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Abstract
Global industrialization and excessive dependence on nonrenewable energy sources have led to an increase in solid waste 
and climate change, calling for strategies to implement a circular economy in all sectors to reduce carbon emissions by 
45% by 2030, and to achieve carbon neutrality by 2050. Here we review circular economy strategies with focus on waste 
management, climate change, energy, air and water quality, land use, industry, food production, life cycle assessment, and 
cost-effective routes. We observed that increasing the use of bio-based materials is a challenge in terms of land use and land 
cover. Carbon removal technologies are actually prohibitively expensive, ranging from 100 to 1200 dollars per ton of carbon 
dioxide. Politically, only few companies worldwide have set climate change goals. While circular economy strategies can 
be implemented in various sectors such as industry, waste, energy, buildings, and transportation, life cycle assessment is 
required to optimize new systems. Overall, we provide a theoretical foundation for a sustainable industrial, agricultural, and 
commercial future by constructing cost-effective routes to a circular economy.

Keywords Circular economy strategies · Climate change · Waste management · Circular economy applications and 
opportunities · Life cycle assessment · Cost-effective route

Introduction

Reducing greenhouse gas emissions, addressing resource 
depletion and environmental pollution, and optimizing waste 
management have become global hot topics (Dantas et al. 
2021; Sadhukhan et al. 2020; Zhang et al. 2019). Countries 
worldwide have identified efforts to mitigate climate change 
as establishing commitments to reduce emissions or using 
advanced technologies to limit greenhouse gas emissions 
(Peña et al. 2021; Serrano et al. 2021). However, only the 
governments of 55% of the world’s greenhouse gas emit-
ters have announced specific targets for increased carbon 

emission reductions by 2030, and the majority of countries 
still plan to achieve net-zero carbon emissions by 2050–2070 
(Chen et al. 2022; Wyns and Beagley 2021). In the mean-
time, energy systems in developing nations continue to rely 
heavily on fossil fuels, and the high consumption of coal 
and oil in industry and transportation contributes to climate 
change and environmental pollution issues (Su and Urban 
2021). Moreover, as the global population and standard of 
living rise, manufacturing automation has led to mass pro-
duction and consumption, resulting in increased solid waste 
production. The growing volume and complexity of waste 
pose a significant threat to the environment and public health 
(Chioatto and Sospiro 2022; Kurniawan et al. 2022).

In this review, implementing circular economy strate-
gies is a useful tool for enhancing the world's sustain-
ability. Figure  1 shows the three main approaches of 
linear, recycling, and circular economy and their relation-
ship to waste management. The principle of the circular 
economy is illustrated in Fig. 2. From the perspective of 
human economic sustainability, numerous scholars have 
repeatedly referred to the natural ecosystem model of 
matter and energy flow, and the circular economy is the 
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model of this approach that adheres to the laws of nature 
(Korhonen et al. 2018). It is becoming increasingly appar-
ent that structural optimization of sustainable development 

measures cannot be accomplished without circular econ-
omy strategies (Alhawari et al. 2021). National govern-
ments seek to decouple economic growth from natural 

Fig. 1  Transition from linear, 
recycling to circular economy 
approach and their relation-
ship to waste management. To 
achieve this, the entire produc-
tion system must be taken 
into account, including waste 
generation, collection, transpor-
tation, recycling and treatment, 
use of recovered resources, 
and disposal of waste. In this 
instance, the circular method 
reduces resource market 
dependence and lowers disposal 
costs. This figure is reprinted 
with permission from Gorrasi 
et al. (2021)

Fig. 2  Circular economy begins with the consumption of natural resources and concludes with the production of non-recyclable waste. The fun-
damental principle of the circular economy is the recycling of manufactured products after their daily consumption and use
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resource consumption and environmental pollution while 
preserving economic resources for as long as possible 
(Almagtome et al. 2020; Atabaki et al. 2020). The appli-
cation of the circular economy is primarily concerned with 
preventing the consumption of resources and optimizing 
the structure of the energy and material cycle at its vari-
ous levels: enterprises and consumers at the micro-level, 
economic agents integrated in a symbiotic manner at the 
meso level, and cities, regions, and governments at the 
macro-level (Rincón-Moreno et al. 2021).

Due to the vast differences between scientific fields and 
schools of thought, Nikolaou et al. (2021) found that circu-
lar economy definitions emphasize both material preserva-
tion and economic growth. As a new economic development 
model, circular economy need to restructure and modernize 
the economic system under the laws governing material cir-
culation and energy flow in the natural ecological system 
(Shen et al. 2020). Under the increasing acceptance of cir-
cular economy principles by national and local governments 
and within the context of the Paris Agreement, implement-
ing circular strategies at the city scale becomes essential for 
managing climate change issues (Christis et al. 2019). The 
circular economy is not limited to modifying waste man-
agement systems to increase resource efficiency, decrease 
resource inputs, and increase economic benefits. Increas-
ingly, the circular economy is recognized as a highly effec-
tive strategy for both policy development and the reduction 
of environmental pollution and greenhouse gas emissions 
(De Pascale et al. 2021; Durán-Romero et al. 2020).

This review systematically illustrates how the circular 
economy can be used as an effective waste management 
strategy based on three aspects: eliminating waste, recircu-
lating materials, and regenerating ecosystems. The novelty 
of this review focuses primarily on clarifying the circular 
economy strategy as an effective measure to combat climate 
change, as well as the investigation of how well the circular 
economy meets the climate change goals and how the circu-
lar economy strategy addresses the climate change issue. In 
the meantime, research will be conducted into the specific 
effects of circular economy strategies on air and water pol-
lution, energy consumption, natural resources, solid toxic 
waste, and land use. In addition, the opportunities presented 
by the circular economy will be investigated in the industrial 
and food systems context. Eventually, a critical analysis of 
the full life cycle analysis of the circular economy will be 
conducted, and a cost-effective path will be developed.

Circular economy for waste management

There are many concepts of circular economy, dating back 
as far as 1966 (Adami and Schiavon 2021). In addition, 
in 1991, researchers analyzed the approach to economic 

recycling (Leontief 1991). However, the concept of a cir-
cular economy was not defined until 2013. The circular 
economy aims to reduce waste from production and dis-
tribution processes as one of its components. The Waste 
Framework Directive (European Union 2008) further 
strengthened the connection between the circular economy 
and waste management. Consequently, the circular econ-
omy can be an efficient means of reducing waste recovery 
and recycling.

Eliminating waste

Rapid economic and population growth and increased 
urbanization have resulted in a rise in solid waste in the 
majority of the world's nations, particularly in develop-
ing countries (Guerrero et al. 2013). Europe and North 
America generate between 1.6 and 2.2 tons per person per 
year of solid waste, which can be recycled or reused pro-
gressively (Aguilar-Hernandez et al. 2011). The Environ-
mental Protection Agency estimates that the United States 
generated approximately 238.5 million tons of municipal 
solid waste in 2015, a significant increase from previous 
years (United states Environmental Protection Agency 
2015). China's average daily amount of municipal solid 
waste is 0.73 kilogram (Zhu et al. 2021). In India, the 
per capita generation of municipal solid waste is approxi-
mately 91.01 ± 45.5 gram per day, while the per capita 
generation of organic waste is 74 ± 35 gram per person 
per day (Ramachandra et al. 2018). The global per capita 
generation of solid waste is estimated at around 1.74 tons 
per year (Song et al. 2015). With the production of large 
quantities of solid waste, there will be a correspondingly 
large consumption of natural resources. Any generation 
of solid waste consumes natural resources, necessitating 
recycling and reuse, which not only facilitates the reuse of 
waste but also reduces the economic costs associated with 
waste management.

Global governments are under immense pressure to 
reduce waste generation by implementing various sus-
tainable approaches to effective waste management due 
to the massive quantity of waste (Cheng and Hu 2010). 
Solid waste treatment methods are engineering techniques 
that recover and repurpose solid waste resources. Envi-
ronmental engineering plays a crucial role in developing 
solid waste disposal, recycling, and utilization technolo-
gies, depending on its source, nature, characteristics, and 
environmental hazards. Solid waste is typically disposed 
of through stockpiling, containment piles, landfills, incin-
eration, and biodegradation. However, researchers have 
proposed zero-waste strategies to reduce the growing 
amount of solid waste (Bartl 2011; Phillips et al. 2011; 
Song et al. 2015). A zero-waste strategy is redesigning a 
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resource's life cycle to ensure that all products are recy-
cled and that no waste is sent to landfills, incineration, or 
other traditional disposal methods, allowing waste to be 
recycled and reused (Zaman 2014; Zaman and Lehmann 
2011). In essence, recycling waste into new materials is a 
method of reusing resources, thereby achieving the goal 
of sustainability.

This section focuses on how to solve the increasing 
amount of solid waste due to rapid economic and popula-
tion growth. The Environmental Protection Agency esti-
mates that the United States generated 238.5 million tons of 
municipal solid waste in 2015, a substantial increase over 
previous years. As a result, governments worldwide are 
under tremendous pressure to reduce waste generation by 
implementing various sustainable approaches such as circu-
lar economy strategies to manage waste effectively.

Circular materials

The rising volume of solid waste has caused a shortage of 
landfill space (Li et al. 2019; Silva et al. 2017). Conventional 
methods of waste disposal not only waste land resources but 
also pollute the environment. Natural materials are also in 
short supply due to the extensive use of natural resources 
and nonrenewable energy sources; therefore, recycling and 
reusing solid waste solves the problem of natural resource 
scarcity, protects the environment, and ultimately leads 
to a circular economy development model. At the end of 
a product's life cycle, the circular economy development 
model provides greater social and environmental benefits 
by demonstrating waste management benefits at multiple 
spatial levels and facilitating the transformation of waste 
into circulating materials.

There are currently five primary aspects of recycling solid 
waste into circulating materials (Abdel-Shafy and Mansour 
2018; Chen et al. 2019; Ibrahim and Mohamed 2016; Li 
et al. 2019): (1) extraction of valuable metals such as cop-
per, iron, gold and silver from metal smelting slag; extrac-
tion of glass beads from fly ash; recovery of sulfur iron ore 
from coal gangue; (2) recycling of solid waste such as paper, 
glass, metal and plastic; (3) the production of construction 
materials from blast furnace slag, fly ash, coal gangue, waste 
plastics, sludge, tailings and construction waste, which 
include lightweight aggregates, heat insulation and thermal 
insulation materials, decorative panels, waterproofing rolls 
and coatings, biochemical fiberboard, recycled concrete and 
other materials; (4) the production of cement from fly ash, 
coal gangue and red mud; the use of chrome slag instead of 
limestone as a fusion agent for iron making and other alter-
native materials; (5) solid waste with high calorific value 
through incineration for heat and power generation; the use 
of kitchen waste, plant straw, human and animal manure 
and sludge can be fermented to produce combustible biogas. 

Thus, solid waste is first sorted to recover useful resources 
such as plastics, rubber, paper, glass, and metal; it is then 
crushed to appropriate particle size and further sorted using 
magnetic separation and other techniques to recover useful 
resources. After separation, the various fractions may be 
utilized for composting, biogas production, production of 
derived fuels, or incineration to recover heat energy. The 
waste gas and wastewater generated during the process of 
resource utilization must be treated to the applicable stand-
ards before being released. The waste residues can be uti-
lized as building and road materials. Those that cannot be 
reused are discarded in landfills, achieving a circular eco-
system in the end.

This section focuses on the shortage of landfill space due 
to the rising volume of solid waste. In addition, conven-
tional waste disposal methods not only wasteland resources 
but also pollute the environment. Therefore, recycling and 
reusing solid waste can facilitate the conversion of waste 
into circulating materials, thus providing greater social and 
environmental benefits.

Regenerating nature using ecosystems

Due to the consumption of nonrenewable resources by tra-
ditional industries and the high level of environmental pol-
lution, the transformation of waste into circulating materials 
is an example of the ecological transformation of traditional 
economic systems (Ghisellini et al. 2016). The eco-dynamic 
system is the fundamental driving force behind developing a 
regional circular economy, which promotes the improvement 
and upgrading of the organizational structure and opera-
tional mechanisms of regional production, circulation, and 
consumption, and ultimately achieves maximum economic 
benefits while simultaneously reducing resource consump-
tion and preventing environmental pollution. In other words, 
transforming waste into circulating materials is a way for 
humanity to pursue ecological and human advancement 
while pursuing economic sustainability at the ecological 
civilization stage.

The most representative model for the development of 
circular economy is the new production method in which 
humans live in harmony with the ecosystem. The intuitive 
expression of the dynamics of ecological productivity, also 
known as eco-dynamics, is that ecological productivity pro-
motes the harmonious exchange of information, energy, and 
materials between humans and nature. Constantly promoted 
are the integration and eco-legislation of natural ecosystems, 
in conjunction with the development of ecological civiliza-
tion in human society. Eventually, in accordance with eco-
logical laws, a composite ecological system is formed.

This section examines the circular economy as an 
approach to waste management, beginning with the cur-
rent pressures on individual nations to dispose of waste and 
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convert it into circulating materials through various means, 
and ultimately creating ecosystems that maximize economic 
efficiency, reduce resource consumption, and prevent envi-
ronmental pollution.

Circular economy and climate change

Meeting the targets of climate change

Countries worldwide have agreed to meet climate change 
mitigation targets (Fawzy et al. 2021). One of the goals is 
to reduce global warming below 1.5 °C compared to pre-
industrial levels. Additionally, reduce carbon emissions 
by 45% by 2030, and reach carbon neutrality by 2050, as 
stipulated in the Paris Agreement, which was adopted by 
196 parties in the 21st conference of the parties. In addi-
tion, the Paris agreement encourages developed nations to 
provide developing nations with financial and technological 
support for climate change mitigation and adaptation. The 
zero-carbon implementation has been competitive, concern-
ing approximately 25% of emissions from economic sectors, 
particularly the energy and transportation sectors. Never-
theless, countries are apparently leaving the 2030 plan to 
reduce carbon emissions by 45%, as the current forecast 
predicts a 14% increase in global greenhouse gas emissions 
by 2030 (United Nations Framework Convention on Climate 
Change 2021). In addition, the majority of emissions come 
from a small number of countries, as the top ten emitters 
account for over 68% of global greenhouse gas emissions. 
In contrast, less than one hundred countries account for 3% 
of global greenhouse gas emissions. The top ten emitters 
are China, the United States, the European Union, India, 
the Russian Federation, Japan, Brazil, Indonesia, Iran, and 
Canada. The summarization of the nationally determined 
contributions of 2020/2021 of the top ten emitters can be 
found in Table 1.

Apart from national climate change targets, firms around 
the world have set their climate change targets. 1495 firms 
were studied worldwide, and about 1099 (73.5%) firms 
adopted climate change targets (Wang and Sueyoshi 2018). 
The countries leading in firms’ climate change adoption are 
Japan, European Union, and the United States at 97.35%, 
76.76%, and 73.91% rates, while developed countries with 
the lowest climate change adoption are Australia and Canada 
at 56% and 47.87% rate. Firms in Canada and Australia lag 
in climate change adoption due to weak national climate pol-
icies and resource-driven economies. The materials sector, 
particularly the metal and mining industries, has the lowest 
climate change adoption in Canada and Australia at 43.48% 
and 26.67%, respectively. On the other hand, the Japanese 
firms’ high climate change target percentage is outstand-
ing, which is attributed to resource scarcity, government 

concentration on clean developments and emphasis on lean 
operations.

Apart from global firms, the retail sectors have also set 
their climate change targets. The United Kingdom super-
markets’ emissions account for 0.9% of total greenhouse gas 
emissions; the United States retail sector accounts for the 
highest energy use and the second-highest greenhouse gas 
emissions compared to all the commercial sectors (Sullivan 
and Gouldson 2016). Some of the United Kingdom super-
markets’ targets include Tesco’s target of being a net zero 
carbon business by 2050 and reducing supply chain green-
house gas emissions by 30% in 2020 compared to 2008. 
Other supermarkets are Sainsbury’s, with a target of reduc-
ing 50% greenhouse gas emissions by 2030 and Morrisons, 
with a target of reducing operational greenhouse gas emis-
sions by 30% in 2020 compared to 2005 levels. On the other 
hand, United States supermarkets like Best Buy had a target 
of reducing carbon footprint by 20% in 2020 compared to 
2009 levels. Walmart had a target of eliminating 20 million 
tons of greenhouse gas emissions from products’ lifecycles 
by 2015, and Home Depot had a target of reducing green-
house gas emissions from upstream transportation and dis-
tribution by 20% in 2015 compared to 2009 levels. From the 
few supermarkets highlighted, the data shows that the United 
Kingdom retailers have absolute emissions targets, with a 
focus on supply chains and longer timeframes. In contrast, 
United States retailers have a narrow focus on transport and 
operational-related emissions and shorter timeframes. The 
retail sector observation showed that if all United Kingdom 
retailers’ targets are achieved, the reduction of greenhouse 
gas emissions will be higher compared to the United States 
retailers’ targets achievements.

In conclusion, achieving the climate change targets is still 
behind schedule, and governments, particularly the top emit-
ters, should take immediate action to reduce emissions and 
enhance their nationally determined contributions.

Countries adopt economic and social reforms to meet 
their climate change objectives. One of the sectors under-
going change is the energy sector, as countries shift their 
attention to energy technologies such as biomass, solar, 
wind, nuclear energy, hydrogen, and waste-to-energy to 
meet their climate change targets (Kang et al. 2020; Osman 
et al. 2022b). In addition, other technologies adopted to 
decarbonize the energy sector include bioenergy carbon 
capture and storage, electric vehicles, smart grids, stor-
age and energy-saving technologies (Osman et al. 2021a). 
Creating social awareness, implementing climate-friendly 
policies, implementing sustainable urban planning, shifting 
from a linear to a circular economy, facilitating resilience in 
agriculture, promoting clean transportation, and conduct-
ing climate research are additional measures taken to meet 
the climate change objectives (Moore et al. 2021). Further-
more, carbon removal options like afforestation which costs 



60 Environmental Chemistry Letters (2023) 21:55–80

1 3

Ta
bl

e 
1 

 C
lim

at
e 

ch
an

ge
 ta

rg
et

s a
nd

 a
cc

om
pl

is
hm

en
ts

 b
y 

20
20

–2
02

1

C
ou

nt
ry

Ta
rg

et
s

A
ch

ie
ve

m
en

ts
 b

y 
20

20
/2

02
1

So
ur

ce
 U

R
L 

(N
at

io
na

lly
 d

et
er

m
in

ed
 c

on
tri

bu
tio

ns
 2

02
1)

C
hi

na
A

ch
ie

ve
 c

ar
bo

n 
di

ox
id

e 
em

is
si

on
s p

ea
k 

by
 2

03
0 

an
d 

ca
rb

on
 n

eu
tra

lit
y 

by
 2

06
0

Re
du

ce
 c

ar
bo

n 
di

ox
id

e 
em

is
si

on
s p

er
 u

ni
t g

ro
ss

 d
om

es
-

tic
 p

ro
du

ct
 b

y 
65

%
 fr

om
 2

00
5 

le
ve

ls
. I

nc
re

as
e 

no
n-

fo
ss

il 
fu

el
 sh

ar
e 

in
 e

ne
rg

y 
to

 2
5%

 a
nd

 in
cr

ea
se

 so
la

r 
an

d 
w

in
d 

ca
pa

ci
ty

 to
 1

.2
 b

ill
io

n 
ki

lo
w

at
ts

 b
y 

20
30

C
ar

bo
n 

di
ox

id
e 

em
is

si
on

s p
er

 u
ni

t g
ro

ss
 d

om
es

tic
 

pr
od

uc
t i

n 
20

19
 d

ec
re

as
ed

 b
y 

48
.1

%
 c

om
pa

re
d 

to
 

20
05

, w
hi

ch
 is

 b
et

te
r t

ha
n 

th
e 

20
20

 g
oa

l o
f r

ed
uc

in
g 

ca
rb

on
 d

io
xi

de
 e

m
is

si
on

s p
er

 u
ni

t g
ro

ss
 d

om
es

tic
 

pr
od

uc
t b

y 
40

–4
5%

In
 2

01
9,

 th
e 

sh
ar

e 
of

 n
on

-fo
ss

il 
fu

el
 e

ne
rg

y 
w

as
 1

5.
3%

 
w

hi
ch

 in
cr

ea
se

d 
fro

m
 7

.9
%

 in
 2

00
5

ht
tp

s:
// w

w
w

4.
 un

fc
cc

. in
t/ s

ite
s/

 nd
cs

t a
gi

ng
/ P

ub
li s

he
dD

 
oc

um
e n

ts
/ C

hi
na

%
 20

Fi
r s

t/ C
hi

na
%

 E2
%

 80
%

 99
s%

 20
A

ch
 

ie
ve

m
 en

ts
,%

 20
N

ew
%

 20
G

oa
 ls

%
 20

an
d%

 20
N

ew
%

 
20

M
ea

 su
re

s%
 20

fo
r%

 20
N

at
 io

na
l ly

%
 20

D
et

 er
m

in
 ed

%
 

20
C

on
 tri

bu
 tio

ns
. p

df

U
ni

te
d 

St
at

es
Re

du
ce

 g
re

en
ho

us
e 

ga
s e

m
is

si
on

s b
y 

50
–5

2%
 in

 2
03

0 
co

m
pa

re
d 

to
 2

00
5 

le
ve

ls
A

ch
ie

ve
 1

00
%

 c
ar

bo
n 

em
is

si
on

s-
fr

ee
 e

le
ct

ric
ity

 b
y 

20
35

A
ch

ie
ve

 n
et

-z
er

o 
em

is
si

on
s e

co
no

m
y-

w
id

e 
be

fo
re

 2
05

0

In
 2

02
0,

 th
e 

gr
ee

nh
ou

se
 g

as
 e

m
is

si
on

s w
er

e 
17

%
 b

el
ow

 
co

m
pa

re
d 

to
 2

00
5 

le
ve

ls
In

 2
02

0,
 re

ne
w

ab
le

 e
ne

rg
y 

so
ur

ce
s r

ea
ch

ed
 7

61
 m

ill
io

n 
m

eg
aw

at
t-h

ou
rs

, a
bo

ut
 1

9%
 o

f t
ot

al
 e

le
ct

ric
ity

 u
se

ht
tp

s:
// w

w
w

4.
 un

fc
cc

. in
t/ s

ite
s/

 nd
cs

t a
gi

ng
/ P

ub
li s

he
dD

 
oc

um
e n

ts
/ U

ni
te

d%
 20

St
a t

es
%

 20
of

%
 20

A
m

e r
ic

a%
 

20
Fi

r s
t/ U

ni
te

d%
 20

St
a t

es
%

 20
N

D
C

%
 20

A
pr

 il%
 20

21
%

 
20

20
21

%
 20

Fi
n a

l. p
df

Eu
ro

pe
an

 U
ni

on
A

ch
ie

ve
 c

lim
at

e 
ne

ut
ra

lit
y 

by
 2

05
0

In
cr

ea
se

 re
ne

w
ab

le
 e

ne
rg

y 
co

ns
um

pt
io

n 
to

 3
2%

 b
y 

20
30

, w
hi

ch
 is

 d
ou

bl
e 

th
e 

20
17

 p
er

ce
nt

ag
e

Re
du

ce
 c

ar
bo

n 
em

is
si

on
s p

er
 k

ilo
m

et
er

 fo
r p

as
se

ng
er

 
an

d 
va

ns
 c

ar
s b

y 
37

.5
%

 a
nd

 3
1%

 in
 2

03
0 

co
m

pa
re

d 
to

 
20

21
 le

ve
ls

Re
du

ce
 g

re
en

ho
us

e 
ga

s e
m

is
si

on
s b

y 
55

%
 in

 2
03

0 
co

m
pa

re
d 

to
 1

99
0 

le
ve

ls

B
y 

20
19

, t
he

 E
ur

op
ea

n 
U

ni
on

 h
ad

 re
du

ce
d 

th
ei

r e
m

is
-

si
on

s b
y 

26
%

 c
om

pa
re

d 
to

 1
99

0 
le

ve
ls

Th
e 

av
er

ag
e 

pe
r c

ap
ita

 e
m

is
si

on
s h

av
e 

fa
lle

n 
fro

m
 1

2 
to

ns
 o

f c
ar

bo
n 

di
ox

id
e 

eq
ui

va
le

nt
 in

 1
99

0 
to

 8
.3

 to
ns

 
of

 c
ar

bo
n 

di
ox

id
e 

eq
ui

va
le

nt
 in

 2
01

9

ht
tp

s:
// w

w
w

4.
 un

fc
cc

. in
t/ s

ite
s/

 nd
cs

t a
gi

ng
/ P

ub
li s

he
dD

 
oc

um
e n

ts
/ E

ur
op

 ea
n%

 20
U

ni
 on

%
 20

Fi
r s

t/ E
U

_ N
D

C
_ 

Su
bm

i s
si

on
_ D

ec
em

 be
r%

 20
20

20
. p

df

In
di

a
Re

du
ce

 e
m

is
si

on
s i

nt
en

si
ty

 o
f i

ts
 g

ro
ss

 d
om

es
tic

 
pr

od
uc

t b
y 

20
–2

5%
 a

nd
 3

3–
35

%
 in

 2
02

0 
an

d 
20

30
 

co
m

pa
re

d 
to

 2
00

5 
le

ve
ls

A
ch

ie
ve

 4
0%

 o
f e

le
ct

ric
 p

ow
er

 in
st

al
le

d 
ca

pa
ci

ty
 fr

om
 

no
n-

fo
ss

il 
fu

el
s

A
ch

ie
ve

 6
0 

gi
ga

w
at

ts
 a

nd
 1

00
 g

ig
aw

at
ts

 o
f i

ns
ta

lle
d 

w
in

d 
an

d 
so

la
r c

ap
ac

ity
 in

 2
02

2

Th
e 

em
is

si
on

s i
nt

en
si

ty
 o

f g
ro

ss
 d

om
es

tic
 p

ro
du

ct
 

de
cr

ea
se

d 
by

 1
2%

 b
et

w
ee

n 
20

05
 a

nd
 2

01
0

In
cr

ea
se

d 
re

ne
w

ab
le

 e
ne

rg
y 

fro
m

 2
%

 (3
.9

 g
ig

aw
at

ts
) t

o 
13

%
 (3

6 
gi

ga
w

at
ts

) b
et

w
ee

n 
20

02
 a

nd
 2

01
5

ht
tp

s:
// w

w
w

4.
 un

fc
cc

. in
t/ s

ite
s/

 nd
cs

t a
gi

ng
/ P

ub
li s

he
dD

 
oc

um
e n

ts
/ In

di
a%

 20
Fi

r s
t/ I

N
D

IA
%

 20
IN

D
C

%
 20

TO
%

 
20

U
N

F C
C

C
. p

df

Ru
ss

ia
n 

Fe
de

ra
tio

n
Re

du
ce

 g
re

en
ho

us
e 

em
is

si
on

s b
y 

70
%

 in
 2

03
0 

co
m

-
pa

re
d 

to
 1

99
0 

le
ve

ls
Re

du
ce

 m
or

e 
th

an
 5

5 
bi

lli
on

 to
ns

 o
f c

ar
bo

n 
di

ox
id

e 
eq

ui
va

le
nt

 c
um

ul
at

iv
e 

by
 2

03
0 

si
nc

e 
19

90

N
ot

 in
di

ca
te

d
ht

tp
s:

// w
w

w
4.

 un
fc

cc
. in

t/ s
ite

s/
 nd

cs
t a

gi
ng

/ P
ub

li s
he

dD
 

oc
um

e n
ts

/ R
us

si
 an

%
 20

Fe
d e

ra
ti o

n%
 20

Fi
r s

t/ N
D

C
_ R

F_
 

en
g.

 pd
f

Ja
pa

n
Re

du
ce

 g
re

en
ho

us
e 

em
is

si
on

s b
y 

46
%

 (7
60

 m
ill

io
n 

to
ns

 
of

 c
ar

bo
n 

di
ox

id
e)

 in
 2

03
0 

co
m

pa
re

d 
to

 2
01

3 
le

ve
ls

A
ch

ie
ve

 n
et

-z
er

o 
ca

rb
on

 e
m

is
si

on
s b

y 
20

50

N
ot

 in
di

ca
te

d
ht

tp
s:

// w
w

w
4.

 un
fc

cc
. in

t/ s
ite

s/
 nd

cs
t a

gi
ng

/ P
ub

li s
he

dD
 

oc
um

e n
ts

/ Ja
pa

n%
 20

Fi
r s

t/ J
A

PA
N

_ F
IR

ST
%

 20
N

D
C

%
 

20
(U

PD
A

T E
D

%
 20

SU
B

 M
IS

SI
 O

N
). p

df
B

ra
zi

l
Re

du
ce

 g
re

en
ho

us
e 

ga
s e

m
is

si
on

s b
y 

37
%

 a
nd

 5
0%

 in
 

20
25

 a
nd

 2
03

0 
co

m
pa

re
d 

to
 2

00
5 

le
ve

ls
A

ch
ie

ve
 c

lim
at

e 
ne

ut
ra

lit
y 

by
 2

05
0

Re
ne

w
ab

le
 e

ne
rg

ie
s a

cc
ou

nt
ed

 fo
r 4

8.
4%

 o
f t

ot
al

 
en

er
gy

 d
em

an
d 

in
 2

02
0

ht
tp

s:
// w

w
w

4.
 un

fc
cc

. in
t/ s

ite
s/

 nd
cs

t a
gi

ng
/ P

ub
li s

he
dD

 
oc

um
e n

ts
/ B

ra
zi

l%
 20

Fi
r s

t/ U
pd

at
 ed

%
 20

-%
 20

Fi
r s

t%
 

20
N

D
C

%
 20

-%
 20

%
 20

FI
N

 A
L%

 20
-%

 20
PD

F.
 pd

f
In

do
ne

si
a

Fr
om

 2
02

0 
to

 2
03

0,
 re

du
ce

 e
m

is
si

on
s b

y 
29

%
 u

nc
on

-
di

tio
na

l a
nd

 u
p 

to
 4

1%
 c

on
di

tio
na

l o
f t

he
 b

us
in

es
s a

s 
us

ua
l

In
cr

ea
se

 re
ne

w
ab

le
 e

ne
rg

y 
sh

ar
e 

to
 a

t l
ea

st 
23

%
 a

nd
 

31
%

 in
 2

02
5 

an
d 

20
50

N
ot

 in
di

ca
te

d
ht

tp
s:

// w
w

w
4.

 un
fc

cc
. in

t/ s
ite

s/
 nd

cs
t a

gi
ng

/ P
ub

li s
he

dD
 

oc
um

e n
ts

/ In
do

n e
si

a%
 20

Fi
r s

t/ U
pd

at
 ed

%
 20

N
D

C
%

 20
In

d 
on

es
ia

%
 20

20
21

%
 20

-%
 20

co
r r

ec
te

d%
 20

ve
r s

io
n.

 pd
f

https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/China%20First/China%E2%80%99s%20Achievements,%20New%20Goals%20and%20New%20Measures%20for%20Nationally%20Determined%20Contributions.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/China%20First/China%E2%80%99s%20Achievements,%20New%20Goals%20and%20New%20Measures%20for%20Nationally%20Determined%20Contributions.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/China%20First/China%E2%80%99s%20Achievements,%20New%20Goals%20and%20New%20Measures%20for%20Nationally%20Determined%20Contributions.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/China%20First/China%E2%80%99s%20Achievements,%20New%20Goals%20and%20New%20Measures%20for%20Nationally%20Determined%20Contributions.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/China%20First/China%E2%80%99s%20Achievements,%20New%20Goals%20and%20New%20Measures%20for%20Nationally%20Determined%20Contributions.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/European%20Union%20First/EU_NDC_Submission_December%202020.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/European%20Union%20First/EU_NDC_Submission_December%202020.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/European%20Union%20First/EU_NDC_Submission_December%202020.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/India%20First/INDIA%20INDC%20TO%20UNFCCC.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/India%20First/INDIA%20INDC%20TO%20UNFCCC.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/India%20First/INDIA%20INDC%20TO%20UNFCCC.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Russian%20Federation%20First/NDC_RF_eng.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Russian%20Federation%20First/NDC_RF_eng.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Russian%20Federation%20First/NDC_RF_eng.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Japan%20First/JAPAN_FIRST%20NDC%20(UPDATED%20SUBMISSION).pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Japan%20First/JAPAN_FIRST%20NDC%20(UPDATED%20SUBMISSION).pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Japan%20First/JAPAN_FIRST%20NDC%20(UPDATED%20SUBMISSION).pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Brazil%20First/Updated%20-%20First%20NDC%20-%20%20FINAL%20-%20PDF.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Brazil%20First/Updated%20-%20First%20NDC%20-%20%20FINAL%20-%20PDF.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Brazil%20First/Updated%20-%20First%20NDC%20-%20%20FINAL%20-%20PDF.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Indonesia%20First/Updated%20NDC%20Indonesia%202021%20-%20corrected%20version.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Indonesia%20First/Updated%20NDC%20Indonesia%202021%20-%20corrected%20version.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Indonesia%20First/Updated%20NDC%20Indonesia%202021%20-%20corrected%20version.pdf


61Environmental Chemistry Letters (2023) 21:55–80 

1 3

3–30 dollars per ton of carbon dioxide, and is commercially 
ready for implementation, can be used to meet the carbon 
emissions targets (Princiotta 2021). However, other carbon 
removal options like direct air capture, biochar, and acceler-
ated weathering have issues such as high costs of 100–1200 
dollars per ton of carbon dioxide and are not commercially 
ready as they are in the development stage; apart from bio-
char which is technologically ready for immediate deploy-
ment. No single action can achieve the climate change tar-
gets; meeting the targets requires multiple climate actions 
and technology advancements in all sectors.

In summary, countries use a variety of strategies to meet 
their climate change goals. One of the strategies is the transi-
tion from a linear to a circular economy, which is discussed 
in detail in the following sections of this review.

Circular economy to tackle climate change

The circular economy approach improves resource efficiency 
while decreasing inputs and emissions and can therefore be 
used to combat climate change. As discussed in this sec-
tion, the circular economy can be implemented in various 
sectors, including industry, waste, energy, buildings, and 
transportation.

Industry

As industrialization progresses, the problem of climate 
change caused by industry grows gradually. Circular econ-
omy strategies reduce carbon emissions and provide a profit-
able business model for the industry with improved quality, 
efficiency, and working conditions via a traceable carbon 
footprint throughout the product's life cycle (Khan et al. 
2021). Utilizing blockchain technology in supply chains 
can provide accurate real-time data of circular economy 
processes like circular design, production efficiency and 
recycling, thereby reducing the carbon footprint of supply 
chain operations by a significant amount. Converting carbon 
dioxide, which contributes to global warming issues, into 
products with high added value has become an important 
area of study. The authors estimated that 5–10% of carbon 
dioxide emissions could be used to produce fuels and chemi-
cals in a circular economy (Cucciniello and Cespi 2018). 
Wang et al. (2019) discovered that resource recovery meas-
ures would reduce the overall carbon emissions of indus-
trial parks by substituting carbon-intensive energy sources 
through a quantitative analysis of the impact of a circular 
economy. In summary, using industrial by-products in the 
circular economy can reduce carbon emissions while adding 
value to the industrial processes.

Other industries that can adopt circular economy meas-
ures are the consumer goods industries. Household wash-
ing machines are not fully utilized as most time; they are Th
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idle. The washing machine industry can be transformed 
into a circular economy through ways like sharing among 
households, designing for disassembly and reassembling, 
and using technologies of the internet of things and big data 
(Bressanelli et al. 2017). The usage of circular economy 
strategies can save 30% of washing costs while reducing 
the country’s electricity generation and water consumption 
by 0.6% and 1% hence tackling climate change. The food 
industry's transformation to a circular economy can also 
help tackle climate change. A life cycle assessment study 
of canned tuna in Galicia, Spain, showed that the inclusion 
of valorization of bio-waste and production of tuna pate, 
fish meal and oil in the canned tuna process decreases the 
environmental impacts by 0.03 kilogram carbon dioxide 
equivalent per can (Cortés et al. 2021). In summary, achiev-
ing a circular economy in industries requires efforts such 
as a change in goods design and introducing new processes 
in the production chain, which can be expensive at first but 
will benefit the industries and tackle climate change in the 
long term.

Overall, the circular economy strategy can effectively 
reduce carbon emissions from industrial processes and miti-
gate the global climate change problem.

Waste

Population growth causes an increase in waste, whose dis-
posal becomes difficult and contributes to climate change, 
while circular economy of recycling waste can help tackle 
climate change (Osman et al. 2022a). The effectiveness of 
two household organic waste management systems, anaero-
bic digestion and incineration, was studied in Trondheim, 
Norway (De Sadeleer et al. 2020). The results demonstrated 
that recycling through anaerobic digestion produced lower 
emissions than incineration, provided biogas is used in place 
of diesel. In addition, reducing food waste by 15% to 30% 
resulted in large amounts of avoided emissions; therefore, 
preventing food waste outweighs recycling and incineration. 
In the circular economy context, another study examined the 
technologies used for carbon dioxide capture from waste-
water treatment plants' emissions. Biochar production from 
sludge, constructed wetlands, and microbial electrochemical 
processes are among the technologies examined (Pahunang 
et al. 2021). The results showed that sludge and constructed 
wetland biochar were the most cost-effective technologies. 
Furthermore, the microbial electrochemical processes were 
the most effective at producing valuable by-products from 
the treated wastewater. Here, the authors suggest that waste 
production should be avoided as much as possible. If waste 
is produced, circular economy strategies should be applied to 
maximize resource utilization and lower carbon emissions.

In the European Union, strategies to achieve a circu-
lar waste economy, such as increasing the recycling of 

municipal wastes by 65% and recycling all plastic packaging 
by 2030, are implemented (Aceleanu et al. 2019). By 2018, 
out of 2.2 billion tons of waste, 0.6 billion tons (27%) were 
recycled in the European Union. Shifting to a waste circu-
lar economy has the advantages of reducing carbon dioxide 
emissions, reducing waste management expenses and cre-
ating jobs. Other circular economy techniques include the 
usage of organic food waste and treated effluents to produce 
recycled water and fertilizers (Oliveira et al. 2021). The 
straw from wheat farming can be used as fertilizer, animal 
feed or energy recovery. In addition, the pineapple leaves 
residues in farms can be used to recover nanocellulose fiber 
that can be used in wound healing and drug delivery. Fur-
thermore, waste vegetable and cooking oil can be processed 
into biodegradable detergents, and wheat bran can be pro-
cessed into biodegradable tableware.

In conclusion, recycling and the transformation of wastes 
into useful raw materials for the production of other value-
added goods results in the efficient use of resources and a 
smaller carbon footprint than harmful waste disposal meth-
ods such as landfilling and incineration. Therefore, more 
research should be conducted on large-scale recycling and 
waste technology utilization to achieve a circular economy 
and tackle climate change.

Energy

Global energy consumption is increasing due to the improve-
ment in the quality of human life. However, the increase in 
energy consumption is accompanied by an increase in green-
house gas emissions, resulting in climate change concerns. 
Applying circular economy strategies and digital technolo-
gies related to artificial intelligence can improve energy effi-
ciency and facilitate carbon trading to help countries meet 
their climate change mitigation objectives (Jose et al. 2020). 
Using a standard greenhouse gas emission quantification 
model and scenario analysis, Islam et al. (2021) determined 
that a combination of circular economy principles and the 
use of renewable energy could lead to a 37.5% reduction 
in greenhouse gas emissions from the livestock sector in 
Bangladesh. To reduce the environmental impacts of wind 
energy turbines, after their end of life, they can be repur-
posed or the fibers recovered and used in manufacturing new 
wind turbines. However, carbon fibers degrade after multi-
ple thermal treatments; hence research is required on the 
long-term sustainability of the fiber recovery process (Hao 
et al. 2020). Here, the authors suggest developing circular 
economy technologies from lab scale to large scale so that 
the technologies can be applied in the current energy sector 
and tackle climate change.

Using Aland islands in Finland as a case study energy 
data shows that using excess electricity to power electric 
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vehicles and circular economy processes that increase the 
value of waste is more profitable than exporting the excess 
energy produced (Kiviranta et al. 2020). From analysis, 
the energy system involving a circular economy had an 
annual net profit of 0.72 million euros higher than export-
ing exceeded energy produced (- 0.43 million euros). How-
ever, the circular economy system faced issues with the 
local feedstock availability for biogas production. Energy 
and materials circularity acts such as using scrap steel, recy-
cling and reusing plastics, papers and cement can reduce 
energy consumption and dependence on expensive technolo-
gies like carbon capture (Fragkos 2022). All the circular 
economy measures require societal behavioural changes, 
capital investments, new business models and policies. In 
Meili town in China, the transformation to clean energy by 
using circular economy strategies like using excess industrial 
heat in symbiosis with other industries, electrifying trans-
portation and reusing batteries positively impacts tackling 
climate change (Su and Urban 2021). The modelling results 
from 2020 to 2040 show an energy saving of 7.1 Mega tons 
of oil equivalent (34%) and a reduction of 14.5 Mega tons 
of carbon dioxide. In conclusion, the circular economy is 
profitable and tackles climate change by utilizing waste in 
energy production. However, depending on energy from 
waste can lead to shortage of waste availability such as in 
biogas production which can trigger production of more 
waste hence infeasibility.

Therefore, circular economy strategies can mitigate 
global climate change by increasing the use of renewable 
energy and transforming the energy structure to become 
more sustainable.

Buildings

Construction and buildings contribute to climate change; 
therefore, using circular economy practices, such as recy-
cled aggregates, can aid in combating climate change. A 
life cycle assessment study was performed on a case study 
of a Town Hall building in the German city of Korbach that 
was demolished and rebuilt using recycled building materi-
als (Mostert et al. 2021). Compared to conventional con-
crete, the use of concrete with recycled aggregates of up to 
43% can save up to 37% of raw materials, according to the 
study’s findings. The study also revealed that using recycled 
aggregates in concrete does not contribute much to climate 
mitigation because recycled aggregates concrete still con-
tains cement, which has a substantial carbon footprint. In 
addition, the study revealed that processing recycled con-
crete in a mobile plant has a smaller carbon footprint than 
processing recycled concrete in a stationary plant due to 
reduced transport distance, low energy consumption, and 
low water consumption. Another study was conducted on 
using recycled wood shavings to produce wood bio-concrete 

utilizing life cycle assessment and considering the transport 
distance from various waste generation sites (Caldas et al. 
2021). Regardless of the scenario, the results indicated that 
an increase in wood shaving content in wood bio-concrete 
contributed to climate mitigation when biogenic carbon was 
considered. In addition, transportation plays a crucial role 
in the wood bio-concrete lifecycle, as long distances result 
in greater carbon emissions. The emissions of the wood 
bio-concrete can be as low as 15 kilogram carbon dioxide 
equivalent per cubic meter if carbon dioxide capture during 
eucalypt growth is considered.

Utilization of information modeling in buildings is criti-
cal in attaining waste-efficient buildings and a circular econ-
omy (Ganiyu et al. 2020). Building information modeling 
has the ability to minimize design changes, generate waste 
information from the design model, and provide information 
on reusable materials in construction and modular construc-
tion techniques, which promote circular economy in tack-
ling climate change. A life cycle assessment study was done 
on three structural methods of business-as-usual concrete, 
design for disassembly concrete and wooden structure in 
one building. The results revealed that in two 50 years of 
service life, the single-use wooden structure would achieve 
13% emissions savings, and design for disassembly struc-
ture would achieve 16% emissions savings compared to the 
business as usual structure (Joensuu et al. 2022). Here, the 
authors advise architects and engineers to continuously learn 
the building information modelling and life cycle assessment 
tools, which are essential to achieving a circular economy in 
the construction industry.

In conclusion, there are opportunities to recycle construc-
tion waste and apply it to new construction sites, thus con-
serving resources and reducing carbon emissions, thereby 
combating climate change. Instead of dumping wastes that 
contribute to climate change, greater emphasis should be 
placed on reusing construction debris.

Transportation

A shift to electric vehicles is necessary for the transporta-
tion sector to meet climate change objectives. However, the 
whole life cycle of electric vehicles must be comprehended 
to prevent resource depletion. Motor technologies and bat-
teries for electric vehicles are composed of rare earth metals 
such as lithium, cobalt, and graphite. Circular economy strat-
egies, such as reusing, repairing, and refurbishing, are essen-
tial for achieving optimal resource utilization (Richter 2022). 
Batteries can be repurposed as energy storage systems and 
reused to extend their lifespan. Another circular economy 
strategy to combat climate change for road transport is for 
vehicle manufacturers to ensure that 85% of the weight of 
their vehicles is reusable or recyclable (Paradowska 2017). 
In addition, the vehicles should not be manufactured with 



64 Environmental Chemistry Letters (2023) 21:55–80

1 3

toxic materials such as mercury or lead. Systems should be 
in place to collect end-of-life vehicles, with the possibility 
of collecting used parts from repaired vehicles. The costs 
of collecting end-of-life vehicles should not be incurred by 
vehicle owners, and the waste treatment facility should pri-
oritize reuse, recovery, and recycling.

Circular economy can be used in extending ports’ life 
and reducing environmental impacts, such as in Gavle Swe-
den, where contaminated dredged materials were used to 
expand ports’ land. The expansion of Gavle port required 
the removal of 4 million cubic meters of dredged sediments, 
of which 1 million cubic meters would be contaminated by 
heavy metals (Carpenter et al. 2018). The disposal of the 
contaminated dredged sediments was a challenge as there 
was no vacant land near the port; hence, the disposal would 
require thousands of lorries transporting the sediments over 
long distances, emitting greenhouse gases and incurring 
large costs. The solution was to combine the dredged sedi-
ments with other materials like fly ash, slag and cement and 
use the sediment in the port’s expansion. The circular econ-
omy approach saved the port from extinction while reducing 
the carbon footprint and costs. Apart from ports, the rail 
industry can also utilize a circular economy by recovering 
the end-of-life components of trains. The train bogie com-
ponents can be recovered in different ways such as repair 
of compressors, exhauster, and block brake or recycling of 
bogie frame and wheel axle (Phuluwa et al. 2020). How-
ever, the cost of recovering the railcar components should be 
checked against the cost of manufacturing new components 
to ensure feasible circular operations.

In conclusion, combatting climate change in the transpor-
tation sector is difficult without considering the end of life 
of vehicles, which consume resources and rare earth met-
als. Transitioning to a circular economy based on reuse and 
recycling is essential for ensuring proper resource utilization 
and effective climate change mitigation. Circular economy 
strategies are essential for combating climate change in all 
sectors, as they ensure proper resource utilization and reduce 
carbon emissions. A focus should be placed on the whole 
life cycle, particularly the end-of-life stage, which is crucial 
for reuse, recovery, and recycling.

Impact of the circular economy on pollution, 
energy, waste, natural resources and land 
use

As the circular economy principles are implemented glob-
ally, circular economy strategies will play a more signif-
icant role on the international stage and have a greater 
impact on the world. This section analyzes the effects 
of circular economy strategies on various applications, 
including air and water quality, energy consumption, 

natural resources, solid and toxic waste, land use, and 
land cover.

Air and water quality

Deteriorating air and water quality have become one of the 
most widespread issues globally, as global economic and 
population growth has led to concerns about air quality 
and water resources that have become limited in quantity 
and quality. The discussion of air and water quality cannot 
be separated from the development of circular economy 
strategies. Su and Urban (2021) conclude from a sce-
nario analysis of a circular economy strategy for a town 
of 140,000 people in eastern China that it is possible to 
reduce fine particulate matter emissions by 47% in 2040 
compared to the past, but the total emissions in 2040 are 
almost the same as the levels in 2019, indicating that the 
circular economy strategy does not actually improve air 
quality, but merely prevents air quality from deteriorating. 
In contrast, if the circular economy is expanded by elec-
trifying the transportation sector, fine particulate matter 
emissions will be reduced by 22%, and air quality will 
significantly improve. Meanwhile, Sgroi et al. (2018) sug-
gest that new policies based on the concept of a circular 
economy may lead to a “paradigm shift” toward a more 
sustainable model of wastewater management beginning 
with the principle of source segregation and enhancing 
resource recovery to improve the water system’s quality. 
Adopting a circular economy strategy can create signifi-
cant synergies with reused water as an alternative water 
supply, and the circular economy strategy should ensure 
that water reuse is safe and that the applicable water qual-
ity standards are applied (Voulvoulis 2018). Consequently, 
circular economy practices can adjust and monitor waste-
water pollutant levels to improve water supply quality via 
optimal wastewater management.

This section examines the potential effects of circu-
lar economy strategies on air and water quality. Overall, 
the effect of effective circular economy measures on air 
quality and water quality is positive due to the synergy 
between the circular economy and the deep electrifica-
tion of transport, which can effectively reduce air pollut-
ants, and the “paradigm shift” in wastewater management, 
which improves water quality as a result of the circular 
economy strategy.

Energy consumption

The issue of energy consumption is one of the global chal-
lenges. To achieve sustainable development, many nations 
and multinational corporations are focusing on reduc-
ing energy consumption through the circular economy 
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perspective. Padmanabhan et  al. (2022) utilized energy 
recovery from waste plastics as an alternative fuel source 
through a circular economy strategy. The pyrolysis-gener-
ated waste plastic fuel was evaluated as an alternative fuel, 
and the pyrolysis-generated waste plastic fuel increased 
brake thermal efficiency by 4.7% and decreased fuel con-
sumption by 7.8% compared to diesel. The anaerobic degra-
dation of organic fractions during waste treatment utilizing 
a circular economy strategy results in biogas production for 
use in power plants. In addition, the sorted dry waste can 
be burned in power plants to replace the grid's electricity 
supply. Non-recyclable, high-calorie fractions can be used 
as refuse-derived fuel in cement plants to replace fossil 
fuels and reduce energy consumption (Berechet et al. 2019). 
Using case studies, Laskurain-Iturbe et al. (2021) examined 
circular economy strategies and found that technologies such 
as additive manufacturing, big data and advanced analyt-
ics, artificial intelligence, artificial vision, cybersecurity, 
the Internet of Things, robotics, and virtual reality can 
effectively reduce energy consumption in the transportation 
phase, manufacturing phase, and utilization phase.

In this section, we analyze the effect of circular economy 
strategies on energy consumption, which can be effectively 
reduced by alternative fuels generated from the pyrolysis of 
recycled plastics or the anaerobic decomposition of recy-
cled organic components to produce biogas. Combined with 
circular economy strategies, additive manufacturing, big 
data and advanced analytics, artificial intelligence, artificial 
vision, cybersecurity, the Internet of Things, and robotics 
can reduce energy consumption throughout the product life 
cycle.

Natural resources

Population growth and economic development have added 
to the problem of diminishing natural resources. Utilizing 
the circular economy concept can promote economic growth 
while conserving natural resources (Sverko Grdic et al. 
2020). Circular economy measures can positively impact 
continuously degrading industries that rely heavily on natu-
ral resources, thereby reducing and optimizing the consump-
tion of natural resources (Chiappetta Jabbour et al. 2020). 
Pavolová et al. (2020) demonstrate that the circular economy 
strategy can be a significant conceptual model for guiding 
the optimal use of natural resources and that the circular 
model is based on the partial substitution of secondary raw 
materials for primary raw materials, allowing for a signifi-
cant reduction in the consumption of natural resources. A 
dual systematic and bibliometric survey of published sci-
entific results by Abad-Segura et al. (2021) found that the 
efficiency of natural resource utilization can be enhanced 
through a systematic approach if the circular economy 
and the bioeconomy are implemented in conjunction. The 

circular economy production model is being pushed by 
policymakers as an alternative to the linear “take, make, 
discard” model of large natural resource inputs. In a circular 
economy model, natural resource consumption would con-
tinue to decline (Centobelli et al. 2020). It was realized that 
the circular economy strategy is advantageous for natural 
resource conservation.

This section examines the effect that circular economy 
strategies have on natural resources. By partially substi-
tuting secondary raw materials for primary raw materials, 
the circular economy model can limit the use of natural 
resources; for instance, industries that rely heavily on met-
als as a natural resource can adopt circular economy strate-
gies to reduce natural resource inputs. Simultaneously, the 
efficiency of natural resource utilization can be enhanced 
via a systemic approach by combining the circular economy 
and bioeconomy.

Solid and toxic wastes

Solid wastes containing potentially toxic elements, such as 
municipal sludge, waste incineration fly ash, tailings, met-
allurgical and chemical solid wastes, and electronic wastes, 
are widely produced worldwide (Ge et  al. 2022; Xiong 
et al. 2019). Circular economy strategies positively impact 
solid waste management and have been implemented suc-
cessfully and comprehensively in some developed regions, 
where policy has also been developed (Ezeudu and Ezeudu 
2019). Product design and business models based on circu-
lar economy strategies emphasize multifunctional products, 
prolonged life of products and components, and intelligent 
manufacturing to maximize product utility, thereby reduc-
ing waste generation in public and private sectors (Sharma 
et al. 2021). Al-Wahaibi et al. (2020) conducted a techno-
economic study on the potential of biogas production from 
food waste. The experimental results show a cumulative gas 
production value of 1550 milliliter per 1 gram of dry matter 
for a sample of food solid waste, with a net present value of 
3108 dollars if calculated at 0.39 dollars per cubic meter and 
a discount period of 6 years. Meanwhile, Rolewicz-Kalinska 
et al. (2020) analyzed the correlation between waste collec-
tion and circular economy strategies and estimated that the 
amount of biogas generated from solid waste could increase 
to nearly 9 million cubic meters per year by 2030, bring-
ing the annual production of renewable energy to almost 
17 kilowatt hour.

The investigation reveals that the circular economy strat-
egy positively affects solid and toxic waste. The circular 
economy strategy presents favorable application prospects 
for solid waste management. The circular economy strategy 
will maximize product utility by extending product and com-
ponents’ life, reducing public and private sector waste gen-
eration. Moreover, circular economy strategies can reduce 
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total waste by converting solid waste into biogas and using 
it as fuel.

Land use and land cover

Land serves a multitude of essential functions in our daily 
lives, including the production of food and other biomass 
products, as well as the storage, filtration, and conversion of 
substances such as carbon, nitrogen, and water. A circular 
economy strategy is an economic system that prioritizes the 
reuse and minimal depreciation of resources and products, 
which substantially affects land use (Breure et al. 2018). 
Wiprächtiger et al. (2020) evaluated the specific effects of a 
circular economy by developing circular strategy scenarios. 
According to the findings, increasing the use of biomaterials 
or recycling combined with increasing the use of bioma-
terials would have a greater negative impact on land use 
and land cover. Furthermore, the need for a larger area to 
cultivate bio-based materials places pressure on land use 
concerns (Jerome et al. 2022). Similarly, Fidelis et al. (2021) 
found in their survey of policy narratives on the circular 
economy in the European Union that proposals for land-
related circular economy strategies are based on a bioec-
onomy context with potential land-use pressures from the 
renewability, degradability, or compostability of bio-based 
materials.

However, the potential problem of land use and cover 
from a circular economy also has solutions. The use of plants 
growing on marginal land and the production of climate 
change mitigation biochar from waste avoids competition 
with fertile land and food needs. Leppäkoski et al. (2021) 
found that biochar from willow trees on marginal land in 
Finland could compensate for 7.7% of annual agricultural 
greenhouse gas emissions. At the same time, energy crops 
grown on marginal land also allow cellulosic biomass with-
out competing with food crops and help reclaim marginal 
land, significantly reducing greenhouse gases without posing 
any risk to food security (Mehmood et al. 2017). Regardless, 
implementing circular economy strategies remains a power-
ful challenge for both land use and land cover.

In this section, we find through our investigation that the 
proposed land-based circular economy strategies are bio-
economy-based. Therefore, increasing the use of bio-based 
materials poses significant challenges for land use and land 
cover due to the larger land area required to cultivate bio-
based materials and their renewable, degradable, or com-
postable characteristics.

Summary

We examined the specific effects of circular economy strate-
gies on air and water quality, energy consumption, natural 
resources, solid and toxic waste, and land use and cover. 

The findings revealed that the effects of circular economy 
strategies vary depending on the application. Table 2 illus-
trates the specific effects of the circular economy strategy 
on a variety of applications, as well as the most significant 
findings.

According to the survey results, the impact of the circu-
lar economy strategy is generally positive for most applica-
tions, except for land use and land cover, which may experi-
ence negative effects. Strategies for a circular economy can 
improve air and water quality, lower energy consumption, 
and reduce the use of natural resources. Simultaneously, 
solid and toxic waste will be reduced due to a circular econ-
omy strategy. However, the use of bio-based materials in 
the circular economy strategy will necessitate more land to 
cultivate bio-based materials, and the bio-based materials’ 
recyclability, degradability, and compostability must also be 
considered in terms of land use.

Opportunities of the circular economy 
for the industry

The advancement of the circular economy presents risks 
and opportunities for various stakeholders in the context 
of ethical and sustainable industry development. Anttonen 
et al. (2018) empirically examined the concept of the cir-
cular economy as a triple helix innovation system within 
three institutional domains: industry, government, and uni-
versity. The consensus space of industry, government, and 
university focuses on materials and products and views the 
circular economy as a method for creating new resources 
and products from waste. A triple-helix innovative circular 
economy strategy can facilitate sufficient consensus among 
industry, government, and university to enable global busi-
ness opportunities to be realized by industry. In particular, 
the government's circular economy strategy can support the 
industry’s sustainable development, while innovative univer-
sity research on circular economy strategies can create more 
opportunities for the industry.

Under the assumption that the government and uni-
versities promote the spiral of industrial sustainability, 
the industrial production process based on the circular 
economy strategy will be directly accountable to consum-
ers. The circular economy strategy can create advanta-
geous resource input and output opportunities throughout 
the product life cycle (Osman et al. 2021b). The circular 
economy strategies are implemented throughout the entire 
product lifecycle, from product design to product use to 
business transition. Visualizing existing innovative busi-
ness models based on the circular economy improves the 
monitoring of circular efficiency and enables a more thor-
ough and effective evaluation of materials, products, and 
assets in industrial production (Rossi et al. 2020).
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Throughout the life cycle of industrial products, cir-
cular economy strategies can facilitate using renewable 
resources and energy. Patil et  al. (2022) significantly 
enhanced the sustainability of industrial production by 
generating purified biogas that can replace crude oil and 
natural gas via anaerobic consumption and purification 
of recycled sucrose waste. The production of biofertiliz-
ers and the recycling of digestate are typical industrial 
applications of circular economy, reducing raw materials 
and energy inputs by utilizing waste as a raw material. In 
the meantime, Aguilar Esteva et al. (2020) developed the 
first circular economy vehicle manufacturing schematic 
within the framework of the Ellen MacArthur Foundation, 
with experimental results indicating that electric vehicles 
use approximately 47% less non-renewable energy than 
internal combustion engine vehicles throughout their life 
cycle. It is evident that a circular economy strategy can 
effectively reduce energy input.

Similarly, circular economy strategies can provide oppor-
tunities for waste and emissions throughout the product life 
cycle. By increasing overall system efficiency and promoting 
greener, safer industries, circular economy strategies help 
reduce waste (Cucciniello and Cespi 2018). A new plas-
tics economy based on the core principles of the circular 
economy can improve the socio-economic performance 
of the entire supply chain and significantly reduce plastic 
waste and the negative environmental impacts associated 
with plastic waste in industrial production processes (Payne 
et al. 2019). The application of circular economy principles 
to mine waste treatment represents a significant opportunity 
to reduce the negative impact of mine waste and increase 
its value. Circular economy strategies enable the mining 
industry and managers to participate in the entire life cycle 
of a project, including the final residual waste and promote 
the use of natural cycles in the metallurgical industry of 
metals and conversion of the environment and, most impor-
tantly, the development of adaptive capacity resource cycles, 
thereby responding to global changes in the supply and 

demand for various resources (Tayebi-Khorami et al. 2019). 
Khan et al. (2021) demonstrated in his study that adopt-
ing circular economy practices improves productivity and, 
consequently, financial performance as a result of circular 
design, circular procurement, and, most significantly, waste 
recycling and remanufacturing. As a result, we can conclude 
that the circular economy aids businesses in improving their 
environmental and financial performance, which translates 
to a greater organizational performance by reducing waste 
and emissions.

This section explores the industrial development oppor-
tunities presented by the circular economy. Using the oppor-
tunities presented by a circular economy strategy, industrial 
companies can manufacture products responsibly through 
government and university collaboration. Effective circu-
lar economy strategies provide numerous opportunities 
for industry to reduce natural resource and energy inputs 
and waste and emission outputs throughout the product life 
cycle.

Circular economy for food systems

As shown in Fig. 3, this section will examine the circu-
lar economy opportunities in the food system from three 
aspects: food production, food consumption and food waste 
management.

Food production

The circular economy model tries to change the unsustain-
ability of the traditional linear production mode and applies 
recycled materials to food production to reduce the use of 
external resources (Borrello et al. 2017). The recovery and 
recycling of the waste in the system can reduce the consump-
tion and waste of external resources and the environmental 
impact (Diaz-Elsayed et al. 2020; Toop et al. 2017). There 
are numerous opportunities for a circular economy in food 

Fig. 3  Food system production, consumption, and waste management 
can all benefit from the circular economy. In food production, the cir-
cular economy will promote the recycling of internal waste resources 
and reduce the use of external resources; a diverse and healthy diet 

will promote a circular economy in food consumption; and in food 
waste management, there will be a greater diversity of waste treat-
ment options and a shift toward the use of waste to produce byprod-
ucts with high added value
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production. In agricultural production, for instance, in Alm-
ería, southeast Spain, it has been developed to convert plant 
wastes into compost, bioethanol and other biological prod-
ucts (Aznar-Sánchez et al. 2020). The products obtained by 
utilizing plant wastes can be put into new food production 
links, which is the embodiment of circular economy oppor-
tunities in agricultural production.

In addition, a significant amount of water resources is 
used for grain production. Consider agricultural production 
as an example of the food system. Agriculture accounts for 
70% of the world’s freshwater consumption and is the largest 
consumer of freshwater resources (Alexandratos and Bru-
insma 2012; Dubois 2011). According to research, the food 
processing industry is the second largest water consumer in 
the world after agriculture (Hoekstra and Chapagain 2007). 
Therefore, there are potential circular economy opportunities 
in water use in food production. Water recovery and recy-
cling is an approach to water resource management based on 
a circular economy (Smol et al. 2020). Rainwater is typically 
collected for agricultural irrigation as part of water recov-
ery, reducing surface water consumption and groundwater 
(Yannopoulos et al. 2019). In the context of the water cycle, 
municipal, agricultural, and industrial wastewater can be 
used for agricultural irrigation after undergoing multiple 
stages of filtration and nontoxic treatment (Pedrero et al. 
2020). Many studies indicate that treated wastewater still 
contains trace elements, including nitrogen, phosphorus, and 
potassium. After wastewater is used for agricultural irriga-
tion, chemical fertilizers can be reduced, which has positive 
environmental and economic effects and demonstrates the 
sustainability of water resource utilization (Chojnacka et al. 
2020; Rossi et al. 2021).

Local food production is another important area where 
the circular economy can be effective, mainly because food 
is wasted due to damage or spoilage caused by long supply 
chains, and longer transportation processes consume more 
external resources. For example, the “Nordic Diet” is a way 
of eating that embodies the concept of a circular economy, 
placing as little emphasis as possible on meat from indus-
trially farmed animals imported from other countries and 
highlighting locally produced terrestrial and aquatic foods 
(Bere and Brug 2009). This dietary approach can reduce 
transportation costs and waste caused by food spoilage dur-
ing transport, promoting local economic growth. The shorter 
production chain also ensures that the entire food production 
process can be monitored locally for food safety, which can 
positively impact consumers (Jurgilevich et al. 2016).

Food consumption

Reducing meat consumption is one of the critical opportuni-
ties for the circular economy in the food consumption system 
(Jurgilevich et al. 2016), mainly because meat production 

has a more significant impact on the environment than veg-
etarian food. Most directly, by reducing the consumption 
of meat products, the energy, land and water consumption 
used in producing meat products will be directly reduced. 
Jurgilevich et al. (2016) put forward that raising consumers’ 
awareness of a sustainable diet will promote the transforma-
tion of food consumption into a circular economy. For exam-
ple, food suppliers, supermarkets and caterers can change 
people’s “food environment” by increasing the quantity and 
attractiveness of plant foods. De Boer et al. (2014) found 
that “Meatless days”, “less but better”, and other strategies 
have specific effects on reducing meat consumption in dif-
ferent groups.

Families are the primary food waste consumers (Priefer 
et al. 2016). There are numerous causes of food waste in the 
home, including impulse purchases, excessive purchases, 
insufficient quantities of favorite foods, a lack of food prepa-
ration skills, poor storage management, and an inability to 
repurpose leftovers (Priefer et al. 2016). In this regard, case-
by-case strategies should be proposed following the circu-
lar economy concept. For instance, the standard conditions 
for storage should be clearly stated on food packaging in 
the event of poor storage management (Müller and Schmid 
2019). Consideration should also be given to storage con-
ditions at home, such as refrigeration and protection from 
light (Bajželj et al. 2020). The supervision of policy food 
suppliers and the advocacy of consumers’ healthy diet are 
conducive to building a more sustainable food environment.

Food waste management

It is beneficial to consider organic food waste in its entirety. 
Often, organic food waste is biologically fermented to pro-
duce methane, which is then burned to generate electric-
ity; the fermented waste is also frequently used as compost. 
Methane combustion for electricity reduces the use of coal in 
thermal power generation, thereby reducing carbon dioxide 
emissions, and the use of compost on land can also con-
tribute to carbon sequestration in organic waste (Kaur et al. 
2019; Pramanik et al. 2019). Methane, compost, and diges-
tate are typically regarded as low-value by-products of the 
biological treatment of organic waste throughout the chain. 
In addition, some biogas is released into the atmosphere 
during biodegradation, which can also cause environmental 
problems (Bouaita et al. 2022).

However, there is a more incredible opportunity and 
potential to utilize fruit and vegetable waste from food 
waste. In recent years, there has also been a growing demand 
for organic waste as an alternative to nonrenewable natu-
ral resources to produce high-value or eco-friendly goods. 
For example, more than 100 million tons of citrus fruits 
are made globally (Werede et al. 2021). However, the peel 
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of citrus fruits is typically discarded during processing (Li 
et al. 2014). Several studies have utilized soluble dietary 
fiber prepared from orange peel (Khanpit et al. 2022; Tejada-
Ortigoza et al. 2018; Wang et al. 2015). For instance, Khan-
pit et al. (2022) found that the concentration of soluble die-
tary fibers increased about 5.16 times after the dried orange 
peel was extruded at 135 ℃. Dietary fiber from orange peel 
positively affects human health by lowering blood lipid and 
glucose levels, reducing the risk of cardiovascular disease, 
and boosting intestinal immunity (Gunness and Gidley 
2010). In addition, extracting essential oil from orange peel 
is necessary to produce additional high-value goods (Gava-
hian et al. 2019). Several studies have reported orange peel 
essential oil extraction (Aboudaou et al. 2019; Ciriminna 
et al. 2018; Franco-Vega et al. 2016).

Additionally, the skins or pomace of other fruit and veg-
etable products can be employed to develop products with a 
high added value. Baaka et al. (2017), for instance, reported 
the extraction of natural colorants from grape pomace. 
For fruit pomace, Osman et al. (2020b) found that pom-
ace biomass waste had a calorific value of 21 megajoules 
per kilogram compared to other biomass energy crops such 
as miscanthus (16.58 megajoules per kilogram) and potato 
peel (15.73 megajoules per kilogram), so it can be used as a 
good solid biofuel; for the ash from the burning of pomace 
biomass waste, Osman et al. (2020b) found a high potassium 
content of 28.5 weight percentage, which can be used as a 
good agricultural fertilizer.

On the other hand, biodegradable films containing nano-
cellulose extracted from agricultural waste have started to 
be used in food packaging products in recent years. Bio-
degradable films are usually prepared by the following 
method: firstly, the cellulose is converted into nanoparticles 
by acidic, alkaline, mechanical and biological methods; the 
nanoparticles can be prepared into cellulose nanocompos-
ites by methods or technologies such as melt intercalation, 
solvent casting, in situ polymerization, composite extrusion, 
and casting (Qasim et al. 2021). The mechanical properties 
of the prepared cellulose nanocomposites were improved by 
87% compared to pure polypropylene (Yakkan et al. 2018), 
and the barrier properties were also improved to some extent 
(Dufresne 2017; Plackett et al. 2010; Qasim et al. 2021).

In addition, through more literature review, there are 
many examples of using biological wastes to prepare higher 
value-added products. For example, brewer’s spent grain 
can be used to prepare highly activated carbon and carbon 
nanotubes, and the specific surface area of activated carbon 
can reach 692.3 square meters per gram; the synthesized 
activated carbon also showed 77% lead removal capacity 
after the first hour of testing in wastewater treatment (Osman 
et al. 2020a). Waste from various fruits and vegetables can 
be incorporated into microbial media to reduce the expense 
of conventional microbial media (Deivanayaki and Antony 

2012; Tijani et al. 2012). Osman et al. (2019) proposed 
transforming waste lignocellulose biomass into high surface 
area activated carbon and, subsequently, multi-walled carbon 
nanotubes to promote a circular economy.

In conclusion, the use of biological waste to develop 
products with high added value or environmentally friendly 
products demonstrates the contribution of the circular econ-
omy to the development of food systems.

Life cycle assessment and circular economy

The conceptual model of the circular economy is utilized 
globally and in numerous research fields (Peña et al. 2021). 
It is based on the principle that waste from one system can be 
used as an input in another, thereby increasing resource use 
efficiency and reducing environmental impact (Tóth Szita 
2017). However, the circular economy development model 
is not only environmentally beneficial but also requires con-
sideration of its economic and social benefits. In addition, 
there is no uniform method for determining whether a par-
ticular circular economy development model contributes to 
sustainable consumption and production. Therefore, when 
introducing the circular economy concept, the environmen-
tal, economic, and social benefits of its technological solu-
tions should be considered from a life cycle perspective, 
such as examining the positive and negative environmental, 
economic and social impacts of the waste-to-treasure life 
cycle. Thus, life cycle assessment is ideal for evaluating the 
effects of circular economy development strategies on the 
environment. Table 3 provides a summary of studies utiliz-
ing life cycle assessment to implement circular economy 
strategies in various countries, as well as a description of 
how life cycle assessment supports the circular economy.

Many nations and governments around the world, includ-
ing the European Union, have adopted circular economy 
development strategies (European Union 2020), Sweden 
(Swedish Research and Innovation Strategy for a Bio-based 
Economy 2012), Denmark (Ministry of Environment and 
Food and Ministry of Industry 2018), and the Netherlands 
(The Ministry of Infrastructure and the Environment and 
the Ministry of Economic Affairs 2016). Many companies 
have also adopted circular economy business development 
strategies. Theoretically, a triple evaluation of products or 
materials in terms of environmental, economic, and social 
aspects using a model that combines circular economy and 
life cycle assessment could aid in promoting their sustain-
ability. However, according to Table 3, which analyzes stud-
ies conducted in various countries and sectors using circular 
economy life cycle assessment models for projects, we find 
that despite the application of circular economy life cycle 
assessment models in the fields of business, biomaterials, 
food, metal materials, construction, water, environment, 
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building materials, and chemistry, the results of their stud-
ies are unsatisfactory. Most studies demonstrate significant 
environmental sustainability potential, but economic and 
social sustainability considerations are still lacking.

In addition, research has demonstrated that assessing the 
sustainability of their products or materials using circular 
economy life cycle assessment models can be instructive 
for stakeholders and investment decision-makers. How-
ever, additional research is required in terms of practice, 
references, and outputs. In addition, the studied materials 
may be affected by the climate of the natural environment. 
Studies on the production of Omega-3 from waste fish oil 
have shown, for instance, that seasonal and fishing area 
conditions also play a role (Monsiváis-Alonso et al. 2020). 
Although the circular economy strategy is widely spread, 
there is a lack of research on its social context, as well as 
on its economic sustainability assessment and translation 
into practical application. Therefore, in the future, it will 
be necessary to strengthen its life cycle assessment meth-
ods and other assessment methods such as practice theory 
and actor-network theory to improve our understanding and 
implementation of circular economy strategies in a variety 
of contexts (Niero et al. 2021).

This section examines studies evaluating the life cycle 
models of the circular economy for research projects in 
various countries, regions, and times. The results indicate 
that their theoretical findings serve as a guide for relevant 
stakeholders but that their application in practice need to be 
strengthened in the future.

Cost‑effective routes for the circular 
economy

This section will look at three potential circular economy 
routes for the current period to establish circular economy 
parks, promote the recycling of bulk commodity waste and 
municipal solid waste utilization system.

Establishing circular economy in an industrial park

As shown in Fig. 4, the construction of an eco-industrial park 
based on a circular economy, particularly a single circular 
economy industrial park for a particular industry, will con-
centrate waste recovery, treatment, production, packaging, 
and marketing on each company in a park, which will have 
numerous positive effects. Fan et al. (2017), for instance, 
believe that establishing industrial parks can improve indus-
trial optimization, environmental protection, and economic 
benefits. According to Van Bueren et al. (2012), industrial 
parks can reduce environmental impact and associated costs. 
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Dong et al. (2013) applied life cycle analysis and input–out-
put analysis to China’s Shenyang Economic and Technologi-
cal Development Zone and found that eco-industrial parks 
can reduce overall carbon emissions and increase resource 
utilization efficiency. This deeply bound industrial park can 
be regarded as industrial symbiosis. The establishment of 
centralized industrial parks will give all stakeholders in 
the eco-industrial park a collective competitive advantage 
in energy procurement, raw materials, waste treatment and 
other by-products exchange, thus making the whole circular 
economy more cost-effective.

Increase the recycling of bulk commodity waste

Construction waste is currently one of the largest sources of 
waste (Bilal et al. 2020); approximately 40% of the world’s 
total waste is generated by the construction industry (Nasir 
et al. 2017). The current construction industry is unsustain-
able due to its “obtain, manufacture, and dispose” linear 
economic model (Bilal et al. 2020). The construction waste 
generated in the end-of-life stage accounts for 50% of the 
total waste generated by the construction industry (Kibert 
2016); this is primarily since most building materials are dis-
carded directly at the end of their service life (Akanbi et al. 
2018b). Circular economy is currently widely advocated in 

the construction industry, aiming to improve the efficiency 
of building resources and minimize waste during construc-
tion and at the end of a building's service life (Tserng et al. 
2021).

Promoting the circular economy in the construction 
industry is more cost-effective by evaluating construction 
waste. For instance, Akanbi et al. (2018a) proposed and 
developed methods for determining the level of reusability 
of building materials at the end of their useful lives; the 
primary way to achieve this is to first develop a mathemati-
cal model that can simulate the residual value estimator of 
buildings or building materials. Based on this mathemati-
cal model, a reusable analysis tool is developed, which can 
be used to simulate the quantity and quality of materials 
that can be obtained from buildings at the end of their life. 
According to the evaluation level, construction waste should 
be categorized and utilized to achieve maximum reusabil-
ity. In addition, the combination of the building reusability 
analysis tool and building information model will improve 
the acceptability and usability of this tool among industry 
practitioners. Akanbi et al. (2018b) proposed a building sal-
vage performance estimate based on building information 
modeling, which can simulate the recyclability of buildings 
from the design stage and objectively evaluate the potential 
of buildings to meet the circular economy goal.

Fig. 4  Cost-effective circular economy route map based on a circu-
lar economy industrial park, the recycling of bulk commodities, and a 
municipal solid waste utilization system. As for the circular economy 
park, the recycling route includes waste generation, waste disposal, 
waste reproduction and waste reuse; the recycling route for the recy-

cling of bulk commodities includes waste generation, assessment of 
waste quality, entry of waste information into the cloud and trading; 
the application of municipal solid waste is also a very critical aspect, 
encompassing waste generation, waste classification, waste reproduc-
tion and waste reuse
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Issuing material passports for construction waste materi-
als, which also contain much important information about 
construction materials stored on the internet or in the cloud, 
will facilitate the flow or exchange of construction waste and 
promote a more cost-efficient circular economy in the con-
struction sector (Honic et al. 2019). For instance, Sauter et al. 
(2019) developed the procedure for recyclable building materi-
als to encourage the sharing of construction waste data among 
industry personnel and the circulation of building materials, 
particularly waste. In addition, the construction materials pass-
port will aid in analyzing the circulation of construction waste. 
For instance, Honic et al. (2019) discovered that concrete has 
greater potential for recycling than wood.

As shown in Fig. 4, for waste generated by bulk com-
modities such as construction waste, the waste’s quality and 
performance should be evaluated prior to transmitting the 
waste’s data information to the cloud for the convenience 
of buyers. This route encourages the trade of bulk product 
waste and is the most cost-effective circular economy path.

Municipal solid waste utilization system

Compared to all municipal wastes that are not recyclable, 
they are incinerated or dumped directly after recycling. Clas-
sified recycling at the end of the garbage recycling process 
is very efficient and can be used for various types of waste. 
Take China as an example; the per capita garbage productiv-
ity in China is 0.8 kilogram per day (Guerrero et al. 2013), 
but the landfill rate in China is higher than that in devel-
oped countries (Mian et al. 2017), which causes not only 
waste of garbage resources but also causes three-quarters 
of China’s waste (Xin-Gang et al. 2016). China’s national 
development and reform commission has published a “plan 
for the mandatory waste classification system” since 2016. 
By the end of 2020, 46 Chinese cities will have implemented 
a pilot waste classification and management system (Liu 
et al. 2022). Implementing waste sorting at the recycling 
source is certain to yield long-term benefits and is consist-
ent with the contemporary concept of sustainable develop-
ment. Municipal solid waste classification will undoubtedly 
increase waste reproduction efficiency and prevent more 
garbage from being directly landfilled (Zhang et al. 2021). 
From Fig. 4, recyclable municipal solid waste usually enters 
the reproduction stage and is transformed into new products, 
thus improving the utilization efficiency of municipal solid 
waste and helping the development of a circular economy.

Conclusion

This literature review provides a comprehensive analysis 
of the implications of effective circular economy strate-
gies for climate change mitigation and other applications. 

This review article first analyzes the circular economy as 
an approach to waste management in three ways: waste 
elimination, recycling materials, and natural regeneration 
via ecosystems. Circular economy strategies can construct 
ecological waste management systems that maximize eco-
nomic efficiency, reduce resource consumption, and prevent 
environmental pollution, thereby mitigating the pressures 
faced by individual countries.

In addition, the circular economy strategy aligns well 
with the climate change objective and is a means of address-
ing the climate change issue. A circular economy strategy 
can reduce carbon emissions from industry, waste disposal, 
energy use, building construction, and transportation, 
thereby mitigating global climate change. Moreover, circu-
lar economy strategies have various effects on air and water 
quality, energy consumption, natural resources, solid toxic 
waste, and land use cover. Specifically, a circular economy 
strategy can improve air and water quality, reduce energy 
and natural resource consumption, and dispose of solid 
and toxic waste effectively and reasonably. However, using 
bio-based materials in the circular economy strategy may 
increase land use and land cover pressure.

The circular economy will create numerous industrial 
growth opportunities and provide food system optimization 
opportunities. By collaborating with governments and uni-
versities, industrial companies can recycle to manufacture 
consumer-friendly products. Effective circular economy 
strategies can reduce natural resource and energy inputs 
as well as waste and emissions outputs throughout the 
entire product life cycle. The circular economy can provide 
opportunities for the food system's food production, food 
consumption, and food waste management. Through circu-
lar economy strategies, it is possible to reduce the use of 
nonrenewable resources in food production, increase exter-
nally recyclable resources, and recover internally generated 
waste. A circular economy strategy can shorten the supply 
chain and reduce the scale of food consumption by rational-
izing the supply chain. At the same time, a circular economy 
strategy will provide additional waste treatment methods for 
food waste management and boost the value of by-products.

Theoretically, environmental, economic, and social evalu-
ation of products or materials through a combined circular 
economy and life cycle assessment model can promote the 
sustainability of products and materials. The study revealed 
that although the circular economy life cycle assessment 
model has been applied to various sectors, the evaluation 
model lacks economic and social sustainability considera-
tions. The life cycle assessment model can provide informa-
tion to stakeholders and investment decision-makers. It will 
be necessary for the future to strengthen the combination of 
life cycle assessment methods with practical theory or actor-
network theory to promote the implementation of circular 
economy strategies.
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Finally, we propose a circular economy path that can pro-
vide a theoretical foundation for the future sustainability of 
industry, agriculture, and commerce. By concentrating the 
recycling, treatment, production, packaging, and marketing 
of waste within the park's individual businesses, develop-
ing an eco-industrial park based on a circular economy can 
bring several benefits. For waste generated from bulk prod-
ucts such as construction waste, the quality and performance 
of the waste are assessed, and data on the waste is uploaded 
to the cloud, thereby facilitating the trade of bulk product 
waste. Simultaneously, implementing waste separation at 
the recycling source will undoubtedly result in long-term 
sustainability benefits.
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