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Abstract
Almost all aspects of society from food security to disease control and prevention have benefited from pharmaceutical and 
personal care products, yet these products are a major source of contamination that ends up in wastewater and ecosystems. 
This issue has been sharply accentuated during the coronavirus disease pandemic 2019 (COVID-19) due to the higher use of 
disinfectants and other products. Here we review pharmaceutical and personal care products with focus on their occurrence 
in the environment, detection, risk, and removal.

Keywords  Pharmaceutical and personal care products (PPCPs) · Active pharmaceutical ingredients · Wastewater treatment 
plants · Environmental pollution · Human health risk assessment · COVID-19

Introduction

Pollutants in wastewater streams vary according to their 
sources, but they typically consist of organic and inorganic 
chemicals, nutrients, solid wastes, oxygen-demanding 
wastes, pathogenic microorganisms, and micropollutants 
among a few. When these pollutants are released into the 
environment, they negatively impact the ecosystem, pub-
lic health, and the economy as a whole (Harrison et al. 
2006; Meyer et al. 2019; WWAP 2017; Iyer et al. 2021). 
The micropollutants identified as “emerging contaminants” 

or “emerging pollutants” include a wide spectrum of phar-
maceutical and personal care product (PPCP) compounds. 
They constitute a large group of pollutants that originate 
from sources closely related to anthropogenic activities such 
as cosmetics, therapeutic drugs, personal hygiene products, 
agricultural and industrial effluents, and hospital streams. 
(Sangion and Gramatica 2016). From these point and non-
point sources, several PPCP compounds are inadvertently 
released into the environment unmonitored and unregulated. 
Some of these PPCP compounds are listed by the United 
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States Environmental Protection Agency as priority pollut-
ants (Daughton 2004; Hoenicke et al. 2007).

Owing to the great benefits derived from the use of 
PPCPs, particularly pharmaceutical products, in controlling 
the spread of human and veterinary diseases, unregulated 
sale and misuse have been observed and reported in previ-
ous studies (Miyazaki et al. 2020; Rees et al. 2021). Self-
medication among the population to treat common illnesses 
is documented in both developed and developing countries. 
Its prevalence worldwide approximately ranges from 12.8% 
to as high as 81.5% (Kassie et al. 2018). In connection with 
population growth and their accessibility, PPCPs are easily 
introduced into the environment and the water cycle.

Van Boeckel et al. estimated the global consumption of 
antimicrobials was 63,151 tonnes in 2010 and is projected 
to increase by 67% in 2030 (Van Boeckel et al. 2015). Also, 
due to the increasing trend of urbanization and shift in 
lifestyle worldwide, the consumption pattern of pharma-
ceuticals has gradually changed alongside the prevailing 
lifestyle-related ailments such as cardiovascular diseases 
and diabetes (Mohapatra et al. 2016). The consumption tra-
jectory and pattern of PPCPs are further changed by the 
ongoing COVID-19 pandemic. This change in PPCPs con-
sumption poses a challenge in the assessment of their occur-
rence, distribution, and reactivity to the environment (Wang 
and Wang 2016).

The interest in pharmaceutical and personal care prod-
ucts-related studies has noticeably increased over the past 
couple of years (see Fig. S1, in the supporting information). 
Therefore, this work presents state-of-the-art knowledge 
with a particular focus on recent advancements in PPCPs 
detection and removal technologies, ecological risk, and 
their assessment during the ongoing pandemic, based on 
a restricted and suitable number of papers selected by the 
authors (see Fig. S2, for a clarification of the bibliography 
selection procedure). On the basis of the results of the lit-
erature searches and bibliography cluster analysis (see Fig. 
S3 in the supporting information) the contents of this review 
paper have been defined.

The study is important and timely for researchers, prac-
titioners, and policy makers working in the domain of 
environmental pollution and health management including 
wastewater systems.

Occurrence

PPCPs are detected in different environmental compart-
ments, showing that they cannot be removed by conventional 
treatments (Wang et al. 2019; Wang and Chen 2020a). For 
instance, clofibric acid and salicylic acid are detected in 
river wastewater and sewage through detection techniques 
(Garrison et al. 1976; Hignite and Azarnoff 1977). Caffeine 

is present in domestic wastewater (Yang et al. 2013). Sur-
face waters contain more than 50 pharmaceuticals detected 
in 139 streams across 30 states in the USA (Kolpin et al. 
2002). PPCP are found in sewage treatment plants in the 
southern parts of India (Subedi et al. 2015). These authors 
detected amphetamine, saccharin, cyclamate, and sucralose 
with concentrations of 4300 ng/l, 303,000 ng/l, 3460 ng/l, 
and 1460 ng/l, respectively. From an average daily sewage 
flow rate of 20.7 million litres received from a population 
of 325,000, Subedi et al. estimated the daily discharge mass 
of amphetamine, and saccharin at 6.93 kg, and 2.52 kg, 
respectively (Subedi et al. 2015). It should be noted that the 
discharge concentration limit of pharmaceuticals in ground-
water and surface water is less than 100 ng/l, and in the case 
of drinking water, less than 50 ng/l (WHO 2012).

The occurrence of PPCPs in river systems is widely stud-
ied mainly because rivers have a vital role in anthropogenic 
and socio-economic activities (Peng et al. 2017; Roberts 
et al. 2016; Sharma et al. 2019; Yang et al. 2013). PPCPs 
are discharged into river systems mainly from wastewater 
drains, effluents from wastewater treatment plants, and water 
runoffs during rainy periods (Kumar et al. 2019; Mutiyar and 
Mittal 2014; Prabhasankar et al. 2016; Scott et al. 2014).

In India, rivers are the main sources of drinking water and 
irrigation. And noting that India is ranked 13th in terms of 
consumption of pharmaceutical products globally (Mutiyar 
et al. 2018), it’s therefore not a surprise that several studies 
about the occurrence of PPCPs in some of the major Indian 
rivers were conducted (Balakrishna et al. 2017), such as 
Yamuna (Mutiyar et al. 2018), Ganges (Sharma et al. 2019), 
and Brahmaputra (Kumar et al. 2019). The study conducted 
by Singh and Suthar mainly focused on caffeine, triclosan, 
acetaminophen, and tetracycline in the Ganges River (Singh 
and Suthar 2021). They detected an overall concentration of 
PPCP compounds in the range below the detectable limit to 
1104.84 ng/l. Based on their study, the presence of PPCPs 
which tend to negatively impact both algae and fish biota 
was revealed. There are also PPCP studies that were done 
in conjunction with studies about pathogenic microorgan-
isms, just like what Kumar et al. had done (Kumar et al. 
2019). They performed identification of PPCPs and viruses 
in the Brahmaputra River. They were able to detect PPCP 
compounds such as acetaminophen, caffeine, theophylline, 
crotamiton and carbamazepine, and pathogenic microorgan-
isms such as Aichi, pepper mild mottle, hepatitis A, noro-
virus GI, GII (Kumar et al. 2019). Figure 1 illustrates the 
diverse pathways with which PPCPs are introduced into the 
environment.

With the world population growth and relative improve-
ment in global living conditions and lifestyles, the use 
of PPCPs has become very widespread and ubiquitous 
more than ever before. This is evident and prevalent 
across all socio-economic levels of the population. The 
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pseudo-persistence of PPCP compounds in the environ-
ment is brought about by the routine, daily use of consumer 
products that contain the active PPCP compounds. The 
PPCP compounds are released into the environment regu-
larly, albeit, at low or trace concentrations. This is mainly 
because PPCPs include a wide variety of products. From 
human prescription and non-prescription drugs, illicit drugs, 
veterinary drugs, hormones, and to consumer products such 
as fragrances, toothpaste, laundry detergents, and skincare 
(e.g., soap, sunscreen, lotion), haircare (e.g., shampoo, con-
ditioner, gel), and disinfectants. With such a vast selection 
of products that are frequently used, PPCP compounds are 
easily released into the environment.

Starting from the bulk production of the active pharma-
ceutical ingredients, and the subsequent manufacturing, 
quality control and assurance and post-production processes 
of the medicinal and personal hygiene products, wastewater 
and solid wastes laden with PPCP compounds are already 
generated (Shalini et al. 2010). The wastewater generated 
during the manufacturing processes can either be treated 

using decentralized or localized or centralized wastewater 
treatment systems. A decentralized wastewater treatment 
system pertains to onsite treatment facilities, specifically 
put up and managed by the manufacturing plants or busi-
ness enterprises themselves, to treat the wastewaters they 
generate (Singh et al. 2019). This is usually practised by 
manufacturing plants located far outside of the industrial 
zones and far away from urban areas and is not connected to 
the sewerage network coverage.

A centralized wastewater treatment system, on the other 
hand, refers to wastewater treatment facilities designed to 
service urban areas or industrial hubs with established sew-
erage network infrastructure. In terms of capacity, a central-
ized wastewater treatment system can treat a higher volume 
of wastewater. About the solid wastes originating from the 
manufacturing process of PPCPs, they are typically dis-
carded into landfills and garbage dump sites or incinerated. 
Landfill waste disposal is commonly practised in developing 
countries, notwithstanding its negative health and environ-
mental impacts, because it is the cheapest method to dispose 

Fig. 1   Sources and pathways of pharmaceuticals and personal care 
products (PPCP) in the environment. Flowchart depicting the routes 
of products originating from various sources such as industry, house-
holds, landfills, hospitals, agriculture, aquaculture, animal husbandry, 

and wastewater treatment facilities, which lead to the contamination 
of different environmental compartments including soil, surface water 
bodies, groundwater, and agricultural lands
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of solid wastes that are generated (Bong et al. 2017; Anand 
et al. 2021a, b, c, d).

When pharmaceutical products are ingested, as much 
as 10–90% of the active pharmaceutical ingredients are 
excreted, unchanged, in their original compound form and 
some portions are transformed as metabolites (Zuccato et al. 
2005). The excreted pharmaceutical compounds and metab-
olites make their way into wastewater treatment plants when 
flushed from toilets, which ultimately flow into the treatment 
plants. With that said, hospitals and medical facilities can be 
considered major sources of PPCP wastes considering that 
in-patients are treated there with medications to recuperate 
from illnesses they suffer. Some patients even have to stay 
for an extended period in hospitals before they can fully 
recover. The utilization of hospitals in some cities across the 
globe has even reached critical levels with the advent of the 
COVID-19 pandemic in the latter part of 2019 (Adelodun 
et al. 2021a, b, c, d; Anand et al. 2021a, b, c, d) and the suc-
ceeding waves of infection. Patients who suffer from severe 
symptoms of the disease need a longer time to convalesce.

Considering the absence of medicine specifically for-
mulated to combat COVID-19 infection, several pharma-
ceutical interventions have been put into a clinical trial or 
implemented to symptomatically treat COVID-19 patients 
(Ibrahimagić et al. 2020; Anand et al. 2021a, b, c, d). With 
the looming paranoia about the health risk brought about 
by the pandemic, self-medication among the population has 
increased, in the hope of preventing COVID-19 infection 
or relieving symptoms, they experience (Malik et al. 2020). 
The presence of two among the approved medications pre-
scribed to COVID-19 patients, Remdesivir, Dexamethasone, 
and their metabolites in surface waters have already been 
detected by (Desgens-Martin and Keller 2021). In addition, 
the pandemic has also prompted the frequent use of disin-
fectants (Dewey et al. 2021; Ghafoor et al. 2021), and also 
an increase in the use of antibiotics (Chen et al. 2021; Pérez 
de la Lastra et al. 2022).

Compared to pharmaceutical products, however, per-
sonal care products are more widely used daily, therefore 
the wastes, both solid wastes, and wastewaters, generated 
from their usage are greater in quantity and scope. The 
personal care products wastewaters are transported from 
the household sinks and drainage to the wastewater treat-
ment plants. In contrast, households outside the sewerage 
system grids, are directly releasing the untreated wastewa-
ters they generate to the environment through open canals 
that wind up to the nearest surface waters they flow to. 
They also contaminate the soil surfaces they come in con-
tact with along the way, and over time, even the ground-
water. It should be highlighted that approximately 80% of 
worldwide wastewaters are directly released to the envi-
ronment, untreated (WWAP 2017). From this information, 
it can be inferred that a significant amount of personal 

care products compounds presents in wastewaters directly 
contaminate the natural environment they flow into, both 
soil and water surfaces.

Along with population growth, there has been an increase 
in demand for meat products. This gave rise to the practice of 
intensive livestock activities and farming to meet consumer 
demands. And to shorten the harvest time of meat from ani-
mal husbandry (e.g., poultry, hog, cattle) and aquaculture, 
animal feeds are supplemented with antibiotics, vitamins, 
and growth promoters. Antibiotics are added to prevent dis-
eases from spreading among animals raised in closed quar-
ters or limited spaces, and with high population density. Like 
human pharmaceuticals, veterinary pharmaceuticals are also 
excreted by animals in their original compound forms and as 
metabolites. However, unlike human excreta, animal excreta 
could be directly released into the environment in the case of 
animals grown in pastures or for setups where the domesti-
cated animals are free-roaming. Veterinary pharmaceuticals 
and metabolites in animal manure are indirectly spread to 
agricultural lands when they are used as fertilizer to improve 
the conditions of the soil for planting. And in episodes when 
surface runoff occurs, the water contaminated with veteri-
nary pharmaceuticals ends up in nearby water bodies, and 
overtime leaches to the groundwater sources.

Aquaculture done in open waters, such as lakes, is a direct 
source of veterinary pharmaceuticals and metabolites in the 
environment. The fish feeds fortified with antibiotics or 
growth promoters directly come in contact with the water 
body, thus releasing the pharmaceutical residues into the 
water ecosystem.

Since PPCPs have an expiry, the expired and unused 
products from households, in most cases, either end up 
flushed in toilets or sinks, or thrown out along with other 
household solid wastes and get delivered into landfills. It 
should be noted that expired PPCPs would still have a sig-
nificant amount of active pharmaceutical ingredients. Some 
products can maintain above 90% of the claimed amount of 
active pharmaceutical ingredients way past their expiration 
(Mani and Thawani 2019). Therefore, the proper handling 
of expired PPCP is very important in controlling PPCPs in 
the environment. However, the disposal practice of PPCPs 
stems from the risk perception of the population in general 
(Binti Muhamad and Binti Mohamed Zuki 2020). The lower 
the awareness of an individual about the risk of PPCPs to 
the environment, the more likely the individual will dis-
pose of expired PPCPs carelessly. Although there may be 
mechanisms to recover the unused and expired PPCPs, the 
facilities to make it possible are limited, most particularly 
in developing countries. As much as 29% of expired PPCPs 
are released into the environment, untreated (Esseku 2016).

Landfill, being mainly used as means to dispose of munic-
ipal solid wastes, becomes a critical point where PPCP con-
tamination of groundwater tables can occur. The leachate 
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from the landfill can seep through the soil layer and eventu-
ally the groundwater over an extended period.

Wastewater treatment plants as accumulation 
points of pharmaceuticals and personal care 
compounds

Generally, in urban area settings, the infrastructure for the 
sewerage system is more defined and developed (Wang et al. 
2020). Therefore, the sewage effluents from households and 
businesses are gathered together and transported through the 
sewerage system to the wastewater treatment plants. This 
makes wastewater treatment plants a hotspot for micropol-
lutants derived from PPCP usage because they gather them 
together in one location. Even at present time, the commonly 
used wastewater treatment methods are not able to com-
pletely remove PPCPs because they are not designed spe-
cifically to neutralize or remove such contaminants from the 
wastewater stream. In addition, the regulatory effluent stand-
ards, particularly in developing countries, do not include 
PPCP concentrations in the regulated parameters, thus, they 
are inadvertently released into the environment, uncontrolled 
and unmonitored. Several studies have reported the presence 
of PPCPs in water bodies where effluents from wastewater 
treatment plants are released (Burns et al. 2018; Kanama 
et al. 2018; Mohapatra and Kirpalani 2019). Table S4 (see 
Supporting information) provides an overview of some 
of the PPCP compounds that have been detected from the 
effluents of wastewater treatment plants and the adjacent 
receiving bodies of water Ashfaq et al. (2017) Franklin et al. 
(2016) Lin et al. (2018) Nazari and Suja (2016) Williams 
et al. (2003). Among the PPCP compounds listed, acetami-
nophen, caffeine, carbamazepine, diclofenac, ibuprofen, and 
sulfamethoxazole are frequently detected.

Apart from the effluents from wastewater treatment 
plants, the biosolids produced from activated sludge treat-
ment processes also contain PPCP compounds. They con-
taminate agricultural lands when they are applied as fertiliz-
ers or as soil conditioners, just like animal manures.

Transformation products

Drug metabolism is the metabolic breakdown or biotrans-
formation of pharmaceutical substances in living organisms, 
usually through enzymatic actions. Drugs can be biotrans-
formed through oxidation, reduction, hydrolysis, hydration, 
conjugation, condensation, or isomerization. The majority 
of the metabolic processes involving pharmaceutical sub-
stances occur in the liver, but some also occur in the epithe-
lial cells of the upper portion of the intestines, lungs, kidney, 
placenta, and even the brain (Bachmann 2009). Drug metab-
olism occurs in the said organs because the enzymes that 
enable the reactions are located there. Drugs administered 

through intravenous infusions have biotransformations that 
occur mainly in the liver. In contrast, ingested pharmaceuti-
cal substances undergo biotransformation both in the intes-
tines and liver (Bachmann 2009; Stanley 2017). For topical 
medicines, their effectivity is directly related to their ability 
to be absorbed through the skin. The fraction of the active 
pharmaceutical ingredients remains on the skin surface and 
can easily be washed and rubbed off. The liver, and subse-
quently the kidney, play essential roles in the removal of 
pharmaceutical compounds from the blood stream, and ulti-
mately from the body through excretion.

As regards to PCPs or hygiene products, the majority of 
these are externally applied, i.e., on hair and skin. There-
fore, they are easily removed when individuals who use them 
wash, take a bath or dip in pools or on beaches. Externally 
applied PPCPs can also be rubbed off to clothing, objects, 
and surfaces that individual come in contact with.

The excreted and washed-off PPCP compounds and phar-
macologically active metabolites undergo further degrada-
tion in the environment as they come in contact with sun-
light, air, water, soil, microorganisms, and other physical 
entities or forces. PPCP compounds have relatively shorter 
half-lives in the environment as compared to persistent 
organic pollutants (Yin et al. 2017). And knowing this, it 
can be inferred that PPCP compounds are more likely to 
form transformation products in environment matrices as 
they degrade. Some PPCP compounds are known to be light-
sensitive, meaning, they easily degrade and transform when 
exposed to sunlight or ultraviolet light. Some PPCPs are 
easily oxidized and transformed by mere contact with air. 
Because of this, some studies and research have focused on 
the photolysis (Kim and Tanaka 2009; Luo et al. 2018) and 
oxidation (Wang et al. 2015) of PPCP compounds as viable 
treatment methods to remove these pollutants from wastewa-
ter streams. However, the focus mostly in this type of study 
is on the parent PPCP compounds, and only a little atten-
tion is given to the degradation byproducts or transformation 
products. This is because the analysis of PPCPs in different 
environment matrices is very laborious and costly. Analyses 
are usually conducted for targeted compounds rather than 
the identification of all substances in a given sample. There 
are thousands of PPCP compounds that are in use, but only 
a fraction of these substances has been studied in environ-
mental compartments so far, thus, the knowledge gap about 
the comprehensive identification of PPCPs in the environ-
ment is enormous. There is even a bigger knowledge gap 
when it comes to the transformation products of the PPCP 
compounds.

To study the possible transformation products of PPCP 
compounds in the environment, experiments had been con-
ducted in laboratory setups to determine the transforma-
tion products of specific compounds. It was shown that the 
generation mechanism of free radicals and the degradation 
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mechanism of pollutants are not yet clear (Wang and Zhuan 
2020) and that the toxicity of wastewater can change during 
the treatment (Wang and Wang 2021). Among the PPCP 
compounds that are frequently detected in the water environ-
ment, diclofenac and carbamazepine are the two of the most 
commonly reported contaminants in the past 10 years (Wang 
and Wang 2017; Wang et al. 2018a, b; Zhang et al. 2020). 
Carbamazepine has been determined to be recalcitrant to 
conventional wastewater treatment methods. Pan et al. inves-
tigated the degradation of carbamazepine by chlorine under 
ultraviolet irradiation and were able to identify 24 trans-
formation products (Pan et al. 2017). On the other hand, 
diclofenac was found to have 13 phototransformation prod-
ucts based on a photolysis experiment done in water under 
direct solar irradiation (Agüera et al. 2005). This means 
that diclofenac can at least have 13 transformation products 
purely from exposure to sunlight when it is released to sur-
face waters. PPCPs transform the environment via physical, 
chemical, and biological processes, so their transformation 
products can be more than what is currently known.

Apart from the parent PPCP compounds, their trans-
formation products can also exhibit pseudo-persistence 
in environmental matrices. Some transformation products 
can be more persistent or more dangerous than the parent 
compounds (Cory et al. 2019; Kosjek and Heath 2008). For 
example, two of the phototransformation products of Nap-
roxen were found to be more toxic than the parent com-
pound (Cory et al. 2019). Based on information gathered 
from laboratory studies, transformation products formed 
during advanced oxidation processes can also be more toxic 
than the parent PPCP compounds (Yin et al. 2017). The cur-
rent scope of their impact on the environment could not be 
measured mainly due to the huge knowledge gap regarding 
the occurrence of transformation products in environmental 
compartments.

Persistence, bioaccumulation and health risk  
assessment

Before the 1960s, PPCP compounds in the aquatic environ-
ment, runoff streams, marine waterways, groundwater, and 
drinking water were undetected even though medicines were 
already widely used for human and veterinary purposes. This 
was due to limitations in analytical methods and technology 
available at that time, which were not designed to detect 
and identify compounds in environmental matrices at trace 
levels. Since 1960, consumption of pharmaceuticals has 
increased annually around the world (Ortiz de García et al. 
2013), so the amount of PPCP compounds that are inadvert-
ently released into the environment also increased.

The risks that PPCP compounds can pose include direct 
and indirect effects such as the impact on biochemical 

processes, disruption of the endocrine system, develop-
ment of antimicrobial resistance, and the bio-accumulation 
of pharmaceuticals in non-target organisms (Frédéric and 
Yves 2014; Vasquez et al. 2014). Collado et al. reported 
the accumulation of active and inactive metabolites in the 
aquatic environment because of improper disposal of PPCP 
compounds (Collado et al. 2014). These PPCP compounds 
in surface waters may enter the food chain when non-target 
organisms bioaccumulate them (e.g., aquatic and riparian 
biota) (Richmond et al. 2018). Further, human-related phar-
maceuticals in surface waters also affect the natural detoxifi-
cation capability in fish populations by negatively impacting 
their metabolism processes (Burkina et al. 2015) Yeh et al. 
(2017) and diversity (Kuzmanović et al. (2016)).

Many studies and reports have confirmed that several 
sources including discharge effluents from industrial activi-
ties and hospitals, leaching from domestic septic tanks, 
runoff stream from farms, and improper disposal of PPCPs 
are significantly contributing to environmental pollution 
(Fenech et  al. 2013; Iglesias et  al. 2014; OECD 2019; 
WHO 2012). Practically, there are two ways with which 
PPCPs (human pharmaceuticals specifically) are released 
to the environment; (1) manufacturing faults, and disposal 
of unused (or expired) drugs into sinks and toilets or waste 
bins, which end up in landfills or incineration facilities; (2) 
excretion, and effluents from inefficient wastewater treatment 
plants (Vellinga et al. 2014). In landfills, the concentration 
of PPCP compounds that accumulate in leachates can be 
similar to or higher than the influent concentration of PPCPs 
in treatment plants (BIO Intelligence Service 2013; Clarke 
et al. 2015).

Excreta from humans, who have ailments and are under 
medications, contain PPCP compounds which end up in sew-
age streams (Li et al. 2019). However, conventional waste-
water treatment methods are unable to completely remove 
these PPCP compounds and are instead released into receiv-
ing water bodies (Rodriguez-Narvaez et al. 2017). Take for 
example the removal efficiency of PPCP compounds such as 
carbamazepine and ibuprofen in wastewater treatment plants 
which was found to be at 8.1% and 87.5%, respectively (San-
tos et al. 2009). This means that about 91.9% and 12.5% of 
carbamazepine and ibuprofen concentration in the influent 
stream of wastewater treatment plants are discharged to the 
environment. Further, it can be seen that carbamazepine is 
more recalcitrant to conventional treatment processes than 
ibuprofen. The recalcitrance of PPCP compounds, along 
with other pollutants, from conventional wastewater treat-
ment processes, has been the focus of research in recent 
years (Adelodun et al. 2019; Krzeminski et al. 2019). The 
incomplete removal of pollutants during treatments leads to 
their dispersion in water and soil matrices (Adelodun et al. 
2019; Medrano-Rodríguez et al. 2020). Although PPCPs are 
usually detected at trace concentrations in environmental 
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compartments, however, long-term exposure to these com-
pounds can cause risk to human health and non-target organ-
isms, that’s why there is a need to develop low-cost removal 
technologies to eliminate PPCP compounds from waste 
streams (Rodríguez-Narvaez et al. 2020).

Due to the pseudo-persistent characteristics of PPCPs in 
surface waters that receive effluents discharged from waste-
water treatment plants, non-target organisms such as plank-
tons (Yang et al. 2020), molluscs (de Solla et al. 2016), and 
fishes (Arnnok et al. 2017; Chen et al. 2017; Muir et al. 
2017), had been documented to bioaccumulate them. This 
has serious consequences mainly because through bioac-
cumulation, PPCP compounds enter the food chain, and 
thus could pose risk to human health. Apart from surface 
waters, agricultural lands, where biosolids from wastewater 
treatment plants are used as conditioners, also becomes an 
entryway of PPCPs to the food chain through plant uptake 
of the residual PPCP compounds present in the biosolids 
(Keerthanan et al. 2021).

The persistence of PPCPs in surface waters such as rivers 
and lakes, where drinking waters are sourced, also becomes 
a window through which they could pose risk to the health 
of communities (Yang et al. 2017). Meprobamate, which is 
used to treat anxiety disorders, had been detected (40 ng/l) 
in the drinking water (Benotti et al. 2009). Both phenazone 
and propylphenazone were also found in drinking water 
(Reddersen et al. 2002; Zühlke et al. 2004). Another study 
reported the detection of antibiotics, beta blockers and antie-
pileptic drugs (below 100 ng/l) in the drinking water in the 
Netherlands (Mons et al. 2003).

The ongoing COVID-19 pandemic has spurred an inter-
disciplinary and technological approach as a roadmap for 
water and wastewater management to help fight COVID-19, 
and possible future pandemics (Adelodun et al. 2021a, b, c, 
d; Anand et al. 2021a, b, c, d; Kareem et al. 2021; Tiamiyu 
et al. 2021; Anand et al. 2022). A similar approach can be 
adopted for studies regarding PPCPs and their character-
istic behaviours such as persistence, bioaccumulation and 
toxicity.

The pandemic has brought about the increased usage of 
PPCPs such as antibiotics and disinfectants, which could 
pose consequent risks to the environment and non-target 
organisms or wildlife. Drugs used as therapeutic interven-
tions for COVID-19 infection such as hydroxychloroquine, 
tocilizumab, sarilumab, and ritonavir have a two-fold 
increase in their usage (Aitken 2020). Also, the occurrence 
of the SARS-CoV-2 virus, which causes the COVID-19 
disease, in wastewater streams poses a great challenge to 
wastewater treatment management. Bandala et al. had done 
a critical review on this aspect along with relevant associ-
ated technologies that could help address the issue (Bandala 
et al. 2021).

The risk potential of drugs being used as therapeutic 
interventions for the COVID-19 disease cannot be dis-
counted as they will be continuously released to wastewa-
ter streams for as long as the threat of the disease exists. In 
addition to the pseudo-persistent PPCPs in environmental 
compartments like caffeine, diclofenac, carbamazepine, 
and others, the introduction of COVID-19-related drugs 
into the mix will make the multifaceted problem more 
complex. Their long-term effect on aquatic systems and 
human health is worth looking into as PPCP compounds 
can be more toxic, persistent, and mobile in the environ-
ment when compared to other chemical compounds (Ban-
dala and Rodriguez-Narvaez 2019). One challenge that 
needs to be overcome, however, is the limited availabil-
ity of information about the mass balance for COVID-
19-related drugs and their metabolites being released into 
sewage streams.

The World Health Organization, in a report, has assessed 
that sectors like the pharmaceutical industry struggle to 
maintain natural market flow during pandemics, which 
leads to inaccessibility of essential medicines at affordable 
prices (WHO 2003). Disruption in the supply chain is felt 
by countries that are heavily dependent on the importation 
of active pharmaceutical ingredients. Take for example Iran, 
which imports 50% of its active pharmaceutical ingredient 
requirements (Cheraghali 2017) was impacted during the 
current pandemic. Ayati et  al. Described an impressive 
COVID-19 impact on the pharmaceutical market and sug-
gested evidence-based planning to overcome the challenges 
(Ayati et al. 2020). Many regulatory authorities have con-
firmed a shortage of prescribed medicines for hospitalized 
patients suffering from COVID-19 infection. For exam-
ple, chloroquine and hydroxychloroquine, azithromycin, 
albuterol metered-dose inhalers, and some other sedation 
medications were listed to be in shortage in the USA due 
to their high demand in association with COVID-19 treat-
ment (Bookwalter 2021). Also, some of the countries which 
import non-COVID-19 related drugs, such as pain reliev-
ers, had experienced delays due to the delivery priority of 
urgently needed medicines. These disruptions can lead to a 
slow-down of industry growth, supply chain, and long-term 
impact on the health and pharmaceutical market.

Before the pandemic, the European Union (European 
Commission 2019) had drawn new guidelines for the foreign 
investors, especially for the health market, and stated that 
export must be subjected to evaluation of risk assessment 
with the fulfilment of its citizen’s medicines requirement. 
The national drug policy will be revised according to the 
situation, and its policy shall be updated from time to time 
regarding components in the pharmaceutical sector such as 
price control, overstock, generic-based medicine, import of 
pharmaceutical ingredients, etc.
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Therefore, governments’ assistance to the pharmaceutical 
industry is needed to address concerns or issues related to 
COVID-19, and governments should encourage research and 
development activities regarding balanced treatment strate-
gies with optimistic medicines supply chain.

Due to COVID-19, the antiviral drugs used as therapeutic 
interventions for the disease have a high probability to be 
released into the environment. And when animals that are 
natural reservoirs of viruses are exposed to these PPCPs 
may induce antiviral selective pressures and viral mutations 
which can lead to antiviral drug resistance (Kumar et al. 
2020). It should be noted that the SARS-CoV-2 virus is 
suspected to have originated from animal source (Andersen 
et al. 2020). Therefore, risk assessment of COVID-19-re-
lated pharmaceuticals is essential to prevent consequential 
negative impacts on human health.

In general, acceptable daily intake statistical calculation 
is established for assessing chemical risk in food and drink-
ing water. The acceptable daily intake calculation is based 
on extrapolation factors that involve uncertainty and can be 
applied to a selected point of departure which is set from 
the epidemiological and toxicological database (FAO/WHO 
2009). Point of departure can be also ensigned from two 
chemical additional factors of uncertainty, the concentration 
at no adverse effects, called as no-observed-adverse-effect 
level and the concentration at the lowest called as lowest-
observed-adverse-effect level. There are few scientific 
reports available in the literature for health risk assessment 
of pharmaceuticals, especially about the lowest-observed-
adverse-effect level factor in drinking water.

The minimum therapeutic dose is usually assessed for 
health risks in pharmaceuticals containing water. This 
minimum therapeutic dose is used for developing conserva-
tive screening values in point of departure (WHO 2012). 
World Health Organisation gave guidelines and protocol for 
developing screening values of chemicals in drinking-water 
quality. These values are useful to support decision-making 
criteria in the design of treatment plant (WHO 2012).

Detection, determination, and extraction 
methods

The increasing use of pharmaceutical and personal care 
products which are regarded as emerging micropollutants 
or trace organic compounds in the environmental compart-
ments has raised serious concerns about their potential eco-
logical and health risks due to their recalcitrant, ubiquitous, 
and bioaccumulative nature (Dai et al. 2014; Ebele et al. 
2017; Zhang et al. 2021). According to the United States 
Food and Drug Administration, over 20,000 prescription 
drug products were approved for marketing as of the year 

2020, while there were about 1600 animal drug products 
(US FDA 2020). Non-prescription drugs accounted for about 
51% of the specific classes of the PPCPs, with compounds 
like fragrances being underrepresented in the available lit-
erature (Meyer et al. 2019).

Moreover, the emergence of COVID-19 has led to exces-
sive production and use of medications and health care prod-
ucts including disinfection by-products and other PPCPs to 
treat the infected patients and to also prevent the spread of 
the virus (Adelodun et al. 2020a, b; Lin et al. 2020; Zaidi 
and Hasan 2021). It has also been reported that about 4000 
different pharmaceutical compounds entered environmental 
compartments in Europe (Mompelat et al. 2009). However, 
the detection of these emerging contaminants from various 
environmental compartments and their further retrieval, 
especially via the conventional wastewater treatment plants 
have always been a challenging task due to their low concen-
trations, typically in the range of microgram/l to nanograms/l 
(Adelodun et al. 2021a, b, c, d; Marasco Júnior et al. 2019; 
Snyder et al. 2007; Zhang et al. 2021). Even though they 
appear at very low concentrations in environmental com-
partments or reclaimed wastewaters, the physicochemical 
properties and toxicological effects of the compounds of 
PPCPs are found to have negative effects on the biotic envi-
ronment, including the development, growth, and reproduc-
tion of biota (Ajibade et al. 2021a, b; Cheng et al. 2021; 
Zhang et al. 2021).

Cheng et al. reported that sulfamethoxazole exhibits high 
ecological risk as indicated by the low predicted no-effect 
concentration value of 27 ng/l after treatment in a con-
structed wetland (Cheng et al. 2021). The municipal waste-
waters containing these emerging pollutants often discharge 
them into the environment without adequate treatment, thus 
increasing the potential contamination risk with organic and 
chemical pollutants (Adelodun et al. 2020a, b). Various stud-
ies have also shown that wastewater treatment plants could 
partially remove the compounds of PPCPs (Nguyen et al. 
2021; Petrie et al. 2015; Rosal et al. 2010), thereby serving 
as point source discharges of the various PPCPs in the envi-
ronment (Dai et al. 2014).

The detection and measurement of the compounds of 
PPCPs in the environmental compartments are essential 
steps toward their retrievals and decontamination to prevent 
any potential ecological and health risks. However, some 
of the metabolites of the registered PPCPs present in the 
environment are inadequately documented due to the lim-
iting factor of the analytical tool, thereby leading to their 
possible underestimation in different environmental media 
(Poynton and Robinson 2018). Despite this, there have been 
significant efforts in the development of different detection 
and measurement methods and techniques for the micro-
pollutants or trace organic compounds of PPCPs in vari-
ous environmental media. Reyes et al. reported 580 unique 
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compounds of PPCPs from a total of 133 studies that inves-
tigated the occurrence of PPCPs from real samples, with 23 
frequently occurring compounds, including carbamazepine, 
caffeine, diclofenac, ibuprofen, acetaminophen, sulfameth-
oxazole, triclosan, N,N-Diethyl-meta-toluamide, naproxen, 
clarithromycin, triclocarban, propranolol, bisphenol, bezafi-
brate, methylparaben, salicylic acid, ofloxacin, metformin, 
tramadol, atorvastatin, diphenhydramine, sertraline, and 
diltiazem in identified nine different media (Reyes et al. 
2021).

Similarly, Petrie et al. (2015) reported the presence of 
about 70 pharmaceuticals including a total of 15 illicit drugs 
and stimulants in UK wastewaters, with some of which have 
concentrations range of 17–5790 ng/l at the final effluents or 
surface waters (Kasprzyk-Hordern et al. 2009), depending 
on their usages. The non-steroidal anti-inflammatory drugs, 
anti-depressants, ꞵ-blockers, antimicrobials, antiepileptic 
carbamazepine, sunscreen agents, and preservatives are 
regarded as the most studied PPCPs considering that they 
are highly prescribed and consumed (Petrie et al. 2015); 
as such become ubiquitous in the wastewater plants. The 
presence of PPCPs has also been reported in the biosol-
ids (treated sludge), which are often generated during the 
anaerobic digestion of wastewater in the treatment plants 
due to their high level of persistence (Cortés et al. 2013). 
While some PPCPs were found to be at very low concentra-
tions in the treated sludge, the concentration of bisphenol 
A, triclocarban, triclosan, ciprofloxacin, norfloxacin, and 
ofloxacin were reported to be above an average of 1 mg/kg 
in various studies (Gottschall et al. 2012; Guerra et al. 2014; 
Heidler et al. 2006; Lindberg et al. 2005; Lozano et al. 2012; 
Sabourin et al. 2012).

Meanwhile, the PPCPs exhibit different physicochemical 
properties with varying fates and transport in the soil matrix. 
For instance, such as triclosan and triclocarban have higher 
hydrophobicity of log Kow 4.2–4.8, making them be retained 
within the soil matrix, while antibiotics like ciprofloxacin, 
norfloxacin, and ofloxacin, on the other hand, with a rela-
tively wide range of mobility in the soil and high water-sol-
uble (≥ 3.0 × 104 mg/l), are likely to be found around surface 
waters (Morais et al. 2013; Petrie et al. 2015).

The use of analytical technology tools like mass spec-
trometers including orbitrap, quadruple with linear ion-
trap, and quadruple with time-of-flight could detect some 
low concentrations of the pollutants in the environmental 
samples (Reyes et al. 2021; Rosal et al. 2010). Recently, 
Saka (2020) reviewed different chloroquine quantitative 
determination and detecting techniques including chroma-
tography, electroanalytical, electrophoresis, ELISA (Saka 
2020). High-performance liquid chromatography is one of 
the most frequently used detection techniques (Saka 2020) 
and electroanalytical methods are highly significant mainly 
in situ analysis of chloroquine and other PPCPs in effluent 

and surface water. In a recently advanced carbon-gra-
phene-based sensor, Lorenzetti et al. detected tetracycline 
in very concentration using reduced graphene oxide (Lor-
enzetti et al. 2020), Setznagl and Cesarino detected low 
concentrations of estriol hormone and glyphosate in water 
sample using reduced graphene oxide–metal nanoparticle 
(Setznagl and Cesarino 2020). Among all other metal-
lic nanoparticles, the copper-based nanoparticle is best 
to detect PPCPs in effluent and surface water. However, 
sensor-based detectors are disposable after use, and some 
nanoparticles release into the environment which implies, 
drawbacks which is to be avoided through research and 
development of re-usable sensors and non-conventional 
nanoparticles. Costa-Rama et al. developed re-usable sen-
sors for the detection of PPCPs in water (Costa-Rama et al. 
2020). Xiang et al. reported PPCPs compounds detected 
in surface water or sediment in China (Xiang et al. 2021). 
They found that the concentration of caffeine, oxytetracy-
cline, and erythromycin was higher in surface water. They 
found that 14 kinds of PPCPs compounds pose no signifi-
cant risk through risk quotient criteria or assessment.

There are several advanced techniques and instrumen-
tation for the detection of PPCPs compounds at very low 
concentrations which include gas chromatography with 
tandem mass spectrometry and liquid chromatography 
with tandem mass spectrometry (Ramos et al. 2019; Li 
et al. 2018; Rice and Mitra 2007; Trujillo-Rodríguez et al. 
2018; Vega-Morales et al. 2010). The target compounds 
are depending on the type of method and physicochemical 
properties of particular chromatography (Lei et al. 2018; 
Huerta et al. 2013; Caldas et al. 2016; Arismendi et al. 
2019). If target compounds are more soluble and polar 
in nature, liquid chromatography with tandem mass spec-
trometry analysis is the best choice (Meng et al. 2021). If 
the target compounds are more volatile, gas chromatog-
raphy with tandem mass spectrometry analysis is a better 
choice (Fenech et al. 2013). Table S5 (in supporting infor-
mation) reports the main instrumental techniques used for 
the detection of specific chemicals.

The major challenges of measurement of the com-
pounds of PPCPs lie in the limit of detection of these 
emerging micropollutants, especially in the effluent sam-
ples (Bratkowska et al. 2011; Gilart et al. 2013; Kotnik 
et al. 2014) after treatment, due to improper sampling or 
calculation errors such as hydraulic retention time, lead-
ing to improper report or estimate of percentage removal 
(Rodriguez-Rodriguez et al. 2011; Snyder et al. 2007; 
Basaglia and Pietrogrande 2012). Ortega and co-workers 
found a wide range of uncertainty associated with the sam-
pling methods which are dependent on the sampling site, 
a specific compound of interest, and the accuracy level 
of the analytical method employed (Ort et al. 2010a, b). 
Moreover, the majority of the studies reported having used 
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existing traditional sampling methods, with only a few 
studies considered internationally acceptable guidelines 
when it comes to sampling and monitoring of PPCPs in 
environmental samples, especially when it is considered 
that sampling frequency could responsible for the concen-
tration variations of the micropollutants (Ort et al. 2010a, 
b).

However, accurate presentation of PPCPs in environmen-
tal samples is not only dependent on sophisticated analysis 
but also on appropriate sampling methods. Unlike phar-
maceuticals, the personal care products such as cosmetics 
and other additives that are used and applied externally are 
easily detected in the wastewater through which they are 
discharged via washing and bathing (Vallecillos et al. 2013; 
Santana-Viera et al. 2017; Kim et al. 2010). The selected 
compounds of PPCPs and their classifications along with 
their concentration in various environmental samples are 
presented in Table S6 (see supporting information) Batt et al. 
(2007) Bayati et al. (2021) Hamscher et al. (2002) Matongo 
et al. (2015) Mutiyar and Mittal (2013) Verlicchi et  al. 
(2012). Decontamination and treatment methods (discussed 
in “Risk and ecotoxicological assessments, bioremediation, 
treatment technology, and removal methods” section) are 
also reported.

Risk and ecotoxicological assessments, 
bioremediation, treatment technology, 
and removal methods

The toxicity of various micropollutants of PPCPs has contin-
ued to increase thus driving the need for awareness of their 
proper assessment in environmental media. For instance, 
diclofenac, a common anti-inflammatory pharmaceutical in 
environmental samples is considered to cause chronic and 
acute toxicity impacts on the various organs including the 
liver, and kidneys of living organisms (Vieno and Sillanpää 
2014). Similarly, Petrie et al. analysed the toxicity of the 
most well-studied emerging contaminants of PPCPs based 
on the available data in the literature and classified them 
into harmful, toxic, and very toxic concerning their con-
centrations of 10 and 100 mg/l, 1 and 10 mg/l, and less than 
1 mg/l, respectively (Petrie et al. 2015). The non-steroidal 
anti-inflammatory drugs such as diclofenac, acetaminophen, 
ibuprofen, naproxen, carbamazepine, trimethoprim, and lipid 
regulators including bezafibrate and clofibric acid-metab-
olite were classified as harmful contaminants, to aquatic 
organisms, ofloxacin, sulfamethoxazole, erythromycin, and 
oxytetracycline fall under toxic contaminants, while those 
with extremely low concentration had no adequate informa-
tion to establish their impact on the environment and biota. 
Long-term exposure to acetaminophen, one of the most 

consumed PPCPs globally has been considered to cause can-
cer, endocrine disruption, and other several chronic diseases 
(Phong Vo et al. 2019). Also, among the micropollutants 
that are common to the United States, European Union, and 
China, antiretroviral Efavirenz and octocrylene were found 
to have the highest aquatic HazPi value, an index for measur-
ing the persistence, bioaccumulation, bioactivity, and toxic-
ity of emerging micropollutants (Fang et al. 2019).

Meanwhile, due to the various disinfectant byproducts 
formation from the continuous use of chlorine and ethanol-
based disinfectants, coupled with some new pharmaceutical 
products for the treatment of COVID-19 infection and the 
detergent product for handwashing in preventing the spread 
(Adelodun et al. 2020a, b). There have been different tech-
nologies and techniques for the treatment of wastewater con-
taining PPCPs, especially via wastewater treatment plants, 
which include sand filtration, sorption (adsorption and 
absorption), coagulation, ultrafiltration, advanced oxidation 
processes, ozone and ultraviolet light photolysis, bioreme-
diation, and chlorine disinfection (see Table S6) Awfa et al. 
(2019) He et al. (2016). The removal efficiency of various 
PPCPs, however, is dependent on the appropriateness of the 
technology implemented in the wastewater treatment plants 
and other various factors which include system configura-
tion, operation and treatment conditions, and influent load-
ings, making it difficult to compare removals of micropol-
lutants in different treatment plants (Nam et al. 2014; Phong 
Vo et al. 2019). Nam et al. also reported the influence of 
seasonality in the concentrations of micropollutants in the 
influent of treatment plants, with metoprolol, one of the 
highly used beta-blockers, exhibiting recalcitrant and per-
sistency during the treatment process (removal efficiency of 
6%) (Nam et al. 2014). The primary treatment processes in 
treatment plants such as coagulation and sedimentation have 
been found inefficient in the removal of emerging micropol-
lutants of PPCPs (Adams et al. 2002; Stackelberg et al. 2007; 
Vieno et al. 2007).

Thus, some studies suggested the use of alternative treat-
ment methods or multiple treatment techniques that could 
be combined with the wastewater treatment plant for safe 
discharge of the effluent devoid of toxic emerging pollut-
ants into the environment or the reuse of treated wastewater, 
especially for irrigation in agriculture, urban greening, and 
landscape and recreation (Carvalho et al. 2013; Lin et al. 
2020; Nam et al. 2014; Rodriguez-Rodriguez et al. 2011; 
Vymazal et al. 2017). The combined treatment processes of 
coagulation-sedimentation, sand filtration, and disinfection 
were found to significantly remove some selected micro-
pollutants, including carbamazepine, acetaminophen, and 
diclofenac in a wastewater treatment plant in Korea (Nam 
et al. 2014). New sustainable adsorbent materials have been 
also recently proposed for this aim (Bontempi et al. 2021; 
Fahimi et al. 2020).
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The treated effluents (secondary) could either be reused 
for various purposes such as in industrial processes, in agri-
cultural use for irrigation, in the urban landscape, disposed 
into the environment for groundwater recharge or supple-
ment environmental flows, and to also meet municipal 
water demand (Adelodun et al. 2020a, b; Chang et al. 2020; 
Takeuchi and Tanaka 2020; Zhan et al. 2020). Furthermore, 
the generated sludge during the treatment of wastewaters 
could harbor some pollutants of PPCPs, which the analysis 
of such are not often carried out and could go undetected 
(Petrie et al. 2015), thereby leading to toxicity of the soil 
ecosystem and subsequently human health risk. For instance, 
some PPCP compounds like triclosan, ofloxacin, and cip-
rofloxacin have been found in the particulate phase of the 
final effluents in the range of 29–296 ng/l after secondary 
treatment processes of wastewater treatment plant (Petrie 
et al. 2014). Similarly, the comparative results of health 
risk and environmental impacts assessment of selected low 
mobile pharmaceuticals in biosolids amended to the soil in 
a regional European Union indicated that the mefenamic 
acid from the non-steroidal anti-inflammatory group had 
the highest ecological risk and environmental impact on 
aquatic biota, while sulfonamides and hydrochlorothiazide 
were moderately retained in the soil matrices (Morais et al. 
2013). Thus, the reclaimed water needs to be sufficiently 
free from hazardous contaminants or below the permissible 
limits of various contaminants to avoid potential health risks 
to both humans and ecosystems (Adelodun et al. 2021a, b, 
c, d; Ajibade et al. 2021a, b).

The various treatment technology and removal methods 
targeted at the PPCPs require detailed comparison in terms 
of their level of treatment and removal of contaminants 
originating from the use of PPCPs. Moreover, the removal 
of the PPCPs from the wastewater treatment plants varied 
greatly from process to stage (Helbling et al. 2010), while 
some of the PPCPs persist for a longer period despite the 
long duration of digestion (Cortés et al. 2013). Thus, it 
is required to assess the health risk and ecotoxicity of 
using such treated wastewater for municipal, agriculture, 
or industrial processes, given the rising water scarcity 
challenges in many regions of the world due to climate 
change impact, and population growth, and urbanization. 
Kasprzyk-Hordern et al. investigated the treatment effi-
ciency of two wastewater treatment plants with different 
treatment processes comprising activated sludge treatment 
and trickling filter beds (Kasprzyk-Hordern et al. 2009). 
The treatment plant which utilized the efficient activated 
sludge treatment had higher removal efficiency of over 
85% for all the 55 PPCPs considered as compared to the 
treatment plant with trickling filter beds technology that 
resulted in less than 70% removal efficiency (Kasprzyk-
Hordern et al. 2009). Nevertheless, the trickling filter beds 
technology was found to be highly effective with higher 

removal efficiency for p-benzylphenol, bisphenol A, and 
benzophenone-4. Nguyen et al. (2021) compared the effec-
tiveness of different bioremediation techniques, includ-
ing conventional activated sludge, membrane bioreactors, 
biofilm systems, and constructed wetlands under different 
operating conditions for selected PPCPs in wastewater 
treatment plants. The authors reported that biofilm sys-
tems of bioremediation, especially the hybrid process of 
moving bed biofilm reactor and integrated fixed-film acti-
vated sludge was highly efficient in the removal of a broad 
spectrum of PPCPs compounds in wastewater treatment 
plants as compared to other treatment techniques due to its 
acclimation of biomass, reduction in excess sludge produc-
tion, and the metabolism of poorly degradable compounds 
(De La Torre et al. 2015; Nguyen et al. 2021).

Based on the previously reported studies on the limitation 
of photolysis, volatilization, and hydrolysis to significantly 
remove micropollutants in constructed wetlands, microbial 
degradation, substrate adsorption, and plant uptake were 
investigated as the primary pathways to remove the PPCPs 
in a constructed wetland. (Cheng et al. 2021) found that 
integrated microbial degradation, substrate adsorption, and 
plant uptake systems were highly effective in the removal 
of PPCPs with microbial degradation demonstrating the 
dominant pathway with a contribution of 86.69–99.95%. 
Fenton, Fenton-like (Liu et al. 2021), and ozonation (Wang 
and Chen 2020b) Paucar et al. (2019) processes have also 
been widely investigated. However, results or conclusions 
about the catalytic mechanisms are often inconsistent. The 
technologies involved in the removal of acetaminophen were 
also compared (Phong Vo et al. 2019), where ozonation 
indicated 100% removal efficiency of the acetaminophen 
as compared to chemical-based Fenton (87%), photo-based 
Fenton (84%), electro-based Fenton (96%), phytoreme-
diation (64%), adsorption and filtration (98%), membrane 
(62%), and hybrid process (99%). Notwithstanding, the 
higher removal efficiency does not indicate total removal 
as there is a likelihood of transformation into less or more 
toxic metabolites, which could also be difficult to detect in 
environmental samples (Phong Vo et al. 2019). Ionizing 
radiation, also in combination with other methods, was also 
investigated (Wang and Chu 2016), showing that this could 
improve the degradation efficacy and reduce the treatment 
cost.

The environmental and operating conditions under which 
the treatment of various micropollutants occur also have a 
great influence on the degradation or treatment of PPCPs 
(Sui et al. 2015). For instance, chlortetracycline and tetracy-
cline were degraded at a different rate under varying pH and 
temperature while degradation of sulfachlorpyridazine, sul-
fadimethoxine, sulfathiazole, and lincomycin were less influ-
enced by changes in pH and temperature (Loftin et al. 2008). 
Furthermore, different operating conditions, including 
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hydraulic and solid retention time, temperature, pH, and 
aerobic and anoxic processes were reported to enhance the 
biodegradation of compounds of PPCPs such as diclofenac, 
erythromycin, azithromycin, and clarithromycin, which are 
regarded as the priority PPCPs on the European Union watch 
list due to their recalcitrant nature and health risk on human 
and biota (Burke et al. 2014; Falås et al. 2013; Nguyen et al. 
2021). The treatment of PPCPs in environmental samples 
using biological remediation has also been reported to be 
highly effective, especially when combined with the pri-
mary treatment process in the wastewater treatment plant 
(Rodriguez-Rodriguez et al. 2011).

The advanced wastewater treatment methods are of great 
significance to sustainably support the “3R” concept (reduce, 
reuse, and recycle) of wastewater management before they 
are discharged back into the environment. As a consequence 
of the population growth, waster stress is being experienced 
in and around urban areas because the sources of potable, 
clean freshwater are dwindling (Xiao et al. 2015). There-
fore, reclaiming and reusing wastewater for other purposes 
is increasingly being practiced.

Table  S7 (see supporting information) presents the 
selected treatment techniques of PPCPs along with the 
toxicity risk status of the effluent after treatment Ben et al. 
(2018) (Golet et al., 2002) Kosma et al. (2014).

The previously developed treatment technologies and 
methods are likely to be inefficient for the PPCPs removal 

due to this latest development of the COVID-19 scenario. 
Zhang et al. investigated a combined water treatment pro-
cess, including both primary and secondary treatments that 
considered the changes in operating conditions and differ-
ent doses of disinfectants used before and after COVID-
19 (Zhang et al. 2021) (Fig. 2). The authors found that 
the additional treatment processes incorporated due to the 
COVID-19 gave rise to a higher removal rate (> 80%) of 
the trace organic compounds from PPCPs, while chloroform 
(at < 15 μg/l) was the only resultant disinfection byproduct 
produced from the increased dose concentration of the chlo-
rine (Zhang et al. 2021). The dosage of chlorine and the pH 
level has been reported to influence the removal of micropol-
lutants during the chlorination process in the treatment plant 
(Nam et al. 2014).

Perspective

The challenges and uncertainties associated with the pres-
ence of compounds of PPCPs and their potential risks in 
the ecosystem abound due to the arising need for the devel-
opment of new PPCPs to combat the current COVID-19 
pandemic and future ones. One of the major challenges with 
the management of the PPCPs in the wastewater treatment 
plant is the biotransformation of the parent compounds of 
some of the PPCPs rather than the intended removal or 

Fig. 2   Reclaimed water treatment processes before and after 
the  COVID-19  pandemic. Zhang et  al. (2021) investigated a com-
bined water treatment process, including both primary and second-
ary treatments. The additional treatment processes, which was incor-

porated due to the COVID-19, gave rise to a higher removal rate 
(> 80%) of the trace organic compounds from pharmaceutical and 
personal care products. Adapted from Zhang et al. (2021)
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biodegradation. This process has been reported to increase 
the concentrations of some of the pollutants from the initial 
measured amount in the influents as compared to the efflu-
ents from the treatment plants (Nguyen et al. 2021; Zhang 
et al. 2017). Antibiotics (erythromycin, clarithromycin, 
azithromycin) and diclofenac are among the compounds that 
could deconjugate and then transform to the parent com-
pounds via enzymatic activity or abiotic processes in the 
wastewater treatment plants (Nguyen et al. 2021; Vieno and 
Sillanpää 2014). Lee et al. found that equimolar diclofenac 
was formed within 7  days during the deconjugation of 
diclofenac ꞵ-O-acyl glucuronide (Lee et al. 2012). Moreover, 
the higher toxicity potential of the transformational products 
compared to the initial products like diclofenac and aceta-
minophen has been suggested by (Phong Vo et al. 2019; 
Schmitt-Jansen et al. 2007). There is a significant knowledge 
gap regarding the biotransformation of some of the PPCPs 
during the treatment process in wastewater treatment plants 
and the environment due to the lack of analytical methods 
and standard references (Basiuk et al. 2017; Nguyen et al. 
2021; Petrie et al. 2015; Senta et al. 2019). Since there is a 
likelihood that the new conjugated compounds could possess 
some risks in the environment to which they are discharged 
(Nguyen et al. 2021), there is a need for more research on 
the transformation and potential risk assessment of vari-
ous compounds of PPCPs in both the treatment plant and 

environment by expanding the monitoring capacities of more 
compounds in the environmental samples.

At present, the PPCPs have not been subjected to ade-
quate monitoring in the environmental samples, with only a 
few countries, including the United States and the European 
Union currently having clear legislation and frameworks for 
the management of the micropollutants of PPCPs (Nguyen 
et al. 2021). Recently, the European Union listed 33 micro-
pollutants that are most relevant to the wastewater treat-
ment plants on the watch list (Decision 2015/495/EU) and 
required all the member states to monitor these substances 
at specific concentration benchmarks in the surface waters 
(Barbosa et al. 2016). One of the factors identified contrib-
uting to the monitoring problems of PPCPs in the environ-
ment is inadequate sampling strategies, especially for the 
unregulated PPCPs (Petrie et al. 2015). The popular discrete 
grab method is limited in identifying the concentration of 
pollutants at a specific point in time. However, the time or 
flow proportional composite sampling that could address the 
fluctuations inflow is relatively less adopted due to the asso-
ciated high cost and logistic constraints (Coutu et al. 2013; 
Petrie et al. 2015; Plósz et al. 2010). An integrated analyti-
cal approach that could be deployed to assess the toxicity of 
targeted and non-targeted micropollutants distribution, both 
spatially and temporally in the environmental media is sug-
gested to ensure accurate risk assessment (Petrie et al. 2015).

Fig. 3   Pharmaceuticals and 
personal care products physico-
chemical characteristics make 
them potentially dangerous for 
aquatic organisms and human 
health. Despite the recent 
advances in analytical tech-
niques that allow to highlight 
the environmental presence of 
such chemicals, there are some 
gaps in the state of knowledge 
of pharmaceuticals and personal 
care products presence. Then, 
legislation on minimum levels 
of pharmaceuticals and personal 
care products allowed to be 
released into the environment 
should be implemented also for 
treated effluents and sludge used 
as a fertilizer
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The particulate phase analysis of PPCPs in wastewa-
ter is another identified area that has not been thoroughly 
implemented in the literature to monitor the performance 
of the various technologies involved in the treatment plants 
which could, however, assist to understand the pathways 
of the micropollutants removals during the wastewater 
treatment process (Petrie et al. 2014). The integration of 
both the commonly used aqueous phase and the particulate 
phase analyses for each sampling point would provide a 
complete mass balance process and an understanding of 
the dominant mechanisms involved in the treatment pro-
cess (Petrie et al. 2015). The knowledge of the micropol-
lutants removal process and their fate in the wastewater 
treatment plants could provide the needed information for 
further research on the optimization of the treatment pro-
cess for optimum removal efficiency.

Furthermore, there should be institutional legislation 
and guidelines on the use of treated effluents and sludge 
containing the micropollutants of PPCPs as fertilizers 
for soil amendments and likewise the safe concentra-
tion discharge into the environment (Goala et al. 2021). 
Many countries, especially from the developing and 
less developed regions do not have specific laws guid-
ing the use of effluents and sludge as regards the PPCPs 
concentrations for soil amendment, thereby making the 
population in those regions vulnerable to the health risk 
of the PPCPs contaminants. Moreover, there is a need 
for more studies on the environmental risk assessment of 
transformed and conjugated products of PPCPs from the 
effluents of the treatment plants to forestall any potential 
health risk to humans and other biota in the environment 
(Fig. 3).
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