as-used catalysts must be optimized to prevent 
an uncontrollable increase in the viscosity of the alcohol-oil 
mixture. To purify its stream, produced crude diesel must 
be neutralized and passed through various cleaning-up sce-
narios (such as dry-washing, membrane extraction, water 
washing, and washing with adsorbent or water) (Bertram 
et al. 2009). Viscosity kinetics and dynamics, density, acid 
or neutralization number, cetane number, cloud point, and 
pour point should be thoroughly investigated (Agarwal and 
Das 2001). Table 11 displays a variety of distinct biodiesel 
production catalysts currently in use.

Hydrogen production

Due to limited fossil fuel suppliers, rising energy demand, 
and the urgent need to protect diverse forms of life on our 
planet to mitigate the effects of climate change, recent efforts 
have been concentrated on exploiting various renewable 
resources, e.g., solar and wind. Converting renewable natu-
ral resources into valuable, transportable fuels is an attrac-
tive concept (Avcıoğlu et al. 2019). From this point of view, 
hydrogen appears to be one of the promising fuels due to 
its zero emissions and subsequent reacquisition of chemical 
energy during combustion (Eljack and Kazi 2021). Hydro-
gen production from various feedstock such as non–renewa-
bles, i.e., natural gas, or renewables, i.e., biomass, organic 
solid wastes, and water, can be carried out through a variety 
of methods, including thermochemical (i.e., pyrolysis, gasi-
fication, catalytic reforming, partial oxidation, and chemi-
cal looping), biological (i.e., direct/indirect biophotolysis, 
dark/photo fermentation, enzymatic, and electrochemical 
(i.e., water electrolysis). The downstream reformate gas 
can be purified to produce hydrogen with a reduced carbon 
monoxide content, making it suitable for further applications 
(Carneiro and Gomes 2019; Morosuk and Tsatsaronis 2019).

In general, the decomposition of water through water 
electrolysis, whether powered by electricity or solar energy, 
can be divided into oxygen evolution reaction and hydrogen 
evolution reaction. Anodes and cathodes undergo oxida-
tion–reduction reactions that result in the release of oxygen 
and hydrogen gases, respectively. The released hydrogen can 
be used solely as fuel or combined with oxygen to produce 
oxyhydrogen gas, which is then used for welding and other 
industrial applications (Wang et al. 2021e). Slow reaction 
kinetics of oxygen evolution reaction and hydrogen evolu-
tion reaction attributable to high overpotentials, a metric 
for kinetic energy barriers, is one of the most significant 
operational obstacles to water splitting (Suen et al. 2017). 
Catalysis plays a vital role in the energy cycle described 
previously during the water electrolysis process.

There are currently three significant electrolysis scenar-
ios: proton exchange membrane (acidic condition), high-
temperature solid oxide water electrolysis (high tempera-
ture), and alkaline electrolysis (alkaline conditions) (Wang 
et al. 2021e). Therefore, developing novel, highly effective, 
and stable electrocatalysts is suitable for different process 
parameters (i.e., working media, temperature, and others) 
and contain the proper stimulator species to accelerate reac-
tion kinetics by enhancing their physicochemical properties 
is a significant challenge. The hydrogen evolution reaction 
electrocatalysts are separated into noble-metal-based (pal-
ladium, platinum, rhodium, ruthenium, iridium) and non-
noble metal-based electrocatalysts. Many critical parameters 
for activity (i.e., exchange current density, overpotential, 
and Tafel slope), stability (i.e., current/potential over time), 
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and efficiency are used to evaluate the performance of 
the employed catalyst (i.e., faradaic efficacy and turnover 
frequency) (Wang et al. 2021e). Table 12 shows different 
as-used catalysts for hydrogen evolution reactions through 
water electrolysis.

Both catalytic reforming and catalytic cracking are used 
to convert hydrocarbons into valuable products. Using mild 
temperatures and pressures in the presence of catalysts, cata-
lytic cracking is the process by which larger hydrocarbon 
compounds are broken down into smaller (cracked) hydro-
carbon molecules. While catalytic reforming (i.e., steam 
reforming, autothermal reforming, aqueous phase reforming, 
partial oxidation, and dry reforming) is the process by which 

hydrocarbons are reconfigured to form different valuable 
(reformate) products with the aid of a catalyst, reforming is 
the rearrangement of hydrocarbons into different products 
(Naikoo et al. 2021). Among various hydrocarbons,  methane, 
the primary component of natural gas and biogas, can be an 
abundant source of hydrogen production. Compared to steam 
methane reforming (63.3 kJ/mol  hydrogen), methane crack-
ing with a lower energy requirement (37.8 kJ/mol hydrogen) 
provides a more sustainable hydrogen production approach 
because it does not produce carbon monoxide or carbon 
dioxide emissions. However, catalysts with a low tendency 
for carbon formation, long-term stability, and high catalytic 
and reforming efficiencies are strongly suggested. Various 

Table 11  Catalysts for biodiesel production

The catalyst in the reaction increases the number of active sites, leading to a higher conversion yield of biodiesel. However, the amount of cata-
lyst used must be optimized to prevent an increase in the mixture's viscosity. NaOH, CaO, ZnO,  La2O3, KOH,  SiO2 and  ZrO2 refer to sodium 
hydroxide, calcium oxide, zinc oxide, lanthanum oxide, potassium hydroxide, silica and zirconium oxide, respectively

Feedstock Catalyst/source Operational parameters Produc-
tion (%)

Reference

Methanol-
to-oil molar 
ratio

Catalyst 
loading 
(wt%)

Temperature (°C) Reac-
tion time 
(min)

Waste frying oil NaOH 7.5: 1.0 0.5 50.0 30.0 96.0 Uzun et al. (2012)
Mahua oil Mn-doped ZnO 

nanocatalyst
7.0: 1.0 8.0 50.0 50.0 97.0 Baskar et al. (2017)

Soybean oil CaO@NaY zeolite 9.0: 1.0 3.0 65.0 180.0 95.0 Wu et al. (2013)
Soybean oil Sodalite 12.0: 1.0 4.0 65.0 120.0 95.5 Manique et al. (2017)
Castor oil La2O3/NaY zeolite 15.0: 1.0 10.0 70.0 50.0 84.6 Du et al. (2018)
Sunflower oil Ba–Sr/ZSM-5 9.0: 1.0 3.0 60.0 180.0 87.7 Feyzi and Khajavi 

(2014)
Soybean oil H4[W12SiO40]@

zeolite Hβ
4.0: 1.0 0.2 65.0 480.0 95.0 Narkhede and Patel 

(2013)
Waste sunflower oil KOH/zeolite 11.5: 1.0 6.0 50.0 120.0 96.7 Al-Jammal et al. 

(2016)
Vegetable oil CaO/activated 

carbon
40.0: 111.0 – 120.0 420.0  > 90.0 Konwar et al. (2018)

Corn oil KOH/activated 
carbon

3.0: 1.0 0.75 62.5 60.0 92.0 Narowska et al. (2019)

Bitter almond oil Potassium acetate/
activated carbon

9.0: 1.0 2.50 65.0 150.0 93.21 Fadhil et al. (2016)

Palm oil Ag@ZnO 10.0: 1.0 10.0 60.0 60.0 97.0 Laskar et al. (2020)
Sunflower oil Mg–Al HT 48.0: 1.0 2.0 60.0 480.0 92.0 Navajas et al. (2018)
Soybean oil Zn–Al HT 26.0: 1.0 – 140.0 60.0 76.0 Liu et al. (2014b)
Stearic acid ZrO2@SiO2 120.0: 1.0 10.0 120.0 180.0 48.6 Ibrahim et al. (2019)
Soybean oil CaO 8.0: 1.0 10.0 65.0 180.0 90.0 Ayodeji et al. (2018)
Sunflower CaO 11.0: 1.0 5.0 60.0 3.0 83.2 Fayyazi et al. (2018)
Palm oil CaO/coconut waste 24.0: 1.0 5.0 65.0 180.0 81.0 Sulaiman and Ruslan 

(2017)
Azadirachta indica 

oil
Ripe plantain fruit 

peel
1.0: 0.73 0.65 65.0 57.0 99.2 Etim et al. (2018)
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catalyst types have been developed for catalytic and reform-
ing processes, including metal (i.e., noble and transition)-
based catalysts and carbon (i.e., activated carbon and carbon 
black). Tables 13 and 14 detail various catalysts used in cata-
lytic cracking and reforming.

Conclusion

Recent advancements in photocatalysis, biocatalysis and 
electrocatalysis have been evaluated, and the challenges 
faced in environmental catalysis have been identified. 
Research is currently focused on developing efficient photo-
catalysts through doping, coupling with other nanomaterials, 
precipitation with metal particles, crystal growth designs, 
and heterojunctions. Heterojunction-based photocatalysts 
promise to improve photocatalytic activity for environ-
mental pollution degradation, hydrogen production, and 
carbon dioxide reduction. However, the practical applica-
tion of photocatalysis is currently limited due to insufficient 
activity, poor stability, and high cost. Electrocatalysts have 
been evaluated for environmental remediation applications, 
but limited efforts have been made to assess the toxicity 
of pollutants that are not efficiently mineralized. Devel-
oping novel, highly effective, and stable electrocatalysts 

suitable for various process parameters and containing the 
proper stimulator species to accelerate reaction kinetics by 
enhancing their physicochemical properties is a significant 
challenge.

In biocatalysis, enzymes found in soil, such as lipases, 
dehydrogenases, ureases, and catalases, have been used 
as bioindicators for evaluating pollution. However, lipase-
based biosensors for bioremediation are not yet suitable 
for commercial use and require further research. Protein 
modeling and computational design have been utilized to 
improve known enzymatic functions and design new cata-
lytic enzymes. New protein engineering tools, such as com-
putational protein design, next-generation sequencing, and 
machine learning, will also aid in developing new enzymatic 
activities.

Materials such as biomass-derived carbon materials, 
metal–organic frameworks, non-noble metals, and nano-
composites have also been discussed as catalysts. The 
preparation and catalytic applications of these materials, 
as well as their impact on the circular economy, have been 
evaluated. The preparation of metal–organic frameworks 
via solvent-free methods is currently a popular research 
topic. Enzymes have also been discussed as sustainable 
catalysts with various supports and catalytic applica-
tions. The relationship between the chemical structure of 

Table 12  Catalysts for hydrogen evolution reaction through the water electrolysis process

It is desirable to use highly efficient catalysts to reduce the overpotentials of oxygen evolution reaction and hydrogen evolution reaction to 
improve oxygen and hydrogen production yields. LDH, NSP, NF, PrGO, and NiCoP are layered double hydroxide, nanoparticle-Stacked Porous, 
Ni foam, reduced graphene oxide, and Ni-Co phosphides, respectively

Cathode electrocatalyst material Electrolyte/anode
used in the electrolysis cell

Overpotential (mV) 
at
10 mA  cm−2

Cell voltages (V( at
10 mA  cm−2

Reference

NiCoP/CC NiCoP/CC 44/62 1.52 Du et al. (2017)
MoS2/NiFe-LDH MoS2/NiFe-LDH 110.0 1.57 Xiong et al. 

(2019)
Co-P Co-P 94.0 1.47 Jiang et al. (2015)
Ni/NiFe Ni/NiFe 100.0 1.56 Wu et al. (2018)
NiCoFe-PS NiCoFe-PS 195.0 1.52 Yao et al. (2019)
Ruthenium dioxide cluster Ruthenium dioxide cluster 33/20/98 1.51 Park et al. (2019)
NiMoCo NiMoCo 40.0 1.56 Hu et al. (2019)
NSP-Ni3FeN NSP-Ni3FeN 45.0 1.495 Wang et al. 

(2016c)
Ni3N Ni3N 47.0 1.503 Hu et al. (2020)
Ni2P/Ni0.96S/NF Ni2P/Ni0.96S/NF 72.0 1.453 He et al. (2020b)
PrGO/NiCoP PrGO/NiCoP 106.0 1.56 Dong et al. 

(2019)
NiCoSe2−x/N–C NiCoSe2−x/N–C 89.0 1.53 Li et al. (2018c)
Ni/Ni2P Ni/Ni2P 92.0 1.55 Sun et al. (2018)
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sustainable catalysts and their end-application and cata-
lytic performance has been critically evaluated.

The production of shape-controlled metal nanoparticles 
remains challenging. Several methods have been developed 
to synthesize stable metal nanoparticles with a defined 
shape, including the addition of inorganic capping agents, 
organic ligands, colloids, polymers, and core–shell mate-
rials. Using functionalizing agents improves nanocompos-
ites' morphology, size, and properties, but their inability to 
degrade or be eliminated poses a significant environmental 
threat. Consequently, there is a growing interest in synthe-
sizing nanocomposites from renewable resources such as 
starch, chitin, vegetable oils, lignin, natural rubber, and cel-
lulose. The sensitivity of enzymes to extreme pH and tem-
perature conditions and their poor reusability continues to be 

obstacles in enzyme-based catalysts. Techniques of directed 
evolution and genetic engineering have been employed to 
improve enzymes' stability and catalytic performance.

Integrating green chemistry principles into large-scale 
synthesis is a significant challenge, including moderat-
ing energy input, addressing organic solvent issues, and 
managing problematic wastes. As an alternative, solvent-
free routes such as mechanochemistry synthesis offer high 
versatility, simplicity, and reproducibility. Additionally, 
microwave and ultrasound irradiation can provide highly 
efficient and precisely controlled energy for the synthe-
sis and growth of nanostructures. However, preparing 
enhanced mixed metal oxide catalysts with a uniform dis-
tribution of various metal oxides remains challenging.

Table 13  Catalysts for methane cracking

Various biofuels can be synthesized into hydrogen using a catalyst-induced reforming process, including bioethanol, methanol, ethanol, bio-oil, 
and others. “–” not reported.  CeO2,  Al2O3,  ZrO2 and  La2O3 refer to cerium(IV) oxide, aluminum oxide, zirconium oxide, and lanthanum oxide, 
respectively

Feed composi-
tion

Operating tem-
peratures (℃)

Catalyst name Preparation method Maximum meth-
ane (%)

Hydrogen 
yield (%)

References

Methane 700 10% Ni/TiO2 Sol–gel – 43.0 Pudukudy et al. (2017)
Methane 700 Ni–Fe/ Santa Barbara 

Amorphous-15 
(SBA-15)

Wet impregnation 35.0 52.0 Pudukudy et al. (2015)

Nitrogen: 
methane (19: 
1)

850 Shengli lignite char Pyrolysis 86.0 88.0 Wei et al. (2011)

Methane 700 40% Ni- zeolite 
(ZSM-5(25))

Wet impregnation – 77.0 Awadallah et al. (2016)

Methane 800 Fe-SiO2 Sol–gel – 58.0 Pudukudy and Yaakob 
(2015)

Methane 600 50% Ni/TiO2 Sol–gel – 45.0 Pudukudy et al. (2017)
650 – 53.0
700 – 56.0

Methane 700 50% Ni-25%  CeO2/
Al2O3

Wet impregnation – 53.0 Ahmed et al. (2016)

Nitrogen: 
methane (1:9)

500 12.5%Ni-12.4%Co/
La2O3

Co-precipitation 21.0 – Khan et al. (2016)

600 54.0 –
700 82.0 –

Methane 700 Co-Fe/ Santa Barbara 
Amorphous-15 
(SBA-15)

Wet impregnation 34.0 51.0 Pudukudy et al. (2015)

Nitrogen: 
methane 
(19:1)

850 Xiaolongtan lignite 
char

Pyrolysis 80.0 82.0 Wei et al. (2011)

850 Jincheng anthracite 
char

35.0 27.0
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