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Abstract
In the context of global warming and the energy crisis, emissions to the atmosphere of greenhouse gases such as carbon 
dioxide  (CO2) and methane  (CH4) should be reduced, and biomethane from landfill biogas should be recycled. For this, 
there is a need for affordable technologies to capture carbon dioxide, such as adsorption of biogas on activated carbon pro-
duced from industrial wastes. Here we converted glycerol, a largely available by-product from biodiesel production, into 
activated carbon with the first use of potassium acetate as an activating agent. We studied adsorption of  CO2 and  CH4 on 
activated carbon. The results show that activated carbon adsorb  CO2 up to 20% activated carbon weight at 250 kPa, and 9% 
at atmospheric pressure. This is explained by high specific surface areas up to 1115  m2g−1. Moreover, selectivity values up 
to 10.6 are observed for the separation of  CO2/CH4. We also found that the equivalent  CO2 emissions from activated carbon 
synthesis are easily neutralized by their use, even in a small biogas production unit.
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Introduction

The year 2022 was the year of the United Nations Ocean 
Conference that remind us that global mean sea levels 
increased at an average of 4.5 mm per year between 2013 
and 2021, due to ice sheets melting at an increasing rate and 
also that ocean absorbing nearly 23% of  CO2 generated by 
human activity, and when it does, chemical reactions take 
place, acidifying the seawater. This puts marine environ-
ments at risk and, the more acidic the seawater becomes, 
the less  CO2 it can absorb (UN 2022). Besides attempts to 
avoid  CO2 formation, carbon capture and storage and carbon 
capture and utilization technologies have been developed to 
mitigate the effects of  CO2 in the atmosphere (Mikulčić et al. 
2019; Rodin et al. 2020).

Besides  CO2,  CH4 also has a marked greenhouse effect, 
in fact, the effect of  CH4 is considered to have 84 times 
the warming power of  CO2 in 20 years’ timescale (EDF 

2022). This makes nearly 25% of the present global warm-
ing driven by  CH4. Biogas, particularly landfill gas, is com-
posed of a mixture of gases but the major components are 
 CH4 (45–60%) and  CO2 (40–55%) (Jaramillo and Matthews 
2005). In some developing countries, landfills are the single 
largest source of man-made  CH4 emissions. Therefore, puri-
fying landfill gases to obtain high grade  CH4 for energy pro-
ducing, for example to use in vehicles, is the best alternative 
to avoid its release into the atmosphere. Additionally, recent 
events in world geopolitics have highlighted the importance 
of both, the judicious use and the local production of  CH4.

Among the possibilities for  CO2 capture or separation, 
adsorption on porous materials emerges as an important 
technology since the separation of  CO2 is the most energy 
consuming step, resulting in a high cost (Haszeldine 2009). 
Various types of porous materials were studied for the cap-
ture and separation of  CO2, as reviewed elsewhere (Kumar 
et al. 2020; Karimi et al. 2022). Between the various families 
of adsorbents, activated carbons due to abundant sources, 
hydrophobic character, and lower heat of adsorption are con-
sidered excellent candidates (Karimi et al. 2022). Further-
more, since activated carbons can be obtained from biomass 
their use can give a contribution to net-zero emissions and/or, 
when obtained from industrial wastes, their use can contrib-
ute to the circular economy (Karimi et al. 2022). In this way, 
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one of the byproducts formed during biodiesel production is 
glycerol, 10–20% of the total volume (Quispe et al. 2013).

Glycerol is a low added product whose accumulation is 
causing environmental issues. Previous studies with acti-
vated carbons from glycerol concerned mainly liquid-phase 
applications and catalysis (Batista, 2022). Here we show that 
it is possible to prepare activated carbons adsorbents from 
glycerol with adequate properties for using in gas-phase 
applications, namely in  CO2 capture and in the  CO2/CH4 
separation of landfill gases.

Experimental

Materials preparation

The chemical activation of the char was made by the acid 
carbonization of glycerol. Various chemical activation 
agents can be used such as KOH as reviewed elsewhere (Gao 
et al. 2020). Nevertheless, the materials prepared with KOH 
also have low density which is not the best characteristic 
for gas adsorption and, additionally, KOH is corrosive and 
not environmental friendly (Zhang et al. 2019). Therefore, 
in the present work, the chemical activation agent used was 
 CH3COOK (Aldrich, 99%) since this specie is reported to 
improve the density of the activated carbon and also to pro-
mote the formation of surface oxygen species (Zhang et al. 
2019). The detailed experimental description of the activa-
tion process for sample preparation is given in Supporting 
Information—Section S1. The activated carbons (AC) were 
identified by the mass ratio of char:activating agent. Three 
mass ratios were used 1:1, 1:0.75 and 1:0.5, accordingly, the 
samples were labeled AC_ratio_1:1, AC_ratio_1:0.75 and 
AC_ratio_1:0.5, respectively.

Materials characterization

Activated carbons were characterized by evaluating the 
surface area, pore size distribution and porous volumes by 
nitrogen adsorption at − 196 °C; Chemical analysis; deter-
mination of the pH at the point of zero charge-pHpzc, Infra-
red spectroscopy; X-ray diffraction; Thermogravimetry and 
Apparent tap density. The methodologies for the characteri-
zation of the samples by each one of the above-mentioned 
techniques are described in detail in Supporting Informa-
tion—Section S2.

CO2 and  CH4 adsorption

The adsorption of  CO2 and  CH4 was measured at 25 °C and 
up to 300 kPa in a custom-made volumetric apparatus, con-
structed in stainless steel and equipped with a pressure trans-
ducer and a vacuum system that allows a vacuum better than 

 10−2 Pa. This apparatus was previously described in detail 
in the literature (Pires et al. 2014). During experiments, the 
temperature was kept constant with a thermostatic water 
bath. Before every experiment, the samples were outgassed 
at 300 °C for 2 h.

Results and discussion

Physical characterization

The yield in the preparation of the char was 30%. On the 
basis of the mass of the char, the yield of the activation 
process was between 58 and 67% for the samples AC_
ratio_1:1, and AC_ratio_1:0.5, respectively. The materials 
are amorphous as denoted by the broad peaks in the X-ray 
diffractograms—Supporting Information, Section S3 where 
the diffractions from the (002) and (001) plans attributed 
to the disorder graphite near 25 and 43 = 2θº, respectively, 
are noticed (Joshi et al. 2021). An estimation of the crystal-
linity can be made by a method described in the literature 
(Zuo et al. 2009). This method gives crystallinity values 
of 11, 10 and 5% for AC_ratio_1:1, AC_ratio_1:0.75 and 
AC_ratio_1:0.5, respectively.

The tap density of the activated carbons (Table  1) 
decreases as the proportion of the activating agent 
 (CH3COOK) increases, as a consequence of a more devel-
oped porosity. The tap-density values for the activated car-
bons in Table 1 are higher than those reported when KOH is 
used as an activating agent for the same type or for different 
types of chars which has important implications since low 
density adsorbents are difficult to handle in practice (Batista 
et al. 2022; Li et al. 2019).

The amounts adsorbed (nads) versus the relative pres-
sure p/p0, where p0 is the saturation pressure of nitrogen 
at – 196 °C, are given in Fig. 1a These isotherms are char-
acteristic of microporous materials, as confirmed also by 
the micropore-size distributions from the density-functional 

Table 1  Relation of mass to tap volume (tap density); Brunauer–
Emmett–Teller (BET) specific surface area  (ABET) and microporous 
volumes  (Vmicro). Activated carbons (AC) with higher density are 
favored as adsorbents but the density decreases increasing the ratio 
of the activating agent. Additionally, high surface areas and porous 
volumes are desirable and these improve with the increase of the ratio 
of the activating agent which was  CH3COOK

Sample Tap density
(g  cm−3)

ABET
(m2  g−1)

Vmicro
(cm3  g−1)

Char 0.64  < 10 –
AC_ratio_1:0.5 0.74 155 0.06
AC_ratio_1:0.75 0.63 663 0.25
AC_ratio_1:1 0.58 1115 0.42
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theory—Fig.  1b. The micropore-size distributions are 
bimodal, more details on the micropore volumes in Sup-
porting Information—Section S2.

Specific surface areas and micropore volumes are given 
in Table 1. The char has only a residual surface area and 
does not present microporosity. The specific surface area, 
increases from 155 to 1115  m2  g−1 for AC_ratio_1:0.5 and 
AC_ratio_1:1, respectively, due to the increase in the pro-
portion of the activating agent. This increase is also reflected 
in the microporous volumes and the bimodal micropore-size 
distributions are common for chemically activated carbons 
(Gauden et al. 2007). It was shown that a char from glycerol 
waste can be activated with a  CH3COOK, producing mate-
rials with high surface area and density but using a more 
sustainable and less corrosive substance than other more 
common activating agents (Batista et al. 2022).

Chemical characterization

As denoted by the  pHpzc values in Table 2, the materials 
have a surface of acidic nature, usually related to oxygen 
surface species.

The surface chemistry of the materials was also stud-
ied by FTIR. The spectra are presented in Supporting 
Information—Figure S4, where the band near 3400  cm−1 
is due to the O–H stretching and the bands in the region 
2900–2800  cm−1 are attributable to asymmetric and sym-
metric C–H stretching vibrations in aliphatic –CH, –CH2 
and –CH3 and those at 1620  cm−1 to a highly conjugated 
hydrogen bonded C=O (Pradhan and Sandle 1999; Ryu 
et al. 2002). The band near 1400  cm−1 is attributable to the 
asymmetric stretching of S=O and also to oxygenated car-
bon species of –COOH type and the broadband centered at 

1100  cm−1 to various types of oxygenated carbon species 
such as alcohol, phenol and ether bridges between rings 
(Shin et al. 1997). All these oxygen and sulfur groups can 
influence the  CO2 and  CH4 adsorption.

CO2 and  CH4 adsorption

The adsorption isotherms of  CO2 and  CH4 at 25 °C in the 
activated carbons are presented in Fig. 2 a, b, respectively. 
For the same pressures, the amounts adsorbed are higher for 
 CO2 than for  CH4 as is usually the case for activated carbons 
and other types of materials. This is in-line with the physi-
cal properties of  CO2 and  CH4, namely the higher polariz-
ability and permanent quadrupole of  CO2 that enhance its 
interactions with the surface, and the differences in the criti-
cal temperature of both molecules, which is higher for  CO2 
(Poomisitiporn et al. 2016).

Fig. 1  a Nitrogen adsorption isotherms at − 196 °C, where the closed 
points are desorption points, and b pore size distributions for the pre-
pared activated carbons (a.u stands for arbitrary units). The samples 

present highly rectangular isotherms, denoting developed microporo-
sity, and the micropore-size distributions are bimodal with the major-
ity of micropores having widths near 2 nm

Table 2  pH at point of zero charge  (pHPZC) and chemical com-
position (C, H, S and O in %). The % of O was estimated from: O 
(%) = 100 − C (%) − H (%) − S (%). The characterization of oxygen 
and sulfur groups in the adsorbents is important because these will 
interact differently with the  CO2 and  CH4 molecules since, although 
both molecules have relatively similar polarizability values  CO2, con-
trarily to  CH4, has a significative quadrupole moment. These different 
interactions influence the selectivity of the adsorbents for the  CO2/
CH4 separation

Sample pHpzc C (%) H (%) S (%) O (%)

Char 1.84 64.18 3.76 12.55 19.03
AC_ratio_1:0.5 2.08 77.02 1.92 7.01 14.05
AC_ratio_1:0.75 2.09 78.49 1.79 6.62 13.10
AC_ratio_1:1 2.13 73.85 1.67 1.93 22.55
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The sequence in the amounts adsorbed in Fig. 1 is in-line 
with the specific surface areas of the materials in the case 
of  CH4 but this is only partially the case for  CO2, particu-
larly for the lowest pressures where the effect of the surface 
chemistry of the materials is more noticed. There is a rela-
tively high range of values in the literature for the amounts 
adsorbed of  CO2 in activated carbons for conditions of pres-
sure and temperature similar to those used in this work. Nev-
ertheless, for instance in activated carbons prepared from 
biomass/biochar, the values for  CO2 adsorption range from 
0.65 to 3.5 mmol  g−1—Table S6, indicating that the values 
in the present work approach the upper limit of this range, 
which is also similar to values found for commercial acti-
vated carbons (Karimi et al. 2022). In the case of  CH4 the 
amounts adsorbed are lower than those found for most of the 
commercial activated carbons as reviewed in the literature, 
although that review was centered on materials for  CH4 cap-
ture and not for the  CO2/CH4 separation (Choi et al. 2016). 
The amounts of  CH4 adsorbed in Fig. 2b are, however, com-
parable to those found in activated carbons prepared from 
industrial wastes or from carbon fibers (Alcañiz-Monge 
et al. 2009). The materials can be regenerated and reused 
as illustrated with the case of  CO2 adsorption in the AC_
ratio_1:0.75 material—Supporting Information, Section S5.

The selectivity of the prepared activated carbons was 
estimated from the ideal adsorbed solution theory (IAST) 
and details are given in Supporting Information—S7, Simon 
(2016). The selectivity in function of the pressure—Fig. 2c 
shows that the values are always higher for the materi-
als obtained with less amount of activating agent. In fact, 
except for the lowest pressures, the AC_ratio_1:0.5 material 
presents the highest selectivity values. Even if the reasons 
for this result are not entirely clear, we might consider that 
the explanation relies essentially on the differences in the 
 CH4 adsorption. In fact, if we consider the  CO2 adsorption 

(Fig. 2a) the isotherms are not strongly different from which 
other, due to the combined effects of porosity and surface 
chemistry. Contrarily, the isotherms of  CH4 (Fig. 2c) are 
considerably separated, and seem therefore to be more 
dependent on the porosity itself since, as above-mentioned 
 CH4 adsorption is much less susceptible to the changes in 
the surface chemistry. In Supporting Information—Table S6 
literature values of selectivity for the  CO2/CH4 system, 
obtained with activated carbons in experimental conditions 
comparable to the present work and similar methodologies of 
calculation, are given. From that table, and comparing with 
the results in Fig. 2c, it can be concluded that the selectivity 
values from this work, particularly for the AC_ratio_1:0.5 
and AC_ratio_1:0.75 activated carbons, that show values 
between 6.4 and 10.6, are close to the upper range of the 
values found in the literature. It should be noticed that high 
values of selectivity are desirable but commercial processes 
exist for which the selectivity values are higher than 3 (Yang 
2003). The significance of the equilibrium gas and adsorbed 
phase composition diagrams was discussed in the literature 
(Ruthven 1984). These diagrams, as predicted by the IAST, 
are given in Supporting Information—S8.

It is important to clarify the energy used and the respec-
tive equivalent  CO2 emissions  (CO2-eq) created in the for-
mation of the adsorbent. This has been addressed detailed 
in the literature for various types of activated carbons (Lima 
et al. 2008; Hjaila et al. 2013; Alhashimi and Aktas 2017). 
One of the most conservative studies includes the energy 
used in all the steps, from the residues transportation to the 
preparation and drying of the char and the activated carbon, 
the total energy being 167 ×  103 MJ (47 ×  103 kWh) to pro-
duce 1 ton of activated carbon (Hjaila et al. 2013; Alhashimi 
and Aktas 2017). This amount of energy, assuming that all 
comes from fossil fuels, corresponds to 20 tons of  CO2-eq 
per ton of activated carbon (EPA 2022). If we consider even 

Fig. 2  Isotherms of adsorption at 25  °C a  CO2 and b  CH4. The 
amounts adsorbed of  CH4 are in-line with the specific surface area, 
but this is only partially the case for  CO2, due to the additional 
effect of the surface chemistry of the materials. The selectivity val-

ues, estimated from the Ideal Adsorbed Solution Theory, in function 
of the pressure are also presented in c. The activated carbons AC_
ratio_1:0.5 and AC_ratio_1:0.75, present high selectivity values
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a small biogas production unit (500  m3/day) that can deliver 
88 kg of  CH4/hour per ton of adsorbent, and that this  CH4 
is equivalent to 7.4 tons  CO2-eq/h, we conclude that the 
20 tons of  CO2-eq produced in the preparation of a ton of 
adsorbent are compensated in a few hours of use, confirming 
the importance of avoiding  CH4 release to the atmosphere 
(Santos 2011; EDF 2022). With the same rational, the regen-
eration/recycling of the adsorbent has only the relatively 
marginal impact of 1.2 ton  CO2-eq/t of adsorbent and it is 
easily neutralized (Alhashimi and Aktas 2017). In this way, 
the regenerated adsorbent can be used both for the  CO2/CH4 
separation or for  CO2 capture even if, by itself, its use only 
in  CO2 capture would not neutralize the  CO2-eq produced 
in the preparation of the adsorbent.

Conclusion

In this work it was shown that starting from glycerol, an 
available low added by-product from the biodiesel indus-
try, and by using potassium acetate as an activating agent, 
activated carbons can be obtained with porosity and surface 
chemistry characteristics that make them valuable both, 
for  CO2/CH4 separation with selectivity values up to 10.6 
and for  CO2 adsorption, with amounts up to 3.6 mmol  g−1 
at 298 K and 200 kPa. Additionally, the  CO2 emissions 
released during the manufacture of the adsorbent are largely 
compensated right after the first use cycle of the  CO2/CH4 
separation.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10311- 022- 01556-0.
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