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Abstract
Climate change issues are calling for advanced methods to produce materials and fuels in a carbon–neutral and circular way. 
For instance, biomass pyrolysis has been intensely investigated during the last years. Here we review the pyrolysis of algal and 
lignocellulosic biomass with focus on pyrolysis products and mechanisms, oil upgrading, combining pyrolysis and anaerobic 
digestion, economy, and life cycle assessment. Products include oil, gas, and biochar. Upgrading techniques comprise hot 
vapor filtration, solvent addition, emulsification, esterification and transesterification, hydrotreatment, steam reforming, and 
the use of supercritical fluids. We examined the economic viability in terms of profitability, internal rate of return, return 
on investment, carbon removal service, product pricing, and net present value. We also reviewed 20 recent studies of life 
cycle assessment. We found that the pyrolysis method highly influenced product yield, ranging from 9.07 to 40.59% for oil, 
from 10.1 to 41.25% for biochar, and from 11.93 to 28.16% for syngas. Feedstock type, pyrolytic temperature, heating rate, 
and reaction retention time were the main factors controlling the distribution of pyrolysis products. Pyrolysis mechanisms 
include bond breaking, cracking, polymerization and re-polymerization, and fragmentation. Biochar from residual forestry 
could sequester 2.74 tons of carbon dioxide equivalent per ton biochar when applied to the soil and has thus the potential to 
remove 0.2–2.75 gigatons of atmospheric carbon dioxide annually. The generation of biochar and bio-oil from the pyrolysis 
process is estimated to be economically feasible.

Keywords Biomass · Pyrolysis · Product distribution · Pyrolysis upgrading · Economic and life cycle assessment · Pyrolysis 
integration

Introduction

The increased use of fossil fuels worldwide over the past 
few decades has resulted in many environmental challenges, 
including the emissions of greenhouse gases. Additionally, 

the volatility of fossil fuel prices and the gradual depletion 
of fossil resources have detrimental effects on the global 
economy. As a result, producing carbon–neutral and low-
emission fuels from renewable energy sources such as 
biomass has grown in importance as a replacement for 
traditional fossil fuels. Using biomass resources can help 
mitigate environmental damage, promote economic stability, 
and secure a more sustainable future. With an estimated 100 
billion tons of biomass produced each year globally, biomass 
resources are plentiful and have a wide range of uses. As 
the only renewable carbon-based resource, biomass has the 
potential to produce heat, electricity, fuel, chemicals, and 
other products (Farghali et al. 2022a; Osman et al. 2021). 
Specifically, biomass energy is one of the greatest renew-
able energy sources in the world, accounting for 77.4% of 
all renewable energy sources and 10.4% of the world's total 
primary energy supply (Farghali et al. 2022b). Therefore, the 
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sustainable and efficient use of biomass resources is crucial 
for reducing the environmental impacts of energy produc-
tion. Biomass characteristics are crucial in this regard, as 
shown in Fig. 1.

Biomass pyrolysis is one of the thermochemical pro-
cesses that has gained the most interest, as it offers a poten-
tial way for processing different types of biomasses into 
fuels and chemicals. Thus, in this review, we explore the 
distribution of pyrolytic products in biomass pyrolysis as 
well as the mechanistic pathways that govern the process to 
optimize efficiency and product properties. In addition, we 
evaluate the economic viability of the process and inves-
tigate the potential benefits of integrating pyrolysis with 
anaerobic digestion and algae cultivation. In addition, we 
review 20 published life cycle assessment studies between 
2020 and 2022 to highlight methodological approaches and 
key findings.

Lignocellulose biomass

Biomass opportunities in sustainability

Biomass can be transformed into fuels and chemicals 
through various techniques, including biochemical and 
thermochemical ones. Methane and alcohol are frequently 
produced by biochemical processes, including digestion 
(aerobic and aerobic), fermentation, and others (Farghali 
et al. 2022b; Osman et al. 2022a). Additionally, biomass 
is frequently converted through thermochemical processes 
such as pyrolysis, gasification, combustion, hydrothermal 
liquefaction, and hydrothermal carbonization. However, the 
potential for biomass production and the resulting renew-
able bioenergy varies among countries and is influenced by 
geography, resource availability, biodiversity, technology, 

and economy. By 2050, biomass has the potential to provide 
3000 terawatt hours of electricity and could save 1.3 billion 
tons of carbon dioxide equivalent emissions per year. How-
ever, it is essential to note that bioenergy production also 
generates emissions, with each terawatt hour of energy pro-
duced resulting in 472.89 kilotons of carbon dioxide (Antar 
et al. 2021).

Pyrolysis is one of the thermochemical processes that has 
received the most attention because it offers a promising 
method for converting various forms of biomass into fuels 
and chemicals through the thermal degradation of organic 
molecules in the absence of oxygen. Organic materials are 
pyrolyzed to produce three main products: solid carbon 
(biochar), liquid (bio-oil), and non-condensable volatiles 
(syngas). The process relies on various factors, including 
temperature, reaction time, heating rate, pressure, feedstock 
composition, and moisture content, affecting the reactions' 
efficiency and product distribution yield. The degradation 
of the critical components of biomass, such as hydrogen 
and oxygen bonds, occurs within a temperature range of 
350–800 °C.

Additionally, using various feedstocks and process con-
ditions can significantly affect the properties of the final 
products and their potential applications (Gahane et al. 
2022; Mukherjee et al. 2022). The reaction mechanisms of 
biomass pyrolysis include main and subsequent steps, such 
as dehydration, devolatilization, decomposition, cracking, 
and polymerization (Al-Rumaihi et al. 2022; Mukherjee 
et al. 2022; Makavana et al. 2020). Therefore, understand-
ing the product distribution and the mechanistic pathways 
of biochar, bio-oil, and syngas, which are the products of 
pyrolysis, is crucial for optimizing the pyrolysis process 
and making it more efficient. By studying these pathways, 
researchers can identify the key factors that affect product 
yields and develop strategies to improve the process. This 

Fig. 1  Lignocellulosic biomass 
origin is categorized as wood-
based and other biomass types. 
Wood-based biomass contains 
low ash and moisture content, 
high heating value, and high 
bulk density. Hence, these 
attributes also influence the 
pathway of the pyrolysis process 
and product distribution
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knowledge can also aid in developing new applications 
for the products such as bio-oil as an alternative to fossil 
fuels and biochar as a soil amendment and carbon seques-
tration tool.

Pyrolysis has received significant attention as a car-
bon-negative energy process due to its ability to convert 
biomass into biofuels, materials, and chemicals while 
recycling and storing carbon in the biochar. The pyrolysis 
process can combine bioenergy generation with carbon 
removal, making it a sustainable and environmentally 
friendly method for producing energy. While pyrolysis 
is a promising process for treating agro-food wastes, it 
has some limitations, particularly when handling higher 
moisture-containing wastes. This can reduce the efficiency 
of the system. To overcome these limitations, researchers 
have proposed coupling the pyrolysis process with other 
techniques, such as anaerobic digestion or microalgal cul-
tivation. This integrated approach can compensate for the 
shortcomings of each process, achieve a net-zero waste 
concept, recover bioenergy from digestate, utilize waste, 
upgrade the biogas produced, and promote a circular 
economy (Tayibi et al. 2021a; Monlau et al. 2015). This 
could lead to more efficient and sustainable ways of treat-
ing agro-food wastes and recovering their energy (Farghali 
et al. 2022b; Farghali et al. 2022c).

Economic analysis of the pyrolysis process involves 
evaluating its costs and revenues and determining whether 
it is economically viable. The main factors considered in 
an economic analysis of pyrolysis include the cost of the 
feedstock, the cost of the equipment and facilities required 
for the process, the operating costs such as labor, energy, 
and maintenance, and the revenue generated from the sale 
of the products. It is important to note that the price of fossil 
fuels, government policies and regulations, and the availabil-
ity of subsidies and incentives also influence the economic 
viability of pyrolysis. Fawzy et al. (2022) proposed using 
pyrolytic plants for carbon removal services in addition to 
conventional biochar sales. They found that a pyrolytic plant 
that processes 6.5 tons/hour of olive tree pruning residue 
can permanently remove 24,450 tons of carbon dioxide 
equivalent from the atmosphere annually. The internal rate 
of return achieved was approximately 22% with the com-
bined revenue from both carbon removal service (EUR 110/
ton  CO2 equivalent) and biochar sales (EUR 350/ton), with 
a net present value of approximately €3 million and a dis-
counted payback period of 8 years at a 15% cost of capital. 
However, Haeldermans et al. (2020) proposed a different 
approach, suggesting a much higher minimum selling price 
for biochar when electricity sales and carbon removal are 
involved. Thus, economic analysis results vary depending on 
the different feedstock, technology, location, and economic 
conditions. The price of fossil fuels, government policies 

and regulations, and the availability of subsidies and incen-
tives also influence the economic viability of pyrolysis.

Life cycle assessment evaluates a product's or process's 
environmental impact throughout its entire life cycle. In 
the case of biomass pyrolysis, the life cycle can assess the 
environmental impacts of feedstock production, pyrolysis 
process, product use, and end-of-life. The results of the life 
cycle assessment can identify key environmental impacts 
of the process and opportunities for improvement, such as 
reducing energy consumption, emissions, and waste genera-
tion and using products in a more sustainable way, such as 
the potential utilization of biochar as a carbon sequestration 
tool and bio-oil as a renewable energy source. In this study, 
we aim to investigate the distribution of products and tech-
niques for upgrading bio-oil to improve its quality and value. 
We also examine the integration of pyrolysis with other pro-
cesses, such as anaerobic digestion and algae cultivation, to 
enhance the negative carbon footprint and provide additional 
benefits. Additionally, we conduct an economic evaluation 
and life cycle assessment to evaluate the sustainability and 
feasibility of the process. The results of this study can be 
used to optimize the pyrolysis process and make it more 
efficient, sustainable, and economically viable.

Lignocellulose biomass composition and processing

Biomass contains a substance called lignocellulose, which 
is commonly made from organic materials. This material is 
the first step in turning biomass into value-added products 
(Abhijeet et al. 2020). Lignocellulosic biomass consists of 
a composite structure of complex compounds such as ligno-
cellulose with a lower quantity of hydrocarbons or lipids and 
inorganic ash. Therefore, lignocellulosic biomass controls 
the mechanism of thermal pyrolytic degradation and prod-
ucts in various ways. Lignocellulosic biomass is generally 
sorted under two types: woody and non-woody materials 
(Wang et al. 2020a), and includes a variety of compounds 
like herbaceous and agricultural residues, forest residues, 
and agro-industrial wastes. The rest of the biomass resources 
incorporate aquatic plants, animals and human wastes, food 
manufacturing, processing remains, and organic fractions 
of municipal solid wastes. According to the nature of the 
feedstock, the lignocellulosic biomass exhibits various char-
acteristics, including moisture and ash content, bulk density, 
and calorific value, as shown in Fig. 1.

The primary benefit of lignocellulosic biomass is its envi-
ronmentally friendly composition, comprising low sulfur 
and nitrogen content and low carbon dioxide emitted into 
the atmosphere. Consequently, recent research is shedding 
light on carbon originating from wastes from agriculture, 
forest, and manufacturing to produce products with enriched 
value and implement renewable energy with valuable and 
feasible resources (Amenaghawon et al. 2021). The three 
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main components of lignocellulosic biomass are cellulose 
(32–45%), hemicellulose (19–25%), and lignin (14–26%), 
which are regarded as binding substances. Cellulose is 
thought to be the primary support that gives the cell walls 
their structure (Mukherjee et al. 2022). The interconnections 
between lignocellulosic compounds, such as covalent and 
hydrogen bonds, revealed a remarkable effect on pyrolysis 
features and product distribution as a sequence of various 
thermal degradation pathways through the pyrolysis process.

Cellulose is a homopolymer of D-glucose, which is insol-
uble in water under normal conditions. Cellulose is recog-
nized to be employed in producing paper, textiles, biofuels, 
and binding composite materials (Tursi 2019). Cellulose is a 
crystallized structure due to hydrogen, strongly bonded with 
cellulose polymer molecules. The distribution of cellulose 
highly depends on the type of biomass. For example, wood-
based material contains cellulose ranging from 38 to 55%, 

turfs from 20 to 35%, switchgrass nearly 40%, and rice husk 
around 36%. Hemicellulose is a heteropolymer composite 
that benefits food packaging, healthcare, and animal food. 
Unlike cellulose, hemicellulose is naturally non-crystalline 
and easily dissolved in water with high reactivity compared 
to cellulose (Amenaghawon et al. 2021; Magagula et al. 
2022).

Lignin is a heteropolymer formed by connected phenyl-
propane monomers producing larger molecular structures. 
The decomposition temperature of lignin is higher in wood 
and strongly hydrophobic compared to cellulose and hemi-
cellulose. Lignin is utilized in making adhesive materials 
and bioenergetic compounds (Verdini et al. 2022). Table 1 
shows various biomass feedstocks with lignocellulosic com-
ponents. Some organic materials with low molecular weight 
are entitled extractive contents in biomass. The extractives 
contain terpenes, high oil, fatty acids, fats, waxes, and 

Table 1  Composition of different lignocellulosic biomass in terms of 
cellulose, hemicellulose, and lignin as they are not uniformly present 
within cell walls. The structure and quantity of these plant cell wall 

components differ based on species, tissues, and maturity of the plant 
cell wall

*Some total feedstock composition is not 100% as other components are not considered in the table

Feedstock Cellulose (weight%) Hemicellulose 
(weight%)

Lignin (weight%) Reference

Forrest feedstock (hard and soft woods)
Bamboo pulp 68.00 20.00 12.00 Hidayati et al. (2019)
Eucalypt wood 41.60 19.6 27.00 Chen et al. (2020)
Oak 41.78 24.8 27.43 Ghavidel et al. (2020)
Spruce 42.11 32.20 26.06 Čabalová et al. (2021)
Birchwood 39.30 28.00 23.20 Przybysz Buzała et al. (2019)
Poplar 42–49 16–23 21–29 Zhang et al. (2020)
Agricultural feedstock
Rice husk 35.00 19.00 22.00 Shahi et al. (2021)
Rice straw 40–50 20–30 10–18 Yan et al. (2021)
Wheat straw 52.40 18.20 18.80 Yu et al. (2021)
Sugarcane straw 32–44 24–30 12–36 Lopez-Velazquez et al. (2021)
Corn stover 41.05 31.39 6.34 Wang et al. (2019a)
Sunflower stalks 35–45 5–10 3–5 Zhang et al. (2021)
Palm kernel shell 29.70 47.70 53.40 Baffour-Awuah et al. (2021)
Walnut shell 25–50 20–40 10–35 Jovičić et al. (2022)
Cotton stalks 58.50 14.40 21.50 Bano et al. (2019)
Coconut fiber 36–50 30–46 10–20 Thinkohkaew et al. (2020)
Spent coffee grounds 59.2–62.94 5–10 19.8–26.5 Park et al. (2021a)
Oat hull 23.00 35.00 25.00 Schmitz et al. (2021)
Acai seed 53.20 12.30 22.3 Barros et al. (2021)
Barley straw 35.40 28.70 13.10 Raud et al. (2021)
Olive leaves 5.70 3.80 39.6 Espeso et al. (2021)
Grassy feedstock
Switchgrass 32 − 45 21 − 31 12 − 28 Wang et al. (2020a)
Eichhornia crassipes 17.6 40.2 7.2 Tran et al. (2021)
Miscanthus 40 − 53 18 − 26 20 − 26 Xu et al. (2020a)
Reed 61 27 12 Li et al. (2019a)
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alcohol (Yuan et al. 2021; Devi et al. 2022). Extractives 
are considered part of combustible organic compounds that 
enhance the heat content of fuel material.

Degradation of lignocellulosic biomass 
and products distribution

The pyrolysis process, also known as devolatilization, is the 
thermal degradation of biomass at high temperatures in an 
inert or partially inert atmosphere into liquid bio-oil, solid 
biochar, and pyrolytic gas. To maximize the yields of either 
bio-oil or biochar, three basic categories of biomass pyroly-
sis—slow, fast, and flash pyrolysis—can be distinguished 
based on the heating rate and residence time. Several factors 
influence the biomass pyrolysis procedure, yields, and prod-
uct characteristics. These include the type of biomass used, 
the physical, chemical, and biological pretreatment pro-
cesses carried out, the reaction environment, temperature, 
heating rate, and vapor residence time (Kan et al. 2016).

The principal competitive reactions during biomass 
degradation include dehydrogenation, depolymerization, 
and fragmentation (Kan et al. 2016). These reactions gen-
erally are classified into essential and auxiliary reactions. 
The primary reaction trajectory includes dehydration and 

the charring process, where different chemical bonds in the 
polymers within the biomass are broken during heating, 
causing the release of volatile chemicals and rearrange-
ment reactions in the matrix of the residue. Afterward, 
the secondary reactions of cracking or recombination can 
occur when the released volatile intermediates achieved 
through primary reactions are unstable at the reactor 
temperature.

The variance in biomass composition, which is made 
up of three primary polymers (hemicelluloses, cellulose, 
and lignin), also influences the complexity of the finished 
product. Hemicellulose is usually the first to degrade, then 
cellulose, and finally lignin which requires a vast tem-
perature scale (Gao et al. 2022). Feedstocks that contain 
high concentrations of  nutrients like animal manure, can 
form biochar with excessive nutrient content. Generically, 
remarkable char yield is achieved from feedstocks contain-
ing significant ash content. Previous studies revealed that 
cellulose and hemicellulose are most likely to produce vola-
tile products through pyrolysis. At the same time, lignin is 
the essential source of biochar production based on lignin's 
highly aromatic structure, which enhances biochar yields 
(Deshavath et  al. 2019). Figure 2 displays a schematic 

Fig. 2  Lignocellulosic biomass degradation pathways. Lignocellulosic biomass degrades independently at a wide range of temperatures, produc-
ing target products, and byproducts. Therefore, selecting a particular biomass feedstock may have a meaningful impact on the final product yield
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pattern of lignocellulosic thermal degradation and produc-
tion of required byproducts through the pyrolysis process.

Cellulose has a significant effect on maximizing bio-oil 
yield production but leads to minor char and gas production. 
The effect of cellulose on bio-oil strongly relies on decom-
position stages. During the 150–300 °C, cellulose polymers 
undergo dehydration to char and water, decompose to levo-
glucosan, the chief component derived from cellulose, and 
finally crack to secondary tar. Breakdown of levoglucosan 
occurs at 300–390 °C, where various condensable volatile 
components are formed during levoglucosan decomposition 
(Tran et al. 2021; Pang et al. 2021). The result of biomass 
with high hemicellulose composition is greater syngas pro-
duction with a reduction in bio-oil and biochar yield (Zadeh 
et al. 2020). Chemicals associated with cracked monosac-
charide rings at low temperatures in hemicellulose, such as 
methoxy, acetyl groups, and a carboxylic acid, break down 
into carbon dioxide, methanol, formic acid, and acetic acid. 
The shatter of the mentioned substituents during pyrolysis 
causes considerable gaseous product yield.

Further decomposition occurs at nearly 240 °C where 
monomer chains are volatile and rapid polymerization 
occurs. The unsettled intermediates created are subjected 
to dehydration, crash, and secondary reactions to form an 
extra amount of carbon dioxide, water, and carbon monox-
ide. At a temperature higher than 300 °C, additional methyl 
substituents are turned into methane by the demethylation 
process. A remarkable quantity of carbon dioxide, carbon 
monoxide, methane, and hydrogen is generated from hemi-
cellulose pyrolysis. Therefore, the pyrolysis of the predomi-
nant hemicellulose feedstock would contribute directly to 
syngas products.

Pyrolysis of lignocellulosic biomass

Thermochemical processes such as pyrolysis are currently 
employed to convert biomass to biofuels. Compared with 
other techniques, such as bio-chemicals, the thermochemical 
method is preferable to produce biofuels as they have shorter 
operating times and lower capital costs compared to the dif-
ferent biochemical pathways, which require the separation 
of biomass components (Sankaran et al. 2020).

Lignocellulosic pyrolysis is a temperature-absorbing 
operation that involves the breakdown of the biomass's 
organic fraction, mostly into biochar, bio-oil, and syngas 
(Elgarahy et al. 2021). The degradation is a multi-step 
complex process that occurs under controlled temperature 
ranges and without air and oxygen under atmospheric pres-
sure conditions (Chen et al. 2021a). Long-chain hydrocar-
bons that form the structure are degraded under suitable 
pyrolysis conditions in lignocellulosic biomass. Moreover, 

the thermal decomposition rate and residual biomass stage 
depend highly on feedstock composition, pyrolytic tem-
peratures, and other factors, such as heating rate and resi-
dence time (Mukherjee et al. 2022).

Generically, a process based on pyrolysis has two main 
mechanisms, primary and secondary. The primary reac-
tions involve bond breaking that results in the synthesis 
of biochar (Elyounssi et al. 2012), bio-oils through the 
process of de-polymerization (Collard et al. 2012), and 
gaseous products in a fragmentation step (Lu et al. 2011), 
as shown in Fig.  3. The leading technique comprises 
chemical bonds that break down reactions and emit light 
components inside the reactor subjected to heat. Fur-
thermore, more reactions are developed and considered 
part of the side mechanism (Al-Rumaihi et al. 2022). On 
the other hand, the subsequent reactions of these prod-
ucts, like cracking and re-polymerization, are classified 
as secondary reactions (Van de Velden et al. 2010; Wei 
et al. 2006). The first stage of thermal degradation forms 
benzene that bonds to create solid biochar residue with 
organic matter proceeding to decompose up to 800 °C. 
When decomposed, organic matter is comprised of long 
polymeric chains, which de-polymerize organic matter into 
monomers.

Consequently, products such as water, synthesis gas, 
condensable vapors, and other volatile compounds are 
released through a primary mechanism (Osman et  al. 
2021), while in a different technique, the unstable com-
pounds are cracked or re-joined for restructuring. Cracking 
involves breaking down the compounds to form elements 
with lower molecular weights, whereas in recombination, 
volatile compounds with higher molecular weights in addi-
tion to developing secondary char in some circumstances 
(Pang et al. 2021). The feedstock's humidity is vital to 
the pyrolysis process as a noticeable amount of moisture 
will be a major key to enhancing the production of liquid 
byproducts. On the other hand, lower moistness will pro-
mote ash/char production rather than bio-oil (Eke et al. 
2020).

Pyrolysis at slower heating rates and temperatures 
lower than 450 °C will promote a higher biochar yield. In 
contrast, a slightly faster heating rate with intermediate 
temperatures will escalate bio-oil outputs. Based on the 
latter conditions of operating pyrolysis parameter, biomass 
pyrolysis is categorized into the following subclasses: 
slow or conventional pyrolysis (Cong et al. 2022), fast 
pyrolysis (Hu et al. 2022), intermediate pyrolysis (Yang 
et  al. 2017), and flash pyrolysis (Nzihou et  al. 2019). 
Moreover, other technologies are recently utilized, such 
as microwave-assisted pyrolysis (Iturbides et al. 2022), 
catalytic-based pyrolysis (Qiu et al. 2022), catalytic hydro-
pyrolysis (Nguyen et al. 2016), and hydro-catalytic pyroly-
sis (Kawale and Kishore 2021) to optimize the products 
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yields. Table 2 demonstrates modern works on lignocel-
lulosic biomass in various pyrolysis methods with product 
distribution.

Biomass product distribution analysis 
and mechanistic insights

Pyrolysis is a thermal treatment process that occurs in the 
absence of oxygen or limited oxygen conditions at tem-
peratures ranging from 250 to 900 °C. This process is dis-
tinct from the traditional combustion of organic materi-
als, which occurs in the presence of atmospheric oxygen 
and produces carbon dioxide and water vapor (Wang et al. 
2020b). Pyrolysis has several benefits compared to other 
treatment methods, including its eco-friendliness, the abil-
ity to use a variety of feedstock materials, the potential to 
minimize environmental pollution, and the production of a 
wide range of valuable products (Hasan et al. 2021). These 
products can be classified into solid, liquid, and gaseous 
categories, depending on factors such as type of feedstock, 
pyrolysis temperature, heating rate, and reaction time (Cha 
et al. 2016). Generally, solid products, including biochar, 
are more prevalent at lower temperatures (below 500 °C). In 
comparison, higher temperatures decrease the biochar yield 
and increase the yields of other liquids, such as bio-oil and 

tar products like levoglucosan, and gaseous products, such 
as hydrogen, methane, and carbon monoxide (Collard and 
Blin 2014). Thus, a thorough understanding of the pyroly-
sis process and the distribution of its products is of great 
importance and will be thoroughly discussed in this section.

Biochar

Char is the product of biomass pyrolysis in solid carbo-
naceous form. Based on biomass structure and pyrolysis 
conditions, char can have different chemical and physical 
properties. Biochar is fine-grained charcoal. Unlike biomass 
feedstock, biochar has unique features such as high surface 
area, high porosity, catalytic activity, and physiochemical 
stability, which promotes char utilization as a catalyst during 
the pyrolysis process (Sahoo et al. 2021). Moreover, biochar 
is implemented as a carbon amendment in the soil to prevent 
carbon emission to the atmosphere by decreasing oxidation 
and reduction of feedstock, which considers a mitigation 
strategy for greenhouse gases. Char is also utilized for waste-
water treatment by adsorbing different pollutants (Awasthi 
et al. 2020; Wang et al. 2020c).

Biochar is synthesized from various biomass feedstocks 
including crop and agricultural residues with high lignin 
content that are subjected to thermal decomposition. Char 
yield is enhanced when biomass undergoes longer residence 

Fig. 3  Stages of lignin pyrolysis. Char formation occurs at a tem-
perature of up to 500 °C through slow pyrolysis. De-polymerization 
of the biomass material at around 600 °C produces bio-oils through 
fast pyrolysis, with common examples including phenol, toluene, and 

naphthalene. Fragmentation of biomass material into gaseous prod-
ucts such as hydrogen, methane, carbon monoxide, and carbon diox-
ide occurs at high temperatures (800 °C) through fast pyrolysis
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time and moderate temperature. On the other hand, lower 
residence time and higher temperatures decrease biochar 
yield. Biochar comprises carbon, hydrogen, oxygen, nitro-
gen, sulfur, and ash. Biochar is typically produced as a 
main product of slow pyrolysis. However, the temperature 
is crucial in defining the main and byproducts from various 
pyrolysis technologies (Panwar et al. 2019). Higher biochar 
yields are produced through slow pyrolysis when the lig-
nocellulosic feedstock has a larger particle size and higher 

content of lignin and ash. Consequently, the feedstock type, 
reaction environment, and operating conditions impact bio-
char production and composition—Table 3 lists various 
biochar compositions based on feedstock and temperature 
range.

According to a recent study (Yuan et al. 2020), three fac-
tors can provide insight into the characteristics of the result-
ing biochar. These include the formation of free radicals, 
which are produced by breaking covalent bonds and are most 

Table 2  Product yields of pyrolysis of lignocellulosic biomass. Bio-
oil was mainly produced from feedstock with high cellulose content, 
which was subjected to slow pyrolysis at intermediate temperatures. 

Feedstocks with nearly equal cellulose and hemicellulose approached 
relatively uniform distribution between bio-oil and biochar under low 
residence time and intermediate temperature

Lignocellulosic feedstock Pyrolysis type Process variables Desired outcome (wet 
weight)

Reference

Camellia oleifera shell Microwave-assisted pyroly-
sis

Temperature: 500 °C
Residence time: 20 min

Bio-oil yield: 37.30–40.27%
With the diffusion of bio-

char and bio-gas products

Dai et al. (2019)

Corncob Fast pyrolysis Temperature: 500 °C
Residence time: 20 s
Heating rate: (10, 20, 40, 80 

°C/min)

Biochar yield: 10.1–25.8%
Anhydrosugar and levoglu-

cosan byproducts as the 
primary product

Jiang et al. (2019)

Quercus rubra (red oak) 
wood chips

Autothermal/partial oxida-
tive pyrolysis

Temperature: 500 °C
Residence time: 0.7 s

Bio-oil composition change 
compared to conventional 
fast pyrolysis

Peterson et al. (2020)

Beechwood Catalytic fast pyrolysis Catalyst: Aluminosilicate 
zeolites and mesoporous 
aluminosilicate

Bio-oil yield: 9.07–23.37%
Water yield: 31.92–43.09%
Gas yield: 18.11–22.34%
Biochar yield: 24.57–

26.60%

Ratnasari et al. (2018)

Thermal pyrolysis Temperature: 500 °C
Residence time: 30 min

Bio-oil yield: 28.43%
Water yield: 28.87%
Gas yield: 11.93%
Biochar yield: 30.77%

Rice straw Slow pyrolysis Temperature: 500 °C
Residence time: 3 h

Bio-oil yield: 40.59%
Biochar: 31.25%
Synthesis gas yield: 28.16%

Sakhiya et al. (2020)

Banana pseudo-stem Fast pyrolysis Temperature: 500 °C
Residence time: 0.9 s

Biochar: 41.25%
Bio-oil yield: 36.50%
Synthesis gas yield: 21.16%

Taib et al. (2021)

Brewer's spent grain Intermediate pyrolysis Temperature: 500 °C
Residence time: 3 min

Synthesis gas yield: 21.16%
Bio-oil yield: 36.50%
Biochar: 31.25%

Bieniek et al. (2022)

Table 3  Biochar compositions based on biomass type and temperatures. Biomass produces biochar with various carbon, hydrogen, oxygen, 
nitrogen, and ash contents. The best biochar yields require proper substrate selection and temperature optimization

Feedstock Process tem-
perature (°C)

Biochar properties (%) Reference

Carbon Nitrogen Hydrogen Oxygen Ash

Animal dung 800 27.78 1.67 3.98 20.3 34.00 Zhou et al. (2020a)
Bamboo 500–900 54.49 0.19 6.15 37.1 Not reported Tong et al. (2020)
Banana peel 600 67.50 0.36 Not reported 16.70 22.58 Bong et al. (2022)
Crop residues 600 50.00 Not reported 1.50 6.00 35.00 Hong et al. (2020)
Samanea saman seeds 400–700 62.66 3.45 2.06 31.83 13.18 Mishra et al. (2020a)
Madhuca indica seeds 450–550 60.27 3.19 2.27 34.27 Not reported Mishra et al. (2020b)
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concentrated at temperatures between 400 and 500 °C. The 
second factor is the amount of oxygen-containing functional 
groups, which can indicate biochar production efficiency and 
decrease at low temperatures, indicating a high carbon con-
tent and biochar yield (Zhao et al. 2016). At temperatures 
above 600 °C, carbon content decreases due to breaking 
carbon–carbon bonds (Yu et al. 2019). The third factor is 
the microcrystallinity of graphite crystals, which increases 
with increasing reaction temperature. While biochar yield 
decreases with increasing pyrolysis temperature, the surface 
area tends to increase (Sakhiya et al. 2021). Therefore, the 
choice of pyrolysis conditions can be based on the desired 
properties of the resulting biochar and the intended appli-
cation. Biochar has a wide range of potential applications, 
including adsorption. It is a support material in catalytic 
and photocatalytic processes for degrading various organic 
pollutants, such as dyes and pharmaceuticals. (Hosny et al. 
2022a; Eltaweil et al. 2022; Hosny et al. 2022b).

Heating rates that are balanced between slow and fast are 
referred to as intermediate pyrolysis. Intermediate pyroly-
sis produces a wide range of products and can be used in 
the coproduction of bio-oil, biochar, and syngas. However, 
biochar produced by intermediate pyrolysis is less than that 
produced by slow pyrolysis due to a higher heating rate 
maintained at a temperature range of 450–550 °C, which 
stimulates high molecular weight tar and inhibits the forma-
tion of bio-oil and syngas (Mukherjee et al. 2022).

Bio‑oil

Bio-oils, which are in the form of a dark-brownish organic 
liquid resulting from biomass pyrolysis, are sustainable, 
cost-effective, and efficient fuel sources, including bio-
ethanol and bio-diesel (Martínez et al. 2014). Bio-oils have 
several advantages compared to fossil fuels, including low 
emissions of nitrogen and sulfur oxides and compatibility 
with a wide range of equipment (Terry et al. 2021). Bio-
oil comprises oxygenated compounds, which cause high 
thermal instability and lower heating value, making bio-oil 
unsuitable for engines (Hu and Gholizadeh 2019).

As the pyrolysis temperature and/or heating rate 
increases, there is a shift from solid products like biochar 
to liquid products like bio-oils. This conversion typically 
begins at low temperatures through the breaking of weak 
bonds and continues at higher temperatures, around 500 °C 
or above (Collard and Blin 2014), through a process called 
de-polymerization, in which linkages within the polymer 
structures, such as ester, phenolic, and non-phenolic ether 
bonds that are broken at low temperatures and more persis-
tent condensed biphenyl bonds within the lignin structure 
that are broken at high temperatures, are broken down into 
constituent monomers (Chio et al. 2019). The amount of 
these monomers, which are condensable at room temperature 

(Mullen and Boateng 2011), increases with increasing pyrol-
ysis temperature due to the cleavage of carbon − carbon side-
chain bonds (Kawamoto 2017). These monomers are typi-
cally stable in liquid form. Still, under certain conditions, 
such as the limited availability of hydrogen donors, they 
may re-polymerize to form oligomers and polymers that are 
different from the original depolymerized polymers (Bay-
erbach and Meier 2009). These re-polymerized compounds 
are more resistant to further de-polymerization due to the 
formation of resistant condensed linkages (Kawamoto 2017).

The overall constitution of bio-oil is water as well as a 
variety of organic compounds like ketones, aldehydes, 
acids, furans, phenols, alcohols, ethers, esters, sugars, alk-
enes, nitrogen, and oxygen. Bio-oil can be regarded as a 
multiphase microemulsion where oligomers produce aero-
sols. Therefore, bio-oil stability is affected and quickly 
aging, leading to water accumulation, increasing viscosity, 
and phase separation. Consequently, bio-oil must be treated 
before being utilized as engine fuel (Machado et al. 2022). 
For example, the pyrolysis should be fast with a high heat-
ing rate of 100–200 °C/second or higher, the residence time 
should be short, typically less than two seconds, and the 
formed biochar should be rapidly separated using gas–solid 
separation techniques such as cyclones, and the vapors 
should be cooled to prevent secondary cracking (Van de 
Velden et al. 2010; Li et al. 2019a). Additionally, water 
should be controlled by drying the biomass before pyrolysis 
to avoid reducing the bio-oil quality (Rover et al. 2019). 
Under these conditions, the bio-oil yield is expected to be 
between 50 and 70% (Fahmy et al. 2020). If the heating rate 
is further increased through flash pyrolysis, the yield can be 
higher, ranging from 75 to 80% (Kan et al. 2016).

Many factors, like the type of biomass feedstock, heating 
rate, residence time, feedstock particle size, and tempera-
ture, influence bio-oil characteristics. Table 4 shows bio-oil 
characteristics produced from different biomass feedstocks. 
Biomass with major cellulose content promotes the yield of 
bio-oil products, whereas higher lignin content contributes 
to bio-oil reduction (Zhang et al. 2019a).

Unlike petroleum fuels, the water content in bio-oil 
from wood pyrolysis acts as a microemulsion and cannot 
be extracted by physical techniques. Moisture in bio-oil 
is measured via Karl Fischer volumetric titration accord-
ing to ASTM standard E 203. Residual carbon solids are 
measured via ASTM D4530 or ASTM D189. Sulfur con-
tent can be detected via ASTM standard D5453-09 or EN 
ISO 20846, which is recommended (Hu and Gholizadeh 
2019). For chlorine detection, no precise technique exists. 
ASTM standard D 4052 is usually utilized to determine the 
density of petroleum fuels at 15 °C via a digital density 
meter. For bio-oil density measurement, the same method 
is implemented. Other vital properties of bio-oil are viscos-
ity and the pour point that controls the pumping process. 
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The highest kinematic viscosity of bio-oil is measured at 20 
centistokes at 40 °C (Machado et al. 2022). The pour point 
of bio-oil can be measured according to ASTM standard D 
97 (van Schalkwyk et al. 2020).

Physical adjustment of lignocellulosic biomass feedstock 
before introducing pyrolysis facilitates feeding to pyrolysis 
reactors. Grinding or milling biomass into smaller particles 
enhances mass and heat transfer during pyrolysis and pro-
motes uniform temperature distribution across particles, 
maximizing bio-oil by suppressing char formation and 
secondary cracking reactions of vapors. Due to biomass's 
poor heat conductivity, larger biomass particles result in 
the incomplete transformation to bio-oil because of heat 
transfer limitations, decreasing pyrolysis efficiency (Qureshi 
et al. 2021).

Pyrolytic gas

Gases produced from the pyrolysis of lignocellulosic bio-
mass are mainly composed of carbon dioxide, carbon mon-
oxide, hydrogen, methane, ethane, ethylene, propane, sulfur 
oxides, nitrogen oxides, and ammonia (Hu and Gholizadeh 
2019). Carbon monoxide and carbon dioxide are formed ini-
tially from the decomposition process and the conversion of 
carbonyl and carboxyl groups—light hydrocarbons released 
from the breakdown of weak methoxy and methylene bonds. 
Hydrogen is formed by degrading carbon-hydrogen groups 
and aromatics (Mishra et al. 2020a). Van de Velden et al. 
(2010) reported that forming various incondensable gase-
ous products, such as methane, carbon dioxide, and syngas 
(a mixture of hydrogen and carbon monoxide), involves 
breaking covalent bonds through a process called fragmen-
tation. This fragmentation occurs at pyrolysis tempera-
tures of 700–800 °C or higher (Lu et al. 2011; Zaini et al. 
2021) and can break bonds within polymers or monomers. 
The distribution of products resulting from fragmentation 
is influenced mainly by factors such as biomass particle 
size, heating rate, residence time, reactor temperature, and 

pressure (Zhang et al. 2022). Fragmentation can also lead to 
the formation of short-chain organic molecules that are con-
densable at room temperatures, such as ethane  (C2H6) and 
ethene  (C2H4) (Krumm et al. 2016; Al Arni 2018). Another 
mechanism contributing to the formation of low molecular 
weight volatile compounds is cracking, a secondary reaction 
similar to fragmentation (Caposciutti et al. 2019).

Optimization of gaseous products produced during pyrol-
ysis can be achieved through high reaction temperatures 
(up to 1000 °C), small particle sizes biomass such as wood 
chips, and catalysts to improve process efficiency (Dufour 
et al. 2009; Gong et al. 2020). For example, sodium zirco-
nate derived from dental waste has been used as a catalyst to 
enhance hydrogen production from various biomass sources, 
including municipal sludge (Wang et al. 2019b). Reactions 
that can be involved in forming gaseous products during 
pyrolysis include carbon–oxygen reactions, carbon–water 
reactions, hydrogenation, water–gas shift reaction, and the 
methanation reaction (Pecha and Garcia-Perez 2020).

On the other hand, Hong et al. (2020) reported that larger 
particle sizes boost the production of gaseous products due 
to the high heat transfer during the pyrolysis process, which 
means a longer distance from a hot surface to the cold core 
of the particle. This obstructs the heat transfer process; 
hence, the temperature gradient enhances the generation of 
gaseous products. However, smaller particle sizes influence 
the composition of gas products as smaller sizes increase 
component cracking, forming more hydrogen and carbon 
monoxide with less carbon dioxide.

Pyrolysis gas production is also boosted by subjecting 
biomass inside the reactor with longer residence time as 
biomass is a breakdown of biochar and part of liquids in 
secondary reactions to produce volatile gases (Safdari et al. 
2019). Lower heating rates enhance pyrolytic gas yields in 
fast and intermediate pyrolysis with relatively higher tem-
peratures. However, a heating rate increase can improve gas 
yield due to the biomass feedstock type. Moisture content 
also contributes to the pyrolytic gas output. High water 

Table 4  Composition of bio-oil from several biomass feedstocks at various temperatures. The elemental analysis is necessary to ascertain the 
bio-oil's carbon, hydrogen, oxygen, and nitrogen, as the entire content is directly proportional to reaction temperature

Feedstock Process tem-
perature (°C)

Bio-oil properties (%) Reference

Carbon Nitrogen Hydrogen Oxygen

Spirulina microalgae 300 45.73 1.27 5.96 47.04 Xu et al. (2020b)
Rice husk 300 41.90 Not reported 8.3 49.80
Delonix regia 500–700 50.62–58.32 1.06 –1.28 6.93–7.65 32.75–41.34 Kawale and Kishore (2020)
Sawdust 400 68.550 0.110 7.176 22.219 Cao et al. (2019)
Spent coffee grounds 500 70.00 3.8 9.00 16.9 Park et al. (2021a)
Water hyacinth 450 59.77 0.235 8.98 30.8 Wauton and Ogbeide (2021)
Palm shell 250–300 76.4 9.8 11.8 0.3 Qureshi et al. (2021)
Madhuca longifolia seeds 500 67.32 2.33 8.12 21.34 Mishra et al. (2020b)
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content boosts the separation of water-soluble components 
from the gas phase, leading to a remarkable reduction of 
pyrolysis gas yield (Elgarahy et al. 2021; Li et al. 2019a). 
Figure 4 illustrates product distribution in slow, fast, inter-
mediate, and flash pyrolysis.

Temperature is a major factor in deciding gas yield. 
Generally, more gas products are formed when secondary 
cracking reactions take place at high pyrolytic temperatures. 
Furthermore, the volume fractions of each component in the 
gas mixture are not increased simultaneously due to differ-
ent changes in the change rate of individual gas (Fernandez 
et al. 2022). Table 5 lists recent experimental studies that 
show the influence of temperature on pyrolytic gas fraction 
distribution.

Pyrolytic temperature influence on product 
distribution

Temperature is considered an essential and crucial key factor 
in the pyrolysis process. Management of temperature gradi-
ent is vital owing to its strong influence on pyrolysis product 
distribution. Increasing temperatures lower char yield due to 
the secondary and parallel reactions that occur to enhance 
the formation of other products like bio-oil and more degra-
dation of biochar, resulting in the production of more pyrol-
ysis gases at temperatures higher than 600 °C (Almutairi 
et al. 2022). Carbon dioxide was the dominant product at 
250 °C, while at 350 °C, quantities of carbon monoxide were 

found to be 25.43% in the gas product and slightly increased 
to 29.44% at 450 °C temperature. Light hydrocarbon gas 
production occurred as the temperature increased further to 
650 °C. Reaction temperature variation during slow pyroly-
sis, as compared to other process conditions, was found to 
have a significant impact on the production of biochar from 
rice husk (Vieira et al. 2020). The biochar yield was found to 
be maximum at 300 and 400 °C, or around 65.8% and 59.1%, 
respectively, when exhausted grape marc was subjected to 
biomass pyrolysis temperatures of 300 °C to 700 °C. How-
ever, at temperatures of 500 °C and 700 °C, biochar yield 
significantly decreased, with 33.8% for the former and 30.9% 
for the latter (Ferjani et al. 2019).

A recent study was carried out on cellulose, hemicellu-
lose, and lignin, the three major components of lignocellu-
losic biomass, to determine the effect of reaction tempera-
ture on the behavior of pyrolytic product distribution. The 
experimental work included a wide range of temperatures 
in a fixed-bed reactor and a high-purity nitrogen environ-
ment with temperatures ranging from 400 to 800 °C. Results 
showed that a moderate temperature (450–700 °C) is the 
most suitable for bio-oil production for hemicellulose, cellu-
lose, and lignin feedstocks. On the contrary, higher tempera-
tures produced more gaseous products (Chen et al. 2022).

A study by Makavana et al. (2020) demonstrated the influ-
ence of temperature on the pyrolysis of cotton stalks. Results 
revealed that increasing pyrolytic temperature reduced the 
biochar yield owing to many primary decompositions or 

Fig. 4  Distribution of products from various pyrolysis mechanisms. 
Compared to other pyrolysis types, intermediate pyrolysis produces 
a wide range of products and can thus be used in the co-production 

of biochar, bio-oil, and syngas. On the other hand, oil production is 
maximized via rapid cooling and controlled residence time for the 
secondary cracking reactions to repress syngas production
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secondary degradation of the char residues. They also noted 
that the escalation of biochar yields at lower temperatures 
indicates partial pyrolysis of the feedstock, whereas bio-
oil and gaseous product yields soared dramatically. Recent 
steam pyrolysis experiments on pinewood at temperatures 
ranging from 500 to 800 °C were carried out on a bench-
scale plant. The study's outcome revealed that the highest 
bio-oil yield was obtained at 500 °C, and when the tempera-
ture increased, a higher gas yield was achieved. In contrast, 
bio-oil and biochar were reduced significantly (Fernandez 
et al. 2022).

Simple kinetic modeling was implemented to predict the 
effect of pyrolytic temperature using a wide range of temper-
atures from 200 to 1000 °C for grass biomass as feedstock. 
The results showed that operational temperature significantly 
impacted product yields; for example, when temperature 
increased, biochar yield decreased, while bio-oil and synthe-
sis gas increased (Abhijeet et al. 2020). Experimental work 
was performed by Hanif et al. (2019) to elucidate the relation 
between temperature and pyrolysis of anaerobic sludge. The 
work's outcome showed that remarkable biochar reduction 
was detected when the temperature increased. Moreover, 
yields of bio-oil and gas products increased as tempera-
ture increased incrementally. Table 6 lists recent studies 

conducted to demonstrate the influence of temperature on 
product distribution.

Summary

The decomposition products of lignocellulosic biomass via 
pyrolysis are categorized into bio-oil, syngas, and biochar. 
The distribution of these products significantly depends on 
the composition of feedstock introduced to the reactor. Bio-
oil is the most dominant product from cellulosic biomass 
pyrolysis, with adjacent syngas and lower biochar. Similar 
behavior is obtained from hemicellulosic-based biomass but 
with relatively lower yields than cellulosic-based materials. 
On the other hand, biochar is a superior product from lignin-
rich biomass with traces of syngas, which may be considered 
a byproduct.

The type of pyrolysis, heating rate, and residence time 
are crucial contributors to determining the kind of pyrolysis 
products. The pyrolysis residence time is prolonged with a 
slower heating rate to obtain the maximum amount of bio-
char. Bio-oil is produced via lower residence time and faster 
heating rate.

Pyrolytic temperature is the most critical factor that 
controls several outcomes, such as product distribution, 

Table 6  The distribution of pyrolysis products is remarkably con-
trolled via various parameters such as lignocellulosic feedstock type, 
pyrolytic temperature, heating rate, and reaction retention time. Slow 
pyrolysis produced biochar as the desired product by lower residence 

time and moderate pyrolytic temperature. On the contrary, biooil was 
desired product from fast pyrolysis by increasing the heating rate with 
a wide range of temperatures. Bio-oil and syngas yields are boosted 
through fast pyrolysis compared to slow pyrolysis

Feedstock Tem-
perature 
(◦C)

Pyrolysis mecha-
nism

Pyrolysis condi-
tions

Product distribution (weight%) Reference

Biochar Bio-oil Gas Aqueous Losses

Anaerobic sludge 400 Slow pyrolysis Heat rate: 5.5 ◦C 
/min

68.00 2.00 1.00 12.00 17.00 Hanif et al. (2019)
500 43.00 6.00 5.00 28.00 18.00
600 44.00 7.00 5.00 24.00 20.00

Pinewood 500 Fast pyrolysis Residence time: 
20 s

15.00 73.00 12.00 Not reported Not reported Fernandez et al. 
(2022)600 12.00 64.00 24.00 Not reported Not reported

700 10.00 50.00 40.00 Not reported Not reported
800 9.00 27.00 64.00 Not reported Not reported

Palm fiber 300 Slow pyrolysis Heat rate: 5 ◦C /
min

55.00 0.00 45.00 Not reported Not reported Selvarajoo and 
Oochit (2020)500 30.00 14.00 56.00 Not reported Not reported

700 28.00 29.00 43.00 Not reported Not reported
900 27.00 7.00 66.00 Not reported Not reported

Wood pellets 200 Slow pyrolysis Residence time: 
240 min

64.80 11.80 23.40 Not reported Not reported Santamaria et al. 
(2021)300 44.20 14.20 41.60 Not reported Not reported

400 37.20 16.60 46.20 Not reported Not reported
500 34.00 19.00 47.80 Not reported Not reported

Oat straw 300 Slow pyrolysis Heat rate: 10 ◦C/
min

48.00 39.00 13.00 Not reported Not reported Mlonka-Mędrala 
et al. (2021)400 38.00 48.00 14.00 Not reported Not reported

500 35.00 50.00 15.00 Not reported Not reported
600 27.00 57.00 16.00 Not reported Not reported
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syngas composition, and volumetric flow rate. Increasing 
temperature is vital to obtain syngas with considerable flow 
rates with reduced biochar. Temperature highly impacted 
combustible and non-combustible gas yield within syngas 
products, where the combustible gases boosted as the tem-
perature increased.

Bio‑oil upgrading techniques

To address the limitations of bio-oil, physical and chemical 
approaches have been used for upgrading. These approaches 
aim to reduce the water content and acidity that contribute to 
bio-oil corrosiveness and improve its stability by decreasing 
the oxygen and solid phase content and reducing its vis-
cosity. A high hydrogen/carbon ratio and good combustion 
performance are essential qualities that should be present in 
high-grade bio-oil. Figure 5 illustrates the main techniques 
for upgrading bio-oil, including physical and chemical 
methods.

Hot vapor filtration

Bio-oil contains a high percentage of ash and alkali content 
that negatively impacts its quality, molecular weight, and 
viscosity (Wang et al. 2016a). Hot vapor filtration has been 
used as an upgrading technique to reduce bio-oil ash content 

to below 0.01% and alkali concentration to 10 ppm. This 
process involves filtering vapor at a high temperature of over 
250 °C (Pawar et al. 2020).

Two types of filters can be used in this process: bag-type 
(conventional) filters, which are unsuitable for high tempera-
tures, and candle-shaped filters, with one end for capturing 
vapor and the other closed (Krutof and Hawboldt 2018). The 
type of filter used can significantly affect the properties of 
the resulting bio-oil. Ceramic filters have been shown to pro-
duce bio-oil with low alkali and solid content and low iron 
content. However, hot vapor filtration has some limitations, 
including a low bio-oil yield, increased iron content, and 
the need for self-cleaning filters (Baldwin and Feik 2013).

In conclusion, hot vapor filtration is an effective physi-
cal upgrading technique for reducing bio-oil's alkali and 
ash content. However, it can be costly and has a low bio-oil 
yield.

Solvent addition

Solvent addition is widely utilized for enhancing bio-oil 
quality by increasing its heating value and improving its 
viscosity and homogeneity. This technique involves using 
polar solvents, including ethanol, isopropanol, furfural, and 
methanol, which have been shown to be effective in improv-
ing bio-oil properties (Oasmaa and Kuoppala 2003). It has 
been demonstrated that the immediate use of polar solvents 

Fig. 5  Techniques used to upgrade bio-oil, including physical and 
chemical methods. Physical processes include solvent addition and 
hot vapor filtration, while chemical techniques include hydrotreat-
ing, catalytic cracking, esterification, and steam reforming. These 

approaches can result in upgraded oil with varying quality depending 
on the method used. Steam reforming can also produce renewable and 
clean hydrogen
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following the pyrolysis process can enhance the bio-oil's 
stability and heating value. Solvent addition also helps to 
prevent phase separation, leading to an improved homoge-
neity of the bio-oil (Czernik et al. 2002). The solvent addi-
tion process has also been found to inhibit polymerization 
through chemical interactions between bio-oil and alcohol 
solvents, such as esterification and acetalization.

In comparing the effects of methanol, isopropanol, and 
ethanol on bio-oil upgrading, it was found that ethanol 
improved the heating value more than the other two solvents. 
In contrast, methanol increased bio-oil's acidity, stability, 
and viscosity more effectively than isopropanol and ethanol 
(Oasmaa et al. 2004). Another study found that increasing 
the proportion of methanol from 3 to 15 wet weight% led to 
improved bio-oil stability and viscosity that may be attrib-
uted to changes in bio-oil structure, the inhibition of chain 
reactions, and physical dilution (Chen et al. 2014; Mei et al. 
2019). Additionally, increasing methanol dosage above 6 wet 
weight% was found to increase the pH of upgraded bio-oil 
over time, likely due to methanol's ability to inhibit  H+ activ-
ity (Mei et al. 2019; Kim et al. 2012a). However, the solvent 
addition process has some drawbacks, including a decrease 
in flash points and the complexity of the mechanism (Panwar 
and Paul 2021).

In summary, solvent addition is a valuable technique for 
upgrading bio-oil by improving its heating value, viscosity, 
and homogeneity. Alcohol solvents, particularly methanol, 
are commonly used for this purpose and have been shown 
to increase bio-oil's acidity, stability, and viscosity. Ethanol, 
on the other hand, is more effective at increasing the heat-
ing value of bio-oil. However, it should be noted that this 
technique also has the potential to decrease the flash point 
of bio-oil.

Emulsification

Emulsification is a simple physical method for upgrading 
bio-oil by mixing it with petroleum fuels such as diesel. 
Since bio-oil and diesel fuel have low miscibility, the emul-
sification process typically involves the use of surfactants 
(e.g., Atlox 4914 and Span 80) or co-surfactants (e.g., 
ethanol and methanol) to facilitate the mixing (Bridgwater 
2012). Surfactants have a polar, hydrophilic head and a non-
polar, lipophilic tail. During the emulsification process, the 
polar bio-oil connects to the head of the surfactant, while 
the tail attaches to the nonpolar diesel fuel (Zhang and Wu 
2017).

Physical methods, such as sonication and stirring, can 
significantly improve the stability of the emulsification pro-
cess and the quality of the upgraded bio-oil. The stability 
of the emulsion is also influenced by factors including the 
ratio of bio-oil to diesel, the concentration of surfactant, 

temperature, mixing time, and stirring rate—stable emulsi-
fication results in the production of high-grade bio-oil with 
long-term stability (Zhang et al. 2018; Abismail et al. 1999).

While surfactants can facilitate the blending of bio-oil 
and diesel fuel, they also increase the risk of corrosion in 
engines and require high levels of Energy. On the other hand, 
emulsification has several advantages, including producing 
bio-oil with excellent ignition properties, calorific value, and 
low water content (Leng et al. 2018; Lin et al. 2016). Despite 
these benefits, emulsification also has some significant draw-
backs, such as the high energy requirements and the high 
cost of surfactants.

In conclusion, the emulsification technique is widely used 
for upgrading bio-oil due to its ability to produce bio-oil 
with desirable characteristics such as high ignition perfor-
mance, calorific value, and low water content, but these ben-
efits must be weighed against the energy and cost demands 
of the process.

Esterification

Esterification is a process for upgrading bio-oil by convert-
ing it to esters using alcohols and catalysts. This technique 
produces bio-oil with low density, acidity, water content, and 
high heating value (Wang et al. 2010a; Wang et al. 2010b). 
The esterification process involves adding ethanol or metha-
nol to form esters under specific conditions, such as initial 
pressure of 5 MPa, a temperature of 300–350 °C, and a stir-
ring rate of 360 rpm.

The bio-oil produced through the esterification upgrad-
ing process consists of two phases: a light soluble oil and a 
heavy insoluble oil. It has been found that catalytic esterifi-
cation significantly reduces the oxygen content and acidity 
of bio-oil (Milina et al. 2014). Various acid catalysts have 
been used in the esterification of bio-oil, including liquid-
phase catalysts such as sulfuric, hydrochloric, and citric 
acid, and solid-phase catalysts such as zeolite, resin, and 
aluminum silicate (Milina et al. 2014; Zhang et al. 2006).

In summary, esterification is a technique for converting 
bio-oil to esters using alcohols, which results in upgraded 
bio-oil with low viscosity, high stability, high calorific value, 
and high intensity. However, the yield of bio-oil through this 
process is not exceptionally high.

Catalytic cracking

Catalytic cracking is a process that involves the removal of 
oxygen in the form of water, carbon dioxide, and carbon 
monoxide, improving the properties of bio-oil, such as acid-
ity, viscosity, water content, and calorific value (Yang et al. 
2015). This process can be carried out at normal pressure 
in fluidized or fixed bed reactors and is often catalyzed by 
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HZSM-5, a catalyst known for its high reactivity, selectivity, 
porous structure, and high acidity.

Sunarno et al. (2018) studied the kinetics of bio-oil 
catalytic cracking using silica-alumina as a catalyst. The 
catalytic cracking was conducted in a fixed bed reactor 
at temperatures of 450–600 °C and with catalyst lengths 
of 1–4 cm. The optimal catalytic cracking condition was 
found at 500 °C with a 1 cm catalyst length. The concen-
tration of the produced bio-oil was found to decrease with 
increasing process temperature and catalyst length, likely 
due to the deoxygenation of oxygen functional groups 
in bio-oil. It is worth noting that the bio-oil produced 
through catalytic cracking is classified as a low-grade 
bio-oil and that the short lifetime of the catalyst is a limi-
tation of this technique (Ogunkoya et al. 2015).

In summary, catalytic cracking is a chemical upgrading 
method that aims to reduce the oxygen content of bio-oil, 
improving its acidity, viscosity, and water content. How-
ever, the short lifetime of the catalyst used in this process 
is a significant drawback.

Hydrotreatment

Bio-oil produced through biomass pyrolysis typically 
contains high levels of oxygen, up to 35–40 wet weight% 
(Hansen et al. 2020), and comprises around 300 oxygen-
containing compounds (Han et al. 2016). The oxygen con-
tent of bio-oil is a major factor in determining its viscos-
ity, and in being suitable for use as a fuel, the total oxygen 
content should not exceed 5% (wet weight) (Elliott 2007). 
Hydrodeoxygenation is a process that aims to remove 
oxygen from bio-oil while overcoming the limitations of 
catalytic cracking. This process involves a series of reac-
tions, including hydrocracking, dehydration, decarboxy-
lation, polymerization, and hydrogenolysis (Saidi et al. 
2014). Hydrodeoxygenation produces bio-oil with a high 
hydrogen/carbon ratio and high grade. It can also increase 
the hydrogen on the catalyst surface to protect it from 
coke deposition (Mortensen et al. 2011; De et al. 2015).

Hydrogenation is a form of hydrotreatment that can 
improve the quality and stability of bio-oil by reducing 
the levels of aldehydes and organic acids, which con-
tribute to the corrosiveness and acidity of bio-oil. It also 
increases the hydrogen content of bio-oil, improving its 
fuel quality (Khosravanipour Mostafazadeh et al. 2018). 
Interestingly, hydrogenation enhances bio-oil quality 
without altering its boiling range due to its non-damaging 
nature (Panwar and Paul 2021).

Overall, hydrotreatment is a promising upgrading tech-
nique that can reduce the viscosity and oxygen content 
of bio-oil and improve its heating value. However, it has 
some drawbacks, including low yield and high levels of 

char, coke, and tar in bio-oil, which can poison the cata-
lyst used in the process.

Steam reforming

Steam reforming is an advanced upgrading method that aims 
to produce upgraded bio-oil and clean, renewable hydrogen 
(Gollakota et al. 2016). The upgrading of bio-oil through 
steam reforming involves the conversion of bio-oil to syn-
gas, which is reformed into synthetic fuel through the Fis-
cher–Tropsch process. At the same time, pure hydrogen is 
generated through the water gas shift reaction (Wright et al. 
2010a; Sharifzadeh et al. 2015). It has been found that the 
yield of hydrogen through steam reforming decreases signifi-
cantly in the presence of high oxygen content in bio-oil. In 
contrast, high hydrogen content directly increases hydrogen 
yield (Trane et al. 2012).

Notably, the steam reforming technique requires a higher 
temperature (> 800 °C) than the other upgrading techniques 
(Mei et al. 2016). In addition, the amount of carbon deposi-
tion on the catalyst surface is relatively high, reaching 15% 
of the initial carbon content, which reduces the lifetime 
and reusability of the catalyst and is a major challenge in 
this upgrading process (Chan et al. 2016). Lan et al. found 
that coke formation on the catalyst surface occurred at 650 
°C but that raising the temperature to 950 °C reduced the 
amount of coke on the catalyst surface, possibly due to the 
reaction between the deposited coke and absorbent steam 
(Lan et al. 2014).

Overall, steam reforming is a method for producing clean, 
renewable hydrogen. However, it has several drawbacks, 
including low reusability and lifetime of the catalyst, the 
need for higher temperatures than other upgrading methods, 
and high cost.

Supercritical fluids

The use of supercritical fluids for upgrading bio-oil has 
gained popularity due to their ability to improve bio-oil's 
caloric values and viscosity. Supercritical fluids are sub-
stances that become supercritical when the temperature and 
pressure of the mixture or compound exceed their critical 
point. These fluids have properties that are intermediate 
between gases and liquids (Jessop and Leitner 2008).

Supercritical fluids, particularly organic solvents such 
as acetone (Liu and Zhang 2008; Li et al. 2019b), ethanol 
(Xiu et al. 2010; Shafaghat et al. 2019), n-hexanol (Guzmán-
Albores et al. 2021), 1,4 dioxane (Mazaheri et al. 2010; Wu 
et al. 2019a), and propanol (Park et al. 2021b), have been 
used in supercritical fluid technology to improve the qual-
ity of bio-oil (Xiu and Shahbazi 2012). While water is the 
most commonly used supercritical fluid, it has limitations 
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that prevent it from being used as a solvent for biomass liq-
uefaction, including the production of viscous bio-oil with 
high oxygen content and low production of water-insoluble 
bio-oil.

The supercritical fluid technique is environmentally 
friendly and operates at low temperatures and pressures. 
Still, it is not economically feasible for large-scale use due 
to the high cost of solvents. Researchers have therefore 
explored alternative, cost-effective solvents such as crude 
glycerol, which has shown promising results in biomass 
conversion to bio-oil (Nomanbhay et al. 2018; Forero et al. 
2022).

Overall, supercritical fluids offer the potential to improve 
the calorific value and reduce the acidity and viscos-
ity of bio-oil, but the high cost of solvents is a significant 
limitation.

Transesterification

Transesterification is an upgrading technique that aims to 
reduce the water content and viscosity and increase the pH 
of bio-oil. It involves a substitution reaction in which the 
long chain in the ester is replaced with a smaller one, as 
shown in Fig. 6 (Hu et al. 2012). Nevertheless, using large 
amounts of alcohol can lead to environmental issues due to 
water pollution (Milina et al. 2014; Ciddor et al. 2015). The 
biodiesel produced via this method has excellent combustion 
efficiency, low sulfur content, and high cetane value (Leung 
et al. 2010). It is important to note that while esterification 
produces esters as the final product, transesterification uses 
esters as a reactant and produces a treated ester as the final 
product.

Overall, transesterification differs from esterification in 
its reactants, final product, and advantages and disadvan-
tages, as listed in Table 7. It effectively reduces the viscosity 
and water content of bio-oil but may have negative environ-
mental impacts due to the use of alcohol.

Role of biochar in achieving a negative 
carbon footprint

Carbon-negative energy is an approach that combines energy 
production with zero net carbon emissions. Wide adapta-
tion of carbon-negative energy will lead to a carbon-negative 
economy where economic activity removes carbon dioxide 
instead of adding carbon dioxide to the atmosphere. In this 
regard, thermochemical methods can be applied with carbon 
removal to accomplish carbon-negative energy.

Pyrolysis is a thermochemical process that received sig-
nificant attention as a carbon-negative energy process. Plants 
usually utilize biological photosynthesis to fix atmospheric 
carbon as an energy source. Biomass can be converted ther-
mochemically into biofuels, materials, or chemicals. In par-
ticular, the feedstock's carbon can be recycled and stored in 
the environment as biochar. This way, pyrolysis can com-
bine bioenergy generation with carbon removal to achieve 
carbon-negative energy. Approximately 1.2–1.5 billion tons 
of biomass in the USA will be accessible at roughly $60/
ton by 2040 (Brown 2021). Therefore, the thermochemical 
process of biomass can annually remove 0.2–2.75 gigatons 
of atmospheric carbon dioxide, assuming carbon content at 
47% of the biomass. Additionally, biochar is a stable form of 
carbon and can remain stable for more than 1000 years in the 
environment (Farghali et al. 2022b). Crop residues converted 

Fig. 6  Transesterification of ester-containing bio-oil. Transesterifica-
tion entails the substitution of a shorter chain ester for the long chain 
ester. Through transesterification, 1,2-ethanediol diacetate is con-

verted to methyl acetate; in addition, 1,2-ethanediol monoacetate is 
converted to 1,2-ethanediol. Transesterification yields biodiesel with 
good combustion properties



1436 Environmental Chemistry Letters (2023) 21:1419–1476

1 3

into biochar can provide several benefits for humans and the 
environment, as shown in Fig. 7.

Pyrolysis conditions such as temperature and residence 
time can impact product properties, distribution, and the car-
bon footprint of subsequent products. For instance, Thers 
et al. (2019) examined the role of biomass pyrolysis with 
subsequent soil amendment in optimizing greenhouse gas 
emissions from oilseed rape cultivation. Pyrolysis of oil-
seed rape straw at 400 °C and 800 °C resulted in − 392 
and − 429 kg carbon dioxide equivalent, respectively. The 
greenhouse gas emissions were decreased by 73–83% in the 
biochar-converted biomass compared with the control due 
to improved carbon sequestration. Similarly, Cheng et al. 
(2020) found that the biochar generated from agriculture 
residues at temperatures between 400 and 700 °C offset car-
bon emissions of 200–470 kg carbon dioxide equivalent per 
ton of biomass. Gong et al. (2021) indicated that the inter-
mediate pyrolysis of rice straw and slow pyrolysis of corn 
stover could offset carbon dioxide by 1.636- and 1.839-ton 

carbon dioxide equivalent per ton of biomass, respectively. 
The pyrolysis conditions also affect bio-oil and syngas pro-
duction (Matuštík et al. 2020). Thus, carbon dioxide seques-
tration is related to the type of pyrolysis and biomass.

In addition, pyrolysis equipment affects biochar's effi-
ciency, yield, and properties. Large-scale pyrolysis plants 
usually achieve higher productivity with better co-product 
energy offsets. In contrast, small-scale reactors are gener-
ally unstable, of lower production, labor- and effort-intensive 
systems, and mainly experience particulate emissions that 
cause air pollution. For example, Mohammadi et al. (2016) 
exhibited carbon footprints of 3.85- and 1.11-kg carbon 
dioxide equivalent per kg of milled rice for drum ovens 
and pyrolytic cook-stove, respectively. However, Moham-
madi et al. (2017) found negative global warming potentials 
of − 229, − 318, and − 360 kg of carbon dioxide equivalent 
per ton of dry rice husk for brick kiln, stove, and large-scale 
pyrolysis plants, respectively. Therefore, more sophisticated 
pyrolysis equipment maximizes environmental benefits 

Table 7  Benefits and drawbacks 
of several bio-oil upgrading 
techniques. Bi-oil has been 
improved using a variety 
of processes, including 
transesterification, solvent 
addition, emulsification, 
esterification, catalytic cracking, 
hydrothermal and supercritical 
treatment, hot water filtering, 
and esterification. There is no 
perfect technique to improve 
bio-oil. The benefits and 
drawbacks of each method are 
also present

Upgrading approach Advantage Disadvantage

Hot vapor filtration Reduce ash percent (0.01%)
Reduce alkali concentration
(10 ppm)

Low bio-oil yield
High iron content
Require self-cleaning filters

Solvent addition Increase heating value
Improve the bio-oil homogeneity
Enhance the bio-oil stability

Decline the flash point
The mechanism difficulty

Emulsification Improve ignition specifics
Enhance calorific value
Decrease water content

Require high energy
Corrosion problem
High cost of surfactant

Esterification Enhance stability
Decline viscosity
Reduce oxygen and water contents
Increase density
Increase calorific value

Low yield
Poor performance

Catalytic cracking Remove oxygen content
Enhance the bio-oil specification: acidity, 

calorific value, viscosity, and water 
content

The short lifetime of the catalyst
Production of bio-oil with a low grade

Hydrotreatment Decrease oxygen amounts
Increase heating value
Decrease viscosity
Produce high-grade bio-oil

Require high pressure
High cost
Low yield

Steam reforming Production of hydrogen The short lifetime of the catalyst
Low reusability of the catalyst
High cost
Need high temperature (800 °C)

Supercritical fluids Decrease acidity
Increase calorific value
Decrease viscosity
Proceed at low pressure and temperature

Solvent's high cost

Transesterification Decline water content
Decline viscosity
Raise pH
Good combustion performance
Low sulfur content

Environmental issue
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by reducing carbon dioxide emissions. Thus, selecting an 
appropriate pyrolysis technology is critical in developing 
areas.

Lefebvre et  al. (2021) estimated the greenhouse gas 
removal potential of biochar converted from sugarcane 
residues. The authors found that slow pyrolysis of sugar-
cane residues could sequester 6.3 ± 0.5-ton carbon dioxide 
equivalent per hectare per year, comparable to 36 million 
tons of carbon dioxide equivalent per year and 1.64 ± 0.11-
ton carbon dioxide equivalent per ton biochar. These ben-
efits arise mainly from the carbon stored as biochar in the 
soil. Similarly, Muñoz et al. (2017) identified a biochar-soil 
system in reducing greenhouse gas emissions from agricul-
tural and forestry biomass pyrolyzed at 300–500 °C. They 
found that biochar produced from residual forestry biomass 
at 500 °C could sequester 2.74-ton carbon dioxide equivalent 
per ton biochar when applied to the soil. Robb and Dargusch 
(2018) estimated the carbon footprint of biochar from oil 
palm waste applied to the crops at − 691 kg carbon diox-
ide equivalent per ton of biochar and − 286 carbon dioxide 
equivalent per ton of biochar when replaced the chemical 
fertilizers over 100 years.

Additionally, Yang et al. (2021) reported that 921.30 kg 
of carbon dioxide equivalent could be removed by convert-
ing 1 ton of crop residues into biochar. Llorach-Massana 
et al. (2017) found a carbon sink between 21- and 155- kg 
of carbon dioxide equivalent per ton of biochar produced 
from tomato plant residues. Additionally, Fawzy et al. (2022) 
estimated that one ton of biochar could permanently remove 
approximately 2.68 tons of carbon dioxide equivalent from 
the atmosphere, corresponding to 3.26 tons of carbon 

dioxide equivalent per hour and 24.45-kilo tons of carbon 
dioxide equivalent annual removal. The biochar added to 
soil could sequestrate approximately 376.11 million tons of 
carbon dioxide equivalent and aid in retaining 1.66 million 
tons of soil nutrients (Anand et al. 2022). The crop residues 
could produce 373 million tons of biochar and sequester 
150 million tons of carbon dioxide equivalent per year in 
soils (Windeatt et al. 2014). Several agro-residues can be 
utilized in the pyrolysis process, as shown in Table 8. The 
crop-derived residues are appropriate feedstocks for biochar 
generation and carbon sequestration and are eco-friendly.

Variations in feedstock and pyrolysis conditions primarily 
result in various biochar properties, which is a significant 
challenge. For instance, the higher ash content in herbaceous 
biomass produces lower-fixed carbon biochar than woody 
biomass (Brewer et al. 2014; Jafri et al. 2018), lowering its 
carbon sequestration capability/unit mass. Biochar formed 
at shorter residence time, and lower temperatures contain 
more labile carbon and volatile matter (Bakshi et al. 2018), 
rapidly mineralizing soils and not contributing to long-stand-
ing carbon sequestration. On the other hand, high pyrolysis 
temperature generates biochar with a significantly improved 
specific surface area, porosity, high pH, and carbon and ash 
content but with low cation exchange capacity values and 
volatile matter content (Tomczyk et al. 2020) because of 
organic matter decomposition. Biochars from animal litter 
and solid waste demonstrate lower surface areas, carbon 
content, volatile matter, and high cation exchange capacity 
than wood biomass and crop residue, even at greater pyroly-
sis temperatures (Tomczyk et al. 2020). This is because of 
variations in cellulose, lignin content, and biomass's mois-
ture content. Therefore, biochar physicochemical properties 
define its application as an additive to improve soil quality 
and biochar carbon sequestration potential.

In conclusion, the pyrolysis process is identified as a 
negative emissions technology that can generate energy and 
achieve zero net carbon emissions. Biomass can be utilized 
in pyrolysis to accomplish the negative emissions concept. 
For example, agriculture residues can embody approxi-
mately 2.74-ton carbon dioxide equivalent/ton biochar at 
500 °C. Hence, net carbon sequestration, global warming 
reduction potential, and greenhouse gas reduction potential 
can be a sequence of the pyrolysis process.

Integrating pyrolysis and anaerobic 
digestion

Rapid global population growth, climate change, energy 
demands, and vast waste induced several environmental 
and economic concerns. Urbanization and industrialization 
make up approximately 80% of energy demands covered by 
fossil fuels such as coal, petroleum products, and natural gas 

Fig. 7  Benefits offered from the conversion of crop residues into 
biochar. Clean and affordable energy to communities, carbon fuel 
alternatives, safe drinking water, security, livelihood, carbon seques-
tration, and environmental protection are consequences of biochar 
generation from biomass.  CO2 refers to carbon dioxide
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(Madadi Avargani et al. 2022). Fossil fuels usually gener-
ate carbon dioxide that increased from 6 gigatons in 1950 
to 34.81 gigatons in 2020, responsible for approximately 
90% of the total carbon dioxide emissions (Farghali et al. 
2022b; Osman et al. 2022b). Increased carbon dioxide emis-
sions resulted in several disasters, including climate change, 
global warming, environmental pollution, ecosystem imbal-
ance, and human and livestock disorders. For instance, cli-
mate changes affect the frequency and strength of storms, 
floods, droughts, and heatwaves, with subsequent physical 
and mental health disorders (Hrabok et al. 2020; Agha-
Kouchak et al. 2020). In 2018, the world witnessed more 
than 3oo cases of climatic-related natural disasters affecting 
68 million people. About $131.7 billion in financial dam-
ages were reported, of which wildfires, floods, droughts, 
and storms, represented 93%. Water, food, infrastructure, 
human health, and the ecosystem have been identified as 
the most susceptible to climate crises. Climate change also 
alters crop yields and causes infectious disease distribution 
(Farghali et al. 2022b). Therefore, climate change mitigation 
is urgently required to protect humans and all living beings 
from the worst of these consequences.

One available option could be accomplished through net-
zero waste and sustainable energy transition, where wastes 
can generate renewable bioenergy to meet energy demands 
(Farghali et al. 2022b). Several valorization processes have 
been used to treat biomass/wastes, such as pyrolysis, hydro-
thermal carbonization, anaerobic digestion, landfilling, and 
composting (Peng et al. 2023). Nevertheless, most conven-
tional waste valorization systems have several disadvantages 
and limitations, such as water and soil contamination, cli-
mate change, and pollution (Duan et al. 2021; Gaska et al. 
2021).

The anaerobic digestion process is a promising biotech-
nology that can aid in solving the current energy crisis by 
using waste and nutrient recovery without impacting the 
ecosystem (Farghali et al. 2022b; Farghali et al. 2021). A 
biogas system application in each nation could limit global 
warming to 2 °C. It might decrease greenhouse gas emis-
sions by 3.3–4.4 billion tons of carbon dioxide equivalent, 
accounting for 13% of global emissions (Farghali et al. 
2022b). Bioenergy generation from the anaerobic digestion 
process can generate approximately 14,000 terra watt-hours 
energy, accounting for 9% of primary energy consumed or 
about 32% of coal utilized globally (Farghali et al. 2022b).

Research has been conducted to enhance biogas genera-
tion using various feedstocks (Lu et al. 2022; Farghali et al. 
2020; Ap et al. 2021). However, approximately 10–40% 
(weight/weight) of agro/food waste is utilized for biogas 
generation, while the residual digestate portion remains 
undegraded. The unutilized digestate is a byproduct rich in 
nutrients and is used as fertilizer to enhance soil fertility. 
Nevertheless, improper uses of digestate, besides digestate's 

solid organic and inorganic contents, moisture, microbial 
residue, and fiber, may pollute water, cause unpleasant 
odors, and cause environmental pollution from the residual 
greenhouse gas emissions (Lamolinara et al. 2022). On the 
other hand, the cleaning and purifying of raw biogas from 
hydrogen sulfide, carbon dioxide, ammonia, vapor, and sil-
ica to high biomethane content comparable to natural gas is 
another issue facing the anaerobic digestion process (Khan 
et al. 2021). In addition, other challenges still need to be 
solved, including system instability, long retention times, 
the lower calorific value of biogas, the generation of low-
quality digestate, and difficulties in the biodegradation of 
high-fiber feedstock.

The pyrolysis process can offer benefits such as eco-
friendly nature and system controls. Additionally, the pro-
duced biochar has superior characteristics to unprocessed 
digestate to improve the crops and be utilized for raw biogas 
cleaning (Farghali et al. 2022b). However, using the pyroly-
sis process alone to treat agro-food wastes has limitations, 
such as difficulties in treating higher moisture-containing 
wastes, which reduces the system's efficiency. Therefore, 
coupling the anaerobic digestion process with pyrolysis 
corresponds to each other, compensating for the shortcom-
ings of individual techniques (Tayibi et al. 2021a; Monlau 
et al. 2015). An integrated approach can achieve a net-zero 
waste concept, recover bioenergy from digestate, utilize 
waste, upgrade the biogas produced, and promote a circular 
economy (Farghali et al. 2022b; Farghali et al. 2022c).

Generally, three essential scenarios have been imple-
mented in integrating the anaerobic digestion process 
with the pyrolysis process: First, utilizing the liquified and 
gasified pyrolyzed fractions as feedstocks for the anaero-
bic digestion process "upstream upgrading." Second, con-
verting the solid recalcitrant digestate from the anaerobic 
digester in the pyrolysis process "downstream valorization 
process." Ultimately, cycling systems include downstream 
and upstream approaches.

The integrated approach has many benefits, including 
(i) treatment of large quantities of biomass, where readily 
degradable products are sent to anaerobic digestion, whereas 
harsh biodegradable (straw, wood, and solid digestate frac-
tion) are utilized via pyrolysis. (ii) Avoiding pretreatment 
for anaerobic digestion units as pyrolysis could manage the 
dry and inadequately degradable feedstocks. (iii) In situ and 
ex situ biogas upgrad and purification of biogas using bio-
char addition into the anaerobic digestion system. (iv) The 
in situ or ex situ syngas upgrad via the biological methana-
tion process, and (v) the beneficial uses of digestate with 
biochar for agronomic optimization (Tayibi et al. 2021b).
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Upstream integration system

In this integration approach, the pyrolyzed biomass/wastes 
served as feedstocks for the anaerobic digester. The input 
feedstock, the byproduct of the pyrolysis process, could be 
bio-oil, syngas, or biochar. Uses of biochar in anaerobic 
digestion are extensively studied in the literature, either to 
control anaerobic digestion inhibitors, to enhance and purify 
biogas from hydrogen sulfide, to upgrade the raw biogas 
through the removal of carbon dioxide (Farghali et  al. 
2022b), or as a mean to increase the agronomic value of the 
digestate (Farghali et al. 2022b; Tayibi et al. 2021b).

This section focuses on the valorization of bio-oil and 
syngas through an integrated approach. Bio-oils are known 
as pyrolysis fluids, pyrolysis oils, pyroligneous acids, and 
bio-petroleum (Drugkar et al. 2022). A liquid fraction from 
the pyrolysis process comprises about 400 different func-
tional groups in two components: an organic bottom bio-
oil of 15–30% weight/weight and an aqueous bio-oil part 
of 70–85% weight/weight. The aqueous phase consists of 
water, water-soluble substances (volatile fatty acids, sug-
ars of  C2–C6 structure, oligomers), and little soluble sub-
strates mainly in the form of furans and phenols (Tayibi et al. 
2021b; Drugkar et al. 2022; Álvarez-Chávez et al. 2019). 
Bio-oil has a low heating value, high ammonia–nitrogen, and 
high water content. Thus, using aqueous bio-oil in anaero-
bic digestion has gained recent awareness (Torri and Fabbri 
2014; Seyedi et al. 2019; Hübner and Mumme 2015), as 
shown in Table 9.

Torri and Fabbri (2014) use pyrolysis bio-oil from corn 
stalks as feedstock for an anaerobic test underlining bio-
logical inhibition. They reported methane generation cor-
responding to 65% of the theoretical value after adding 
bio-oil at 5 g/liter digester/day in a semi-continuous sys-
tem. Likewise, Hübner and Mumme (2015) investigated the 
biomethane generation of various aqueous pyrolysis liquor 
produced from solid digestates at 330–530 °C, which were 
added to batch systems at four chemical oxygen demands-
based dosages of 3, 6, 12, and 30 g/liter. The pyrolyzed liq-
uor at 330 °C produced the highest methane outcome of 
199.1 L/kilogram chemical oxygen demand, corresponding 
to 56.9% chemical oxygen demand removal, followed by the 
430 °C pyrolyzed liquor. Most volatile organic carbons, such 
as phenol, furfural, catechol, levoglucosan, and guaiacol, in 
the pyrolysis liquor, were reduced below the detection limit. 
The authors emphasized the meaning of integrated pyrolysis 
and anaerobic digestion in the valorization of digestate and 
pyrolysis liquors.

Some authors reported inhibitory effects after utiliz-
ing pyrolysis liquids in anaerobic digestion. For example, 
Seyedi et al. (2019) explored various liquid toxicity derived 
from pyrolysis at 800 °C to anaerobically digested waste-
activated municipal water and primary sludge. The authors 

found methanogenic toxicity after using the aqueous pyroly-
sis liquid digester at loading rates higher than 0.5 g/chemi-
cal oxygen demand. The toxicity was attributed to organic 
byproducts of 2,5-dimethoxybenzyl alcohol, 3,5-dimethoxy-
4-hydroxybenzaldehyde, cresol, benzene, phenols, ethylb-
enzene, xylenes, styrene, pyridine, and benzonitrile, but not 
attributed to ammonia–nitrogen concentration. However, 
Yu et al. (2020) examined the influence of diluted aqueous 
pyrolysis liquid 5–100 times on the anaerobic digestion of 
swine manure. They found an improvement in the methano-
genic capacity by 22.98% in the digester supplied with 50% 
diluted aqueous pyrolysis liquid compared to the control. 
The Methanosarcina and Methanobrevibacter dominated 
microbial communities and biodegraded volatile fatty acids, 
maximizing the biomethane yield.

Additionally, Yue et al. (2019) explored the impact of 
sewage sludge pyrolysis liquid on batch anaerobic diges-
tion of cow manure. They found that adding sewage sludge 
pyrolysis liquid produced at 550 °C increased biomethane 
yield by 128.7% compared to the group without addition. 
The sewage sludge pyrolysis liquid-rich trace elements pro-
moted microbes' growth and contributed to the decomposi-
tion of toxic organic compounds, hence being an economical 
and reliable alternative for waste valorization.

Few studies have determined the effect of an upstream 
integration system in a continuous anaerobic fermentation 
system. Torri et al. (2020) indicated that continuous anaero-
bic digestion of aqueous pyrolysis liquid derived from pine 
wood in an up-flow anaerobic sludge bed reactor resulted in 
a 52% biodegradation of the chemical oxygen demand of the 
aqueous pyrolysis liquid at an organic loading rate of 1.5 g 
chemical oxygen demand/liter/day. This helps guide more 
research to develop aqueous pyrolysis liquid in continuous 
anaerobic fermentation to increase its feasibility on a large 
scale.

Apart from bio-oil, syngas has the potential to be 
upgraded into biomethane (Schwede et al. 2017; Paniagua 
et al. 2022), as listed in Table 10. The composition of syngas 
varies according to the organic waste composition and its 
producing conditions. Parameters, including reactor configu-
ration, production time, temperature, and feedstock moisture 
content, influence the syngas composition (Aryal et al. 2021; 
Cerone et al. 2020).

Biological biomethanation is the method that converts 
syngas to biomethane via methanogenic microorganisms 
metabolism at temperature ranges of 35–75 °C (Paniagua 
et al. 2022). The biological methanation of syngas can occur 
via the conversion of carbon monoxides, carbon dioxides, 
and hydrogen into methane using different routes harbored 
by archaea and bacteria, as shown in Fig. 8. Acetate and 
hydrogen/carbon dioxide pathways are common in the 
biological syngas methanation. The biological conversion 
of carbon dioxides to methane with a hydrogen-assisted 
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pathway is a well-known process for ex situ and in situ 
biogas upgrading (Farghali et al. 2022b).

The conversion of syngas into acetate through the utili-
zation of microorganisms, such as members of the genera 
Eubacterium, Acetobacterium, Acetobacterium, Clostrid-
ium, and Sporomusa, is a well-documented process in the 
literature (Novak et al. 2021; Renaudie et al. 2022). These 
microorganisms, commonly referred to as acetogens, can uti-
lize hydrogen and carbon monoxide in the syngas to produce 
acetate as a metabolic byproduct. Subsequently, the acetate 
produced is utilized by acetoclastic methanogens, such as 
Methanosarcina barkeri, to generate methane through the 
process of acetoclastic methanogenesis (Renaudie et al. 
2022; Novak et al. 2021). This pathway represents a critical 
step in converting syngas into methane, a valuable energy 
source.

An alternative pathway for syngas methanation is the con-
version of carbon monoxide to hydrogen and carbon diox-
ide through carboxydotrophic hydrogenogenesis (Paniagua 
et al. 2022). This reaction is facilitated by microorganisms, 
including Thermincola, Rhodospirillum, Desulfotomaculum, 
Caboxydocella, Carboxydothermus, and Moorella (Kato 
et al. 2021; Liu et al. 2020). Then the reaction is completed 
by hydrogenotrophic methanogenesis.

The utilization of acetic acid in the process of methano-
genesis can occur through two pathways: acetoclastic metha-
nogens or syntrophic acetate-oxidizing bacteria. Whether 
one pathway or the other is used depends on the availability 
of different compounds, such as formate or hydrogen, in the 
system. In the case of acetoclastic methanogens, acetic acid 

is converted directly into methane (Paniagua et al. 2022; 
Dyksma et al. 2020). On the other hand, syntrophic acetate-
oxidizing bacteria oxidize acetic acid into carbon dioxide 
and hydrogen, which is then utilized by hydrogenotrophic 
methanogens to produce methane. This latter pathway has 
been considered particularly important under thermophilic 
fermentation conditions (Paniagua et al. 2022).

Compared to chemical compounds, the utilization of 
microorganisms makes the biological conversion pro-
cess less vulnerable to feed gas impurities and more eco-
friendly (Ba et al. 2020). Therefore, adopting the bio-
logical syngas conversion into biomethane has attracted 
significant attention. Multiple strategies can be imple-
mented to upgrade syngas molecules, including carbon 
monoxides and carbon dioxides, into biomethane using 
hydrogen in syngas as an electron donor. Methane can be 
generated from non-converted carbon dioxides using con-
ventional biogas scrubbing or by methanation of carbon 
dioxides with hydrogen addition (Farghali et al. 2022b).

The biological conversion of syngas to biomethane 
is still in its infancy and has several limitations. For 
example, poor hydrogen and carbon monoxide solubili-
ties limit the mass transfer of the gas and the microbial 
biomass  (Schwede et  al. 2017; Thema et al. 2019). In 
contrast, carbon dioxide is about 23 times more soluble 
than hydrogen in an aqueous medium (Götz et al. 2016). 
Schwede et al. (2017) examined the methanogenic archaea 
immobilization onto biochar to enhance the biomethana-
tion process. They found that about 50% of the syngas 
components were converted to methane during the first 

Fig. 8  Biomethanation of syngas into methane. The syngas biologi-
cal methanation can occur via converting carbon monoxides, carbon 
dioxides, and hydrogen into methane using different archaea and 
bacteria. Carbon monoxides can be converted into carbon dioxides 
or acetate using methanogens and acetogenic microbes. The carbon 

dioxides and hydrogen can be converted into acetate by carboxydo-
trophic hydrogenogenesis and hydrogenotrophic methanogens. Ace-
toclastic methanogens furtherly utilize acetate in methane. CO,  H2, 
 H2O,  CO2,  CH4, and  CH3COOH refer to carbon monoxide, hydrogen, 
water, carbon dioxide, methane, and acetic acid, respectively
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24 h; however, carbon monoxide was almost utilized for 
acetate/formate formation rather than the methanogenesis 
pathway. Afterward, methane production decreased due 
to increased carbon monoxide partial pressure that caused 
methanogenesis inhibition. Figueras et al. (2021) explored 
the effect of 4 bars of pressure on the syngas-liquid trans-
fer in a 10-L continuous stirred tank reactor at 55 °C. The 
authors found that a syngas mixture of 40% carbon mon-
oxide, 40% hydrogen, and 20% carbon dioxide was suc-
cessfully biomethanatied at 6.8 mmol biomethane per liter 
reactor with 97% carbon monoxide and 98% of hydrogen 
bioconversion rates.

pH is among the limiting factors affecting microorgan-
isms' activity and syngas biomethanation (Li et al. 2022). 
The neutral pH of 7 is optimum for syngas biomethanation. 
However, the existence of hydrogen in the reaction would 
react with carbon dioxides rather than carbon monoxide, 
resulting in a higher pH value and suppressing the activity 
of carbon monoxide utilizing microbes (Li et al. 2020).

Cycling downstream and upstream integrated 
approaches

The anaerobic digestion-downstream-upstream pyrolysis is 
a system in which the raw feedstocks are introduced to the 
biogas plants to generate biogas and the digestate. After that, 
the produced digestate is utilized through the pyrolysis pro-
cess to produce energy, biochar, and bio-oil—the pyrolysis 
product are then introduced into the biogas plants as co-
supplements, as shown in Fig. 9.

In the standard anaerobic fermentation process, the pro-
duced digestate, rich in nutrients, is used as organic fertilizer 

to enhance crop and soil properties. However, the direct 
application of fertilizer into soils has several drawbacks, 
such as greenhouse gas emissions, high transportation costs, 
and storage difficulties. Such an integrated approach reduces 
greenhouse gas emissions and improves waste recycling and 
the bioenergy potential of a biogas system. Balsari et al. 
(2013) reported that 1 megawatt of electricity produced from 
a biogas plant generates about 100 tons of digestate per day, 
having 30% and about 40% of total solid content and organic 
particulate, respectively, which is considerable amounts to 
be utilized in pyrolysis. However, the produced digestate 
contains high moisture contents, which limits the direct use 
of raw digestate in pyrolysis; hence removing the water from 
the digestate is essential before the pyrolysis process. Excess 
water in the digestate can be removed by mechanical de-
watering, followed by thermal drying, which can be supplied 
by surplus heat of hot gases from the pyrolysis reactor. In 
a pyrolysis reactor, the solid digestate is pyrolyzed to bio-
char, bio-oil, and syngas which then would be utilized in the 
integrated system.

On the other hand, raw biogas from the anaerobic fer-
mentation process needs to be purified and upgraded for 
subsequent use. Therefore, biochar formed from pyrolyzed 
digestate may be further applied to enhance methane pro-
duction and remove carbon dioxide, ammonia, hydrogen 
sulfide, and siloxanes impurities (Farghali et al. 2022b; 
Nguyen et al. 2021). The unique physicochemical proper-
ties of biochar, including porosity, cation exchange capacity, 
specific surface area, redox traits, the existence of functional 
groups, electrical conductivity, aromaticity, and pH, can help 
to improve the anaerobic digestion process (Kumar et al. 
2021). Additionally, biochar can be used in various areas, 

Fig. 9  The combined effect 
between pyrolysis and anaerobic 
digestion utilizing biochar, 
bio-oil, and syngas as pri-
mary elements. An anaerobic 
digestion system involves the 
digestion of biomass and wastes 
in the cycling downstream and 
upstream integrated approaches. 
After that, solid digestate is 
pyrolyzed to produce utilizing 
biochar, bio-oil, and syngas. 
The pyrolysis byproducts are 
further used as either co-feed-
stock or additives to stabilize, 
improve, purify, or upgrade 
biogas and soil amendment
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including carbon sequestration, water treatment, animal feed, 
composting, microbial fuel cells, construction, soil remedia-
tion, and energy storage. Table 11 lists the potential role of 
biochar from different feedstocks in the anaerobic fermenta-
tion process.

Studies have shown that adding biochar to the anaerobic 
digestion process improved methane yield and enhanced 
system stability. For instance, Zhang et al. (2019b) have 
examined the effect of nine biochar types obtained from 
corn straw on the anaerobic fermentation process. They 
reported a 57% increase in methane yield. Similarly, bio-
char can remove biogas impurities; for example, Farghali 
et al. (2022b) reported that biochar shows excellent adsorp-
tion capacity toward hydrogen sulfide and carbon dioxide. 
The authors reviewed that the adsorption capacity for hydro-
gen sulfide and carbon dioxide was 53–652 mg/gram and 
18.2–470 mg/gram, respectively. They mentioned that physi-
cal sorption is the pathway for carbon dioxide sequestration, 
whereas chemical sorption is mainly for hydrogen sulfide.

Another benefit of an integrated system is utilizing the 
aqueous bio-oil and syngas with the substrate to enhance 
biomethane yield and recover energy, as mentioned in the 
previous section.

In conclusion, using the pyrolysis or anaerobic digestion 
process as a sole process has several limitations and dis-
advantages. However, integrating pyrolysis with anaerobic 
digestion could overcome each restriction and increase the 
product yield with better characteristics. The integration can 
be in the form of upstream or downstream or cyclic upstream 
and downstream. Upstream integration is widely studied, 

and downstream integration is scarce; however, cyclic 
upstream and downstream are still in its infancy, particularly 
at a larger scale. Thus, downstream and cyclic integration 
approaches are recommended for future studies.

Energy derived from algal biomass pyrolysis

The industrial development of biomass-based biofuels 
has become a worldwide mandate due to their economic, 
political, and environmental influences. Algae-based biofu-
els contribute to net-zero dioxide emission and play a key 
role in minimizing carbon footprint through carbon capture 
and storage methods (Onyeaka et al. 2021). Microalgae-
based biofuels have shown potential to resolve the global 
climate change crisis; their sustainability and renewability 
make them a promising candidate to fulfill the rising energy 
demand worldwide. Algal biomass (micro- and macroalgae) 
are rich sources of carbohydrates, lipids, and proteins which 
could be converted to various biofuel forms contingent on 
the conversion technique (Hamed et al. 2020a). For instance, 
algal biomass can be converted to biodiesel via transesteri-
fication (Hamed et al. 2022a), bio-methane using anaero-
bic digestion (Farghali et al. 2021; Prajapati et al. 2013), 
bioethanol through fermentation processes, or into bio-oil 
and hydrogen using thermochemical conversion (Pourkarimi 
et al. 2019). The thermochemical conversion technology 
offers a more straightforward pathway to producing biofuels 
than chemical and biochemical processes.

Table 11  Impact of biochar supplementation on the biomethane 
yield  produced from the anaerobic digestion process. Biochar pro-
duced from various biomass and wastes can be introduced into an 

anaerobic digestion system. Amendment of biochar could result in a 
4–94% enhancement in methane yield

Feedstock for anaerobic fer-
mentation

Biochar production Anaerobic fermentation tem-
perature

Improvement 
effect on methane 
(%)

Reference

Chicken manure Fruitwood (5% of total solids) Mesophilic (35 °C) 69 Pan et al. (2019)
Dry chicken manure Wood (5% on total solids) Mesophilic (35 °C) 12 Ma et al. (2019)
Sewage sludge Corn straw (28 g/liter) Mesophilic (35 °C) 57 Zhang et al. 2019b
Food waste Phosphate-laden (10 g/liter) Mesophilic (37 °C) 94 Rezaeitavabe et al. (2020)
Waste activated sludge Sludge biochar (10 g/liter) Mesophilic (37 °C) 4 Wu et al. (2019b)
Food waste-sludge co-diges-

tion
Wheat straw (10 g/liter) Mesophilic (35 °C) 24 Kaur et al. (2020)

Diary manure Manure (10 g/liter) Psychrophilic (20 °C), meso-
philic (35 °C), and thermo-
philic (55 °C)

28
32
36

Jang et al. 2018

Food waste Pinewood (15 g/liter) Mesophilic (35 °C) 47 Sugiarto et al. (2021)
Poultry litter Wood (1:1 feedstock to 

biochar)
Mesophilic (37 °C) 32 Indren et al. (2020)

Food waste Wood (5 g/liter) Thermophilic (55 °C) 18 Lim et al. (2020)
Hydrothermal pretreated 

waste-activated sludge
Corn straw (10 g/liter) Mesophilic (37 °C) 24 Shi et al. (2021)



1447Environmental Chemistry Letters (2023) 21:1419–1476 

1 3

Pyrolysis is one of the most attractive and promising 
techniques of thermochemical conversion methods. This 
method involves the complete thermal decomposition of 
biomasses, in the absence of oxygen, to produce solid 
(biochar), liquid (bio-oil), and gaseous (non-condensable 
gases) biofuels (Das et al. 2021). The quality and yield 
of pyrolysis derivatives mainly depend on the operating 
parameters such as biomass properties, temperature, heat-
ing rate, pressure, and presence of catalysts (Pourkarimi 
et al. 2019). Among the feedstock materials used in the 
pyrolysis process, algae are the most promising source of 
biomass compared to other feedstocks due to their out-
standing biomass production, high growth rate, and simple 
input nutrients required for their cultivation (Das et al. 
2021). In addition, microalgae are stable in their bio-oils 
compared to those from lignocellulosic biomass (Suali 
and Sarbatly 2012). Studies on Spirulina sp. and Chlorella 
spp. have been done extensively to produce high bio-oil 
yield.Algae biomass is rich in carbohydrates, proteins, and 
lipids. The decomposition of carbohydrates and proteins 
occurs at a temperature below 400 °C, but lipids decom-
position occurs at a temperature above 550 °C during the 
pyrolysis process (Pourkarimi et al. 2019). Raising the 
heating temperature of the biomass to 600 °C increases 
the secondary cracking processes, which breaks up more 
significant molecular weight hydrocarbons into smaller 
ones. As a result, the amount of produced bio-oil progres-
sively declines (Maguyon and Capareda 2013). On the 
other hand, the slow heating of the biomass leads to vola-
tiles releasing from the reactor, decreasing product yield. 
However, high algal biomass moisture content necessitates 
a drying step before the biomass pyrolysis process, which 
requires greater heating energy consumption (Suganya 
et al. 2016). Macroalgae (seaweeds) have also been con-
sidered as a potential pyrolysis feedstock. Several studies 
have been made on red macroalgae such as Gracilaria gra-
cilis and Porphyria sp. (Bae et al. 2011; Francavilla et al. 
2015) and brown algal species as Sargassum sp. and Sac-
charina japonica sp. (Kim et al. 2012b; Kim et al. 2013).

Recently, the concept of the synergic effect induced 
by the co-pyrolysis of algae biomass with organic waste 
feedstocks is seen as a cost-effective and eco-friendly 
approach, attracting the interest of environmental scien-
tists. For instance, Chen et al. (2018a) conducted a study 
on the co-pyrolysis of Chlorella vulgaris biomass with 
kitchen waste and Chlorella vulgaris biomass with coal 
(Chen et al. 2012). The co-pyrolysis of microalgae and 
sewage sludge (Wang et al. 2016b) and co-pyrolysis of 
microalgae with municipal solid waste (Varsha et al. 2021) 
are considered a cost-effective strategy and reduce waste 
and an alternative fuel resource. Additionally, co-pyrolysis 
efficiently avoids the disadvantages of individual sludge 
pyrolysis and increases the pyrolysis stability of sewage 

sludge due to the higher heating value of the added micro-
algae (Wang et al. 2016b). Co-pyrolysis of marine micro-
alga biomass, Dunaliella salina, with different plastics 
promoted microalgae pyrolysis. They decreased the solid 
residues owing to the hydrogenation reaction between the 
unsaturated products generated by plastics and biochar 
(Chen et al. 2021b). Therefore, developing an influential 
industry based on the co-pyrolysis of microalgae biomass 
with plastics or other organic wastes would help solve 
several environmental issues, resulting in zero waste and 
achieving positive net energy from biomass.

Integrating pyrolysis with algae cultivation 
for emission reduction

The thermochemical conversion of biomass feedstock, 
including pyrolysis, resulted in the production of gase-
ous fraction comprised of hydrogen, carbon monoxide, 
carbon dioxide, nitrogen, methane, ethene, ethane, and 
others. Combination and concentration of these gases 
rely on biomass type and the operating conditions of the 
pyrolysis process (Das et al. 2021). The slow pyrolysis 
of six different microalgae biomass, Tetraselmis chui, 
Chlorella vulgaris, Chlorella-like strain, Chaetocerous 
muelleri, Dunaliella tertiolecta, and Synechococcus sp. 
yielded gaseous fractions comprised of carbon monoxide, 
carbon dioxide, methane, ethene, ethane, and hydrogen 
with estimated concentrations of 20%, 25%, 22%, 14%, 
13%, and 18% of biomass weight, respectively (Grierson 
et al. 2009).

The pyrolytic gases of hydrogen, carbon monoxide, and 
methane are usually transformed into heating energy or 
electricity for the public system, as shown in Fig. 10. Purg-
ing carbon dioxide into microalgae cultivation systems is 
considered a reasonable technology to maintain the overall 
energy conversion process with negative net carbon diox-
ide emission, a phenomenon known as bioenergy with car-
bon capture and storage (Zhao et al. 2017). Since micro-
algae have a high ability to use excessive atmospheric 
carbon dioxide for biomass proliferation, microalgae are 
considered a potential tool for global carbon sequestration 
and promising biomass feedstock for diverse industries 
and bioproducts, including biodiesel, biogas, biohydrogen, 
bioethanol, and bioplastic (Hamed et al. 2020a; Abdul-
Latif et al. 2020; Hassan et al. 2012; Yu et al. 2018; Has-
san et al. 2021). Furthermore, microalgae, particularly 
green species, have a high potential to grow under stress-
ful environmental conditions of contaminated water with 
emerging contaminats (Hamed et al. 2022b; Hamed et al. 
2020b; Hamed et al. 2021; Hamed et al. 2022c) and indus-
trial wastewater (Hamed et al. 2022a).
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Chlorella vulgaris FSP-E showed a high ability to uti-
lize a 7.5% carbon dioxide supply in a growth medium, 
showing a biomass yield of 7.63 g per liter and produc-
tivity of 0.65 g per liter per day at day 13 of cultivation 
(Yu et al. 2018). The pyrolysis of the obtained microal-
gal biomass in a fixed-bed reactor yielded 26.9% biochar 
content with a high heating value of 23.42 megajoules per 
kilogram. Therefore, the integrated application of algae 
cultivation for carbon dioxide sequestration resulting from 
the pyrolysis process and biomass-derived energy produc-
tion is a realistic and reasonable solution for a sustainable 
environment (Yu et al. 2018; Hamed et al. 2017). Further-
more, the aqueous phase of pyrolysis is rich in acetic acid, 
which is employed in fermentation processes using yeast 
(Lian et al. 2012) and microalgae cultivation (Liang et al. 
2013). For instance, the aqueous phase of pyrolysis was 
used for propagation and lipid-based biofuel production 
using a heterotrophic microalga Chlamydomonas rein-
hardtii (Liang et al. 2013).

On the other hand, the pyrolysis of anaerobic diges-
tion products (solid digestate) efficiently upgrades them 
into fuels (char, bio-oil, syngas) and materials (soil ferti-
lizer, sorbent, functionalized materials). Also, using carbon 
dioxide for microalgae cultivation can maintain the overall 
energy conversion process with negative net carbon dioxide 

emissions. CO and  H2 refer to carbon monoxide and hydro-
gen, respectively.

The cultivation of mixotrophic microalgae such as Chlo-
rella spp. and Scenedesmus spp. on the agricultural anaero-
bic digestate has been extensively discussed by Tawfik et al. 
(2022). This approach is a promising solution for nutrient 
recovery and pollutant removal and achieves maximum val-
orization of digestate. Furthermore, it provides a renewable 
resource of biomass that could be used for many biorefiner-
ies, including biochar production, biofuel, and achieving rea-
sonable carbon sequestration levels, as illustrated in Fig. 11.

In terms of biomass productivity, microalgae are the 
most prolific biological system. Algal species are an excel-
lent alternative for creating a sustainable ecosystem since 
they develop quickly and have greater photosynthetic effi-
ciency than terrestrial plants. They might also be grown in 
open ponds or photobioreactors, reducing the need for arable 
land. The role of converting algal biomass into biochar as a 
carbon sequestration tool that could maintain stable carbon 
for a longer-time scale has also been studied by (Yu et al. 
2018). Moreover, algal biochar is rich in nutrients, showing 
a high ability to exchange ions. Therefore, it has been sug-
gested as an efficient biofertilizer for sustainable agricul-
ture technology (Mona et al. 2021). Thus, coupling pyrolysis 
with microalgae cultivation significantly decreases carbon 
dioxide emission, maximizes energy recovery, achieves net 

Fig. 10  Coupling biomass pyrolysis and anaerobic digestion pro-
cesses is an eco-friendly and cost-effective method. This integration 
results in zero waste, improved energy recovery, and achieved posi-
tive net energy from biomass. Pyrolysis of lignocellulosic feedstocks, 
algae biomass, food bio-waste, sewage sludge, and animal manure 

produces gas fraction, biochar, and bio-oil. Gases, including methane 
and hydrogen, are used for energy production. The biochar and bio-
oil added to solid digestate, followed by anaerobic digestion, leads to 
the upgrading of liquids and syngas into biogas and favors biometha-
nation on the one hand
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zero waste, and provides multiple high-energy carriers and 
bioproducts.

Economic analysis of the pyrolysis process

The economic viability of a particular technology is typically 
affected by technology commercialization. The pyrolytic 
conversion of biomass to biochar is challenging regarding 
its economic viability, as merely countable economic-based 
studies with limited findings have been published in the past 
years. Meanwhile, the high disparities among the published 
studies in feedstocks employed and reaction conditions fur-
ther aggravated the difficulties in analyzing the economic 
perspective of biomass pyrolysis. On top of these, the eco-
nomic values of biochar are often beyond the computable 
monetary value, particularly with biochar's essential role in 
assisting the development of regional small- and medium-
sized industries with limited access to energy. For instance, 
the lignocellulosic waste from these industries serves as 
promising feedstocks for biochar conversion, enabling extra 
energy income in conjecture to the reduced waste treatment 
costs.

From a narrower perspective, the pyrolysis economic 
index depends on several factors, including sourcing of raw 
materials, type of processes, operation conditions, biochar 
yield, utility, miscellaneous costs, and others. It is acknowl-
edged that employing mixed feedstocks offers a lower finan-
cial burden to the company. This can be accounted for a large 
variety of biomass, which promises facile transportation 
from nearby regions with lower logistic expenses (Oasmaa 
et al. 2010). Meanwhile, it should also note that the prof-
itability of the slow/intermediate pyrolytic process largely 
depends on the biochar yields, given that solid phase prod-
uct presents the most considerable portion in the product 
spectrum. Most researchers conduct biomass pyrolysis at a 
medium–high temperature elevated at a slow rate under an 
anoxic environment, aiming to retain most carbon species 
in the resultant solid residue to optimize the solid yield. In 
the sense of application, while biochar serves as a known 
fuel source, it could also be used in soil amendment for the 
betterment of agronomics. This, together with the limited 
supply of biochar, is the reason for its high selling price, 
thereby boosting the faith of researchers toward slow/inter-
mediate pyrolytic technologies. Representatively, Wrobel-
Tobiszewska et al. (2015) indicated positive profitability of 
converting Eucalyptus plant residues to biochar in Tasmania. 

Fig. 11  Propagation of mixotrophic microalgae on an aqueous phase 
of pyrolysis, agricultural anaerobic digestate, and wastewater is a 
cost-effective and eco-friendly strategy. This approach will help nutri-
ent recovery and pollutant removal and achieve maximum valoriza-
tion of digestate and pyrolysis derivatives. The high photosynthetic 
efficiency and prolific growth rate of microalgae accelerate the rates 
of carbon dioxide sequestration from the environment, besides releas-

ing more oxygen to the ambient atmosphere. Furthermore, algae 
biomass-derived biochar can achieve further carbon sequestration 
levels. Coupling the pyrolysis and anaerobic digestion industries with 
microalgae cultivation decreases carbon dioxide emission, maximizes 
energy recovery, achieves net zero waste, and provides multiple high-
energy carriers and bioproducts
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Biochar price and yield significantly affect annual profit, but 
applying a batch klin with an average capacity of 1 ton/hour 
generated $179,000 annually. This was credited to consider-
ing biochar production and sales and the cost-saving upon 
integrating biochar into forestry activity (fertilizer, energy).

A more detailed economic study by Liu et al. (2022) also 
indicated a similar output, despite the different biomass feed-
stocks applied. Based on their experimental results, the high-
est biochar yields of 53.27% and 41.20% could be obtained 
from pyrolyzing rice straw and sugarcane bagasse, respec-
tively, with a biomass feed rate of 200 kg/hour under 400 °C. 
Extending from here, the Aspen Plus simulation gives rough 
estimations of the production costs, i.e., $0.79/kg and $0.93/
kg for rice straw and sugarcane bagasse-derived biochars, 
respectively, after considering expenses from raw materi-
als, energy, human, land, and equipment. However, these 
are higher than empty fruit bunch-biochar, estimated to be 
$0.533/kg based on Harsono et al. (2013). Significantly, 
these results were mainly generated over industrial equip-
ment, offering high reliability and industrial relevance. Fig-
ure 12 shows the flow of biochar ptoduction using empty 
fruit bunch biomass, where the energy recovered from the 
slow pyrolysis process, in the form of heat, will be used to 
sustain the drying process. Through the existing facilities 
capable of processing 20 tons of empty fruit bunch/day, the 
energy demand for biochar production was found to be nega-
tive, i.e., biochar's energy content is higher than the energy 
required in the production process. Meanwhile, the internal 
rate of return (IRR) and return on investment (ROI) of bio-
char production from empty fruit bunch were computed as 
8.96% and 17.58%, respectively, giving rise to a moderate 
economic viability with a payback period of 10 years.

Interestingly, Fawzy et al. (2022) suggested an alterna-
tive income source for pyrolytic plants, via carbon removal 
service, in addition to conventional biochar sales. Based 
on their life cycle analysis, 24,450 tons of carbon dioxide 

equivalent  (tCO2e) can be permanently removed from the 
atmosphere yearly over a pyrolytic plant that processes 6.5 
tons/hour of olive tree pruning residue. Under an assumed 
feedstock cost of $45/ton, the carbon removal incentive at 
€206.59 /tCO2e ensures a good internal rate of return of up 
to 15%. Intuitively, the combined revenue from both carbon 
removal service and biochar sales promises an even higher 
internal rate of return of 22.35% under a base case consid-
ering minimum selling prices of €110/tCO2e removed and 
€350/ton biochar. Significantly, a profitable net present value 
of approximately €3 million was projected in such a case, 
along with a discounted payback period of 8 years.

Meanwhile, Haeldermans et al. (2020) suggested a much 
higher minimum selling price in cases involving electricity 
sales rather than carbon removal. Their investigation consid-
ered a plant with hourly biochar production of 3 tons, which 
is expected to cost €14.46 million and €6.164 million for 
capital and yearly operational investments, respectively. By 
varying the feedstocks from coffee husks, medium density 
fiberboard, palm date fronds, AB wood waste, tree bark, and 
olive stones, a minimum biochar selling price ranged from 
€436 to 863/ton is required to ensure the profitability of the 
plant. Meanwhile, the payback period is highly influenced 
by different biochar feedstocks, as shown in Table 12. The 
expenses associated with feedstocks and capital investment, 
the unit price of biochar and subsidiary products (carbon 
dioxide removal or electricity), and biochar yield are critical 
aspects for the profitability of biochar plants.

Unlike conventional plants, Bergman et al. (2022) evalu-
ated the economic potential of two portable pyrolytic sys-
tems operated in continuous and batch modes, aiming to 
reduce the logistic costs in biochar production. Such systems 
are particularly suitable for forest operations usually associ-
ated with heavy transportation loads. The continuous sys-
tem, named biochar solution incorporated (Fig. 13), consists 
of a downdraft gasifier where the ground biomass is loaded 
from the top, and the resultant biochar is removed continu-
ously from the bottom. A blower will also be installed to 
accelerate the air through the gasifier, ramping up the bio-
char production from forest residue. The capacity of such 
a system could reach up to 267 kg/hour; however, offering 
biochar production of only 35 kg/hour.

Meanwhile, the batch system, air-curtain burner (Fig. 13), 
entails a relatively simple operation: the biomass would be 
loaded and incinerated in the designated box for biochar 
production. A diesel-powered fan would be used for air 
circulation for better biochar yield. In a standard opera-
tion that lasts 1 h, 536 kg of biochar could be attained from 
one ton of forest residue, with no pre-processing required. 
Upon comparing, though the upfront cost for an air-curtain 
burner ($703,283) is slightly lower than that of a biochar 
solution incorporated ($764,899), it demanded a nearly dou-
bled operating cost of $436,696/year. However, considering 

Fig. 12  Process flow for the conversion  to the derivation of empty 
fruit bunch to biochar, subsequently applied in soil modification. In 
brief, the empty fruit bunch left over after palm fruit removal would 
be subjected to a drying process before the slow pyrolysis process. 
The resulting product consists mainly of biochar, which can be used 
for soil amendment. The byproducts from this process include bio-
oil and syngas, where the latter would be applied to the empty fruit 
bunch drying process together with the recovered heat from the pyrol-
ysis unit. Adapted from Harsono et al. (2013)
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the high productivity of the air-curtain burner, the result-
ant minimum selling price for its biochar is estimated to be 
only $528–1051/ton. On the other hand, biochar from carbon 
dioxide needed to be sold at $1674–1909 /ton for a profitable 
scenario. From the perspective of carbon dioxide removal, 
the air-curtain burner system also stands out with its removal 
ranging from 750 to 1016 kg carbon dioxide equivalent/ton 
biochar, thereby promising much higher hidden profits than 
the biochar solution incorporated system (306–444 kg car-
bon dioxide equivalent/ton).

Rather than operating alone, integrating a pyrolytic sys-
tem into a combined heat and power plant may also yield 
rewarding returns. According to Yang et al. (2018a), an inte-
grated plant that processes 5 tons of municipal solid waste 
per hour requires a capital investment of £27.64 million. 
Stabilized operation from this plant (Fig. 14) offers biochar, 
bio-oil, and combustible gases in the product spectrums, 
where biochar would mainly employ in fueling the pyro-
lyzer and supporting the district heat network. Bio-oil and 
combustible gases, on the other hand, will be adopted in 
power generation over diesel and gas engines, respectively. 
As a result, the levelized cost of electricity was calculated 
at £0.063/kilowatt-hour; therefore, its sales to industrial 
and domestic users (£0.1054/kilowatt-hour and £0.1541/
kilowatt-hour) promise a reasonable internal rate of return 
of 2.6% and 10.1%, respectively.Ta
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Fig. 13  Portable systems for biochar derivation from forest residue. 
Air-curtain burner (ACB) and biochar solutions incorporated (BSI) 
systems exhibited considerable potential for biochar production. The 
resultant biochar would either undergo pelletization for facilitated 
transportation or be directly transported to the field in bulk form. 
Adapted from Bergman et al. (2022)
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Significantly, biomass drying is indispensable before the 
pyrolytic treatment; however, it often incurs substantial costs 
that result in high operating expenses. In this regard, Zimmer 
et al. (2022) provided an exciting horizon for operational 
cost reduction in pyrolytic processes. The authors proposed 
the integration of solar drying for biomass pre-processing, 
further justified with a significant cost reduction of 5–34% 
compared to conventional belt drying. The vast variation 
could be attributed to the solar irradiation levels at different 
longitudinal locations. In brief, the total cost for a base case 
plant with biochar production of 3577 tons/year from sludge 
is expected to be €1.214 million/year, with an assumption 
that the plant is operated at Concepción of Chile (annual 
average solar irradiation of 222.90 W/m2). This gives rise 
to the break-even price of €339.5 for every ton of biochar. 
Shifting operational location (varied solar irradiation), resiz-
ing the area of the solar dryer, or scaling the production 
may influence the biochar production economy to a differ-
ent extent, fluctuating the break-even price to €300–387/ton.

Considering the similarities in nature, bio-oil generation 
from biomass may also provide some insightful perspectives 
on the economy of biochar production. Typically, the bio-
oil yield remains the primary determinant of the process's 
economic feasibility. In this aspect, Yang et al. (2018b) pro-
vided helpful insight on increasing fuel (char and bio-oil) 
yield over carbon dioxide-mediated biomass pyrolysis pro-
cess for a more profitable operation. Meanwhile, the catalyst 
also plays an integral part in the economic index of bio-oil 
production. It is known that bio-oil derived from a cata-
lytic process exhibits milder corrosivity (less acidic) than a 
non-catalytic counterpart, thereby enabling facile and safer 
production and storage. These characteristics favor the scal-
ing up of the process, considering lower costs are needed 
to cater to the corrosiveness and safety issues for bio-oil 
production.

Based on the literature, the economic analysis of bio-
mass-derived bio-oil can be broadly categorized into two 

categories: those investigated over theoretical calcula-
tions or engineering simulation software (Aspen Plus, 
CHAMCAD, PRO II) and those that employ a combined 
approach of laboratory-scale experiment and software. Do 
and Lim (2016) evaluated the economic value of empty 
fruit bunch pyrolysis using a manually calculated four-
level economic potential approach. Results indicate that 
the pyrolytic processing of empty fruit bunch promises 
greater economic potential than bioconversion and gasi-
fication processes with a higher return on investment and 
a  lower payback period. At level 4 economic potential 
analysis, a pyrolytic plant with a throughput of 400 tons 
of empty fruit bunch/day is estimated to generate $5.41 
million/year, enabling a return on investment of 21.69% 
and a payback period of 3.58 years. Further increasing the 
capacity of the plant could realize even better economic 
performance; however, it comes with higher risk too. Simi-
lar positive results were also obtained by Ji et al. (2017), 
despite the different raw materials of rice husk adopted in 
their investigation. Based on their Aspen Plus-simulated 
outputs, a bio-oil derivation plant with a feeding rate of 40 
tons of rice husk/hour demands a total project investment 
of 26.143 million local currency in China. As for the pro-
duction cost, each ton of pyrolytic liquid fuel is estimated 
to cost ¥1748 (¥ is the Chinese Yuan), permitting a profit-
able revenue of 20% and an internal rate of return of 13% 
in the business. As a result, the corresponding payback 
period was estimated to be 6 years, indicating high eco-
nomic feasibility for this plant. While adopting the same 
feedstock of rice husk, Wang and Jan (2018) employed a 
hybrid approach involving both experimental and simula-
tion frameworks to evaluate the techno-economical index 
for bio-oil derivation. The laboratory-scale fluidized bed 
pyrolytic reaction is experimentally realized in an opti-
mum bio-oil yield of 38.4 weight percent at 400–450 °C, 
with 45 L/minute carrier gas and rice husk of 21.3 g per 
feeding time. As for the economic study, the Aspen Plus 

Fig. 14  Combined heat and power plant integrated with a municipal 
solid waste pyrolytic system. Municipal solid waste will be fed into 
the pyrolysis unit to produce char and volatile fuels. The char would 
be subjected to combustion, where the heat could be used to support 
the  pyrolysis operation. On the other hand, the combustible fuels 

would be quenched to separate the condensable fraction (oil) from the 
fuel gas. Gas and diesel engines will then combust these fuels, gen-
erating power and heat to support municipal activities. Adapted from 
Yang et al. (2018a)
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simulation displayed that 75% of the operating costs were 
attributed to the utilities such as electricity, heating, and 
cooling during bio-oil production. The raw material, rice 
husk, is regarded as waste in the location of study (Tai-
wan), thereby only accounting for 20% of the operating 
costs (transportation). For a plant that processes 1000 
tons of rice husk daily, the produced bio-oil must be mar-
keted at least at $0.55/liter to ensure profitable revenue. 
Such price is, in fact, well-fallen in the typical range of 
$0.11–0.65/liter for the production cost of biomass-
derived bio-oil (Wright et al. 2010b).

In another study involving the thermochemical conver-
sion of corn cob to energy, Brigagão et al. (2019) evaluated 
the economic viability of the pyrolytic route using Aspen 
HYSYS. Their results indicated a high energy recovery 
of 79% over the pyrolytic pathway. Economically, bio-oil 
sales promise an annual profit of $21.01 million, enabling 
a short payback period of 6 years for a plant operated at 
96.5-ton corn cob/hour. However, it should be noted that the 
obtained results are susceptible to raw material cost (corn 
cob), whereby a longer payback period of 11 years may be 
required if that increases from $50/ton to $70/ton. This will 
concurrently elevate the least selling price of bio-oil from 
$1.47/gasoline-gallon equivalent to $2.01/gasoline-gallon 
equivalent. Meanwhile, the conversion of sugarcane bagasse 
to bio-oil was economically evaluated, too, by Ramirez and 
Rainey (2019) and Michailos et al. (2017). In the former 
case, a pyrolytic plant running at 10 tons/hour was modeled, 
which was estimated to incur a $52.05 million capital cost.

The expected operational expenses amounted to $6.16 
million/year, demanding a minimum selling price of $1.19/
liter for bio-oil to attain a profitable regime. Note that such 
an estimated price is highly dependent on the conversion rate 
of biomass and could fluctuate in the range of $1.10–1.28/
liter. Compared to the above range of $0.11–0.65/liter, sug-
arcane bagasse is deemed a less competitive raw material for 
bio-oil production. This is also agreed upon by Michailos 
et al. (2017), which reveals the superiority of the Fisher-
Tropsch route over the pyrolysis process. Significantly, the 
hydroprocessing unit was identified as the significant finan-
cial block in the fast pyrolysis of sugarcane bagasse, leading 
to high capital (annualized), operation, and energy produc-
tion costs of £37.5 million/year, £35 million/year, and £12.5/
gigajoule, respectively. These give rise to an internal rate of 
return and return on investment of 8–9%, requiring a long 
payback period of more than 10 years.

In addition to sugarcane bagasse, pyrolysis of forest resi-
due also appeared challenging from a commercialization 
perspective. Carrasco et al. (2017) indicated a less favorable 
minimum selling price of $1.65/liter for the bio-oil derived 
from forest residues. Significantly, such a price was attained 
based on a pyrolytic plant with a throughput of 2000 tons/
day, which requires an upfront cost of $427 million for plant 

building. Regarding bio-oil production, raw materials, cata-
lysts, utilities, maintenance, and overhead costs are signifi-
cant expenses, which amounted to a total operating cost of 
$154 million/year and other miscellaneous fees. Interest-
ingly, van Schalkwyk et al. (2020) presented much lower 
minimum selling prices upon investigating a more detailed 
pyrolytic study on forest residues. In brief, they studied eight 
catalytic/non-catalytic (four each) forest residue pyrolysis 
scenarios with varied capacity (338–2549 tons/day) and 
sourcing radius (100–300 km). Based on the analysis, cases 
with non-catalytic processes appear more energy-efficient, 
with their higher average efficiency recorded at 62.3%. On 
the other hand, catalytic cases were reported in only 55%. As 
for the total capital investment, big variations ($104.4–507 
million) were observed amongst these plants, primarily 
due to their differences in processing capacity and sourc-
ing distances. In contrast, an apparent trend was observed 
in total operating costs, where those of catalytic plants 
($18.05–126.18 million/year) are generally higher than those 
of non-catalytic plants ($9.36–62.31 million/year). With a 
pre-assumed internal rate of return of 10%, the minimum 
selling price of crude and upgraded bio-oil should be fixed 
at $0.27/liter and $0.78/liter, respectively, with a throughput 
of 2549 tons/day. By adjusting the internal rate of return 
to 22%, such prices increased to $0.75/liter and $1.35/liter, 
respectively. The constantly higher price of upgraded bio-oil 
has arisen from its higher operating cost and lower yields of 
liquid and solid products.

Interestingly, Chen et al. (2018b) compared the eco-
nomic feasibility of a mobile pyrolytic system of a 100 kg/
hour capacity and a fixed pyrolytic plant of 4000 kg/hour 
in China. While adopting the same biomass mixture of 
wheat straw, corn cob, and sawdust, the mobile pyrolytic 
system required a higher total investment of ¥0.86 million 
per 100 kg-capacity, compared to ¥0.66 million for a fixed 
system. However, the former scenario is bestowed with a 
significantly lower production cost of ¥0.28 million/100 kg-
capacity, thereby promising a better economic index for 
long-term operation. With the sale of bio-oil and biochar at 
prices of ¥1250/ton and ¥1200/ton, respectively, the mobile 
system would be profitable starting from the  6th year of 
operation, while the fixed system, with its almost doubled 
production cost of ¥0.55 million/100 kg-capacity, required 
longer payback period of 7 years. In this regard, a mobile 
pyrolytic system may emerge as an alternative for biomass 
energy recovery.

While the mode of operation significantly impacts the 
economic index of the pyrolytic process, the type of bio-oil 
precursor should also play a significant part in this. This can 
be evidenced by the recent study of Meyer et al. (2020) that 
explored the economic feasibility of bio-oil production from 
different biomass feedstocks. Clean pine, tulip poplar, hybrid 
poplar, corn stover, switchgrass, oriented strand board, and 



1457Environmental Chemistry Letters (2023) 21:1419–1476 

1 3

different mixtures were subjected to pyrolytic treatment over 
the same pyrolytic system. Slight modifications were needed 
for a diverse sample, thereby contributing to a slight vari-
ation of fixed capital investment for each piece ($528–569 
million). Other notable differences, including material costs 
($64.64–109.67/ton), processing energy demand, and fuel 
product yield, can further affect the economics of each 
sample. As a result, the estimated minimum selling price 
for the investigated samples falls in the range of $3.7–5.1/
gasoline gallon equivalent, mainly due to capital-related 
(30–40%), feedstock (30%), catalyst (13–18%), and labor 
costs (12–15%). In particular, biomass mixture with an 8:2 
ratio of clean pine and oriented strand board presented the 
most economic-promising pyrolytic operation, as a result of 
its low material costs and high fuel yield.

Recent critical studies related to the economic analysis 
of biomass pyrolysis are listed in Table 12. Most economic 
evaluations were conducted using simulation software or 
manual calculations, but the factors considered varied across 
different studies. For this reason, considerable variations in 
terms of capital and production costs can be noticed among 
these studies. While particular agreement on the com-
mercialization of biomass pyrolysis has yet to be attained 
among researchers, several rules of thumb provide fairly 
accurate cost estimation for future implementation. Firstly, 
it is noted that fuel (biochar and bio-oil) yields serve as the 
prime descriptor for the economic index of biomass pyroly-
sis, with an absolute positive correlation regardless of the 
raw material employed. Also, plants with larger capacities 
usually promise lower average production expenses, but that 
comes with more prominent risks and, sometimes, higher 
hidden costs too. Also, raw feedstock costs must be consid-
ered. Though waste biomass could be obtained at no cost, 
the transportation fees incurred should not be overlooked 
during economic evaluation. While considering all these 
abovementioned factors, the determined financial index of 
biomass pyrolysis should be compared against that of fossil 
energy to provide a more direct intuition on its viability as 
a replacement.

Life cycle assessment of biomass pyrolysis

Using biomass pyrolysis to produce bio-oil and biochar can 
reduce the environmental impacts due to the use of fossil 
fuels. For instance, liquid fuels from agricultural/forestry 
biomass residues can be an alternative energy source and 
mitigate climate change, which is associated with consuming 
fossil energy resources. However, it is crucial to assess the 
advantages of employing biomass pyrolysis using practical, 
scientific, and reliable tools (Alcazar-Ruiz et al. 2022). It 
has been determined that life cycle assessment is a thor-
ough evaluation method for determining environmental 

consequences along the whole production chain (Al-Mawali 
et al. 2021).

Assessing the sustainability of biomass pyrolysis is a 
complex process because there are a variety of pyrolytic 
processes, such as slow pyrolysis, fast pyrolysis, catalytic 
pyrolysis; operational constraints; start-up and shut-down of 
plants; products and co-products involved. Hence, conduct-
ing a life cycle assessment of the biomass pyrolysis chain 
is imperative to elicit environmental sustainability. To that 
goal, this sectiont summarizes life cycle assessment strate-
gies used in recent research. The Web of Science database 
was searched using the keywords "biomass," "pyrolysis," 
"life cycle assessment," and "environmental impact assess-
ment" to find relevant articles. In the current study, the 20 
most comprehensive papers that were published between 
2020 and 2022 were chosen for examination.

Life cycle assessment is a widely recognized method for 
assessing the potential environmental impacts of systems 
and has been applied to various pyrolysis systems (Azzi 
et al. 2021). It offers data-driven information to decision-
makers for making sustainable choices. According to ISO 
14040 and ISO 14044, life cycle assessment is divided into 
four phases: (i) goal and scope definition, (ii) life cycle 
inventory analysis, (iii) environmental impacts assessment, 
and (iv) life cycle interpretation. Herein, we analyzed 20 life 
cycle assessment studies published from 2020 to 2022 on 
biomass pyrolysis, as in Table 13. These reports explored a 
variety of biomass feedstocks, geographic areas, life cycle 
tools, and inventories.

Goal

Defining the goal, scope, and precise purpose, aim, and 
objectives for a life cycle assessment is essential to put the 
results in context. It also includes functional unit definition, 
linked with product functions rather than physical products. 
Functional units allow the comparison of different life cycle 
assessment studies.

The reviewed literature used different functional units 
to present the respective findings, including biomass used 
as feedstock at the inlet of the pyrolysis plant (Yang et al. 
2021; Brassard et al. 2021; Bora et al. 2020; Ramos and 
Ferreira 2022); bioenergy produced (Alcazar-Ruiz et al. 
2022; Im-Orb and Arpornwichanop 2020; Batlle et al. 2020; 
Cruz et al. 2020; Cusenza et al. 2021; Moreno et al. 2022; 
Ringsred et al. 2021; Mehta et al. 2022; Lan et al. 2021); 
quantity of biochemicals after the completion of process-
ing (Thompson et al. 2021; Wang et al. 2020d; Zhou et al. 
2020b); quantity of bio-fuel and biochar produced (Fawzy 
et al. 2022; Ramos and Ferreira 2022); and lastly, one year 
of operation of pyrolysis plant (Papageorgiou et al. 2021).

The system boundaries in the life cycle assessment stud-
ies govern which processes are considered when computing 
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environmental impacts. Figure 15 shows the generalized 
crucial phases of biomass pyrolysis: (i) carbon emissions 
from land usage, utilization of marginal and/or forest land, 
fertilizer use, biomass production, and harvesting; (ii) trans-
portation of produced biomass for pyrolysis and further pro-
cessing: transportation mode and distances can vary depend-
ing on the geography of the region; (iii) pyrolysis at various 
temperatures and possible further biorefining process to pro-
duce products of different quality; (iv) transportation and 
distribution of products; (v) end use of products such as for 
electricity, or as biodiesel for cars/jet engines, or use of bio-
char as soil amendment material. Both functional unit and 
system boundary can lead to variation in the environmental 
impacts calculated for the life cycle of a particular product 
and process.

Life cycle inventory analysis

Inventory analysis entails the compilation and quantifica-
tion of the inputs and outputs for products. This includes 
raw material needs, energy input, air emissions, wastewater 
production, solid waste generation, and emissions to land. 
Journal articles, experimental techniques, and information 
on the energy consumption of equipment can all be used to 
prepare material and energy flows. Table 13 shows some of 
the databases for conducting inventory analysis, including, 
Ecoinvent, GREET (Greenhouse gases, Regulated Emis-
sions, and Energy use in Transportation), and the United 
States Life Cycle Inventory database.

Environmental impacts assessment〹

Key environmental impacts are quantified in this step of 
life cycle assessment and allocated among different envi-
ronmental categories based on the functional unit, system 
boundary, modeled systems, and decision-makers' require-
ments. For example, life cycle environmental impacts 
can be presented as global warming or climate change 
potential, including greenhouse gas emissions generally 
expressed as kg carbon dioxide equivalent (kg  CO2 equiva-
lent). Unless otherwise stated, global warming potential in 
this review refers to greenhouse gas emissions for a time 
horizon of 100 years. Depletion of minerals, clay, and peat 
is referred to as abiotic depletion (kg antimony equiva-
lent). The depletion of fossil deposits is connected to abi-
otic depletion (fossil fuels, measured in MJ). Ozone layer 
depletion accounts for emissions or ozone layer-depleting 
substances (kg trichlorofluoromethane equivalent).

When evaluating the ecotoxicity potential (kg 1,4 dichlo-
robenzene equivalent or cumulative toxic units), the three 
different categories are used to consider harm to freshwater, 
terrestrial, and marine sources during the whole production 
process. Emissions of reactive molecules harmful to ecosys-
tems and human health are called photochemical oxidation 
(kg non-methane volatile organic compounds equivalent). 
The acidifying compounds released into the environment 
causing acidification are measured in kg sulfur dioxide 
equivalent. Urban, agricultural, and natural land change is 
classified as land use  (m2). Water usage throughout pyrolysis 
is known as water depletion  (m3).

The emission of PM2.5 (particulate matter with a diam-
eter of less than 2.5 mm) and/or PM10 (particulate matter 

Fig. 15  General system 
boundary for assessing the life 
cycle of biomass pyrolysis: (i) 
biomass cultivation: carbon 
emissions from land use, use 
of marginal and/or forest land, 
fertilizer application, and grow-
ing of biomass and harvesting; 
(ii) transportation of produced 
biomass for pyrolysis and fur-
ther processing: transportation 
mode and distances can vary 
depending on the geography 
of the region; (iii) pyrolysis at 
various temperatures and pos-
sible further biorefining process 
to produce products of different 
quality; (iv) transportation and 
distribution of products; (v) end 
use of products such as for elec-
tricity, or as biodiesel for cars/
jet engines, or use of biochar as 
soil amendment material
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with a diameter of more than 10 mm) is related to the crea-
tion of particulate matter (PM2.5 equivalent and/or PM10 
equivalent). The impact of releasing excessive nutrients is 
known as eutrophication (kg phosphate equivalent). The 
energy from ionizing radiation (kg Uranium-235 equivalent) 
is transferred into bodily tissue, which may interfere with 
molecular structure.

Finally, human toxicity (carcinogens, measured in kilo-
grams of 1,4-dichlorobenzene equivalents or cumulative 
toxic units) is a measure of the potential harm posed by 
a unit of a chemical known to cause cancer when emitted 
into the environment. It is based on a compound's inher-
ent toxicity and possible dose. Non-carcinogenic chemical 
release, dosages, and exposure are related to non-carcino-
genic human toxicity (expressed as kg 1,4 dichlorobenzene 
equivalent or cumulative toxic units) (Table 14).

To improve the overall environmental performance of 
the biomass pyrolysis process, this stage of the life cycle 
assessment involves identifying the phases or processes and 
drawing conclusions that can be enhanced in the life cycle 
chain. This stage may also include the presentation and com-
munication of results to stakeholders.

Key points

A thorough evaluation of 20 life cycle assessment stud-
ies, including methodologies and findings, along with key 
observations was carried out in this work. No two studies 
were found to be exactly alike, regardless of how close the 
geographic scope or biomass feedstock considered was. This 
illustrates that life cycle assessment practitioners and deci-
sion-makers need to consider particular processes modeled 
in the research to determine the approaches toward environ-
mental sustainability, climate change mitigation, and energy 
efficiency of biomass pyrolysis processes.

The net energy ratio, the ratio of the total process output 
to input energy, was also provided (Pleanjai and Gheewala 
2009) to show the energy efficiency of the pyrolysis system. 
Mehta et al. (2022) computed the net energy ratio to evalu-
ate the usability of pyrolysis to produce alternative energy 
sources as 7.3 when livestock manure and underutilized 
grass silage were used as feedstock for anaerobic digestion 
followed by pyrolysis. Im-Orb and Arpornwichanop (2020) 
presented the energy efficiency of the pyrolysis system.

Land usage, which could result from the alteration of 
natural land, an agricultural area, and urban land, is gen-
erally acknowledged as a problematic issue in the produc-
tion of biofuels. Therefore, almost all the reviewed studies 
focused on using residues or biomass waste as feedstocks. 
Waste-to-energy pathways for biomass can mitigate the use 
of land, fertilizers, and water for the agriculture of energy 
crops. However, it is crucial to note that life cycle assess-
ment studies should consider the carbon temporal effects 

for woody biomass with a much longer growth cycle than 
annual crops or perennial biomass, such as in the study by 
Lan et al. (2021).

Pyrolysis is primarily used for sustainable bio-oil and 
biochar production. However, biorefining of pyrolysis prod-
ucts, i.e., bio-oil and biochar, can help in advanced sustain-
able material development/chemical recovery. In a similar 
vein, the life cycle impacts of the production of methanol 
(Im-Orb and Arpornwichanop 2020), levoglucosan (Wang 
et al. 2020d), and biochar-modified bio-asphalt (Zhou et al. 
2020a) were also evaluated.

Summary

We conducted a thorough critical analysis of 20 life cycle 
assessment studies published from 2020 to 2022, including 
methodology and findings, to understand the most current 
developments in assessing environmental consequences 
associated with the production of biofuels. The essential 
methods and key findings observed were: (i) using waste 
materials as feedstocks can lead to more eco-friendly energy 
sources by avoiding environmental harm caused by land and 
water use during the cultivation of energy crops, and (ii) 
pyrolysis is mainly used for producing sustainable bio-oil 
and biochar. However, biorefining pyrolysis products (bio-
oil and biochar) can help in advanced sustainable material 
development/chemical recovery.

Conclusion

Biomass pyrolysis is a promising technology for convert-
ing biomass into various valuable products such as biochar, 
bio-oil, and gaseous products. Our results showed that the 
product distribution and properties depend on several fac-
tors, including the pyrolytic temperature. The mechanistic 
pathways that govern the product distribution in biomass 
pyrolysis were also analyzed, providing a deeper understand-
ing of the process and allowing for better control over the 
product properties. Additionally, upgrading bio-oil using 
several processes and integrating pyrolysis with other pro-
cesses, such as anaerobic digestion, algae cultivation, and 
others, can help to improve the overall process efficiency and 
achieve an enhanced negative carbon footprint. Moreover, 
economic evaluation and life cycle assessment of commer-
cial biomass pyrolysis showed the sustainability and feasibil-
ity of the process.

Optimizing biomass pyrolysis necessitates a compre-
hensive understanding of various factors, including select-
ing appropriate standard operating conditions for specific 
biomasses. Further research at a large scale is required 
to address this issue thoroughly. Additionally, a deeper 
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investigation into the mechanistic pathway of converting 
biomass to desired byproducts is necessary. Biorefining 
of pyrolysis products (bio-oil and biochar) can lead to the 
development of sustainable materials and chemical recov-
ery processes. Furthermore, the inclusion of the potential 
climate change impacts of biochar in the assessment of the 
pyrolysis process is crucial for the successful commerciali-
zation of the process, as it can result in additional economic 
benefits and cost-effectiveness.

The economic viability of pyrolytic conversion of bio-
mass to biochar remains a significant challenge, as the lit-
erature on this topic is limited and often inconsistent. Fac-
tors such as variations in feedstocks and reaction conditions 
further complicate the analysis of the economic perspective 
of biomass pyrolysis. Additionally, the economic benefits 
of biochar are not always quantifiable, particularly in terms 
of its potential to support the growth of small and medium-
sized industries with limited access to energy. For example, 
using waste as feedstocks for biochar conversion generates 
additional income through energy production and reduces 
the cost of waste treatment. To extend the process of com-
mercialization and sustainability, understanding life cycle 
assessment is essential for mitigating environmental impacts 
related to biomass pyrolysis.
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