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Abstract
Cyclodextrins are glucose macrocycles whose inclusional capabilities towards non-polar solutes can be modulated with the 
help of other macrostructures. The incorporation of cyclodextrin moieties into larger structures produces five types of new 
materials: crosslinked networks, functionalized chains, amphiphilic cyclodextrins, polyrotaxanes and nanocomposites. This 
review presents crosslinking and grafting to prepare covalently-attached cyclodextrins, and applications in the food and phar-
maceutical sectors, from an historical point of view. In food science, applications include debittering of juices, retention of 
aromas and release of preservatives from packaging. In biomedical science, cyclodextrin polymers are applied classically to 
drug release, and more recently to gene delivery and regenerative medicine. The remarkable points are: 1) epichlorohydrin 
and diisocyanates have been extensively used as crosslinkers since the 1960s, but during the last two decades more complex 
cyclodextrin polymeric structures have been designed. 2) The evolution of cyclodextrin polymers matches that of macromo-
lecular materials with regard to complexity, functionality and capabilities. 3) The use of cyclodextrin polymers as sorbents 
in the food sector came first, but smart packaging is now an active challenge. Cyclodextrins have also been recently used to 
design treatments against the coronavirus disease 2019 (COVID-19).
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Introduction

In addition to their remarkable capability to establish supra-
molecular host–guest interactions because of their toroidal 
shape and non-polar inside (Morin-Crini et al. 2021), cyclo-
dextrins can also be covalently attached in different ways to 

generate more complex structures (Řezanka 2019). Materi-
als containing more than two covalently linked cyclodextrin 
units are known as cyclodextrin polymers, and their uses 
in the field of remediation technologies have been widely 
explored (Landy et al. 2012). In the case of drug delivery, 
the most frequently investigated subject among the biomedi-
cal applications, the complexation capabilities of cyclodex-
trins and the controlled release rate of the guest drugs can 
be modulated with the aid of the additional functionality 
of a polymeric macrostructure. In other cases, the covalent 
attachment of cyclodextrin moieties to a pre-existing struc-
ture is intended to immobilize them, as in the case of medi-
cal devices or packaging applications.

This review covers, from a historical point of view, the 
applications both in food chemistry and pharmaceutics and 
biomedicine of cyclodextrin polymers (see Fig. 1). In con-
trast to the enormous amount of studies on the uses of the 
parent cyclodextrins in these two sectors, cyclodextrin poly-
mer references are not as abundant and most of the examples 
found in the literature correspond to the last 10–15 years.

We can define cyclodextrin polymers as those materials 
or molecules containing more than two covalently linked 
cyclodextrin units. Thus, we will not cover in the following 
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sections of this review either the functionalization of non-
polymeric supports, known as cyclodextrin nanocomposites, 
or the amphiphilic cyclodextrins and star polymers with a 
cyclodextrin core, or the cyclodextrins threaded onto poly-
mer chains, known as polyrotaxanes.

The first references dealing with the potential use of 
cyclodextrin-containing covalent structures as macromo-
lecular carriers, date back to the 1980s. Since then, they have 
been incorporated into many constructions, such as hydro-
gels, nanosponges, dendrimers, interpenetrating networks, 
molecular imprinted polymers or electrospinned fibres. In 
addition, some of these systems have proved to be responsive 
to stimuli, leading to the design of smart multifunctional 
biomaterials that can be triggered by different factors. This 
article is an abridged and updated version of the chapter 

published by Petitjean et al. (2020) in the series Environ-
mental Chemistry for a Sustainable World.

Cyclodextrin polymers

Historical perspective of cyclodextrin polymers

The pioneering work of Solms and Egli in 1965 can be 
considered as the first landmark in the field of cyclodextrin 
polymers (Solms and Egli 1965). Also in those early years, 
Wiedenhof et al. (1969) improved the properties of the 
irregular crosslinked cyclodextrin particles and produced 
bead microparticles that, for instance, were suitable to be 
used in chromatographic columns.

Polyurethane cyclodextrin networks were prepared 
using diisocyanates by Buckler et al. (1969). Acid dihal-
ides and many other potentially useful space arms were 
also considered in the same patent and various possible 
applications of those “anchored” cyclodextrins were 
explored.

A few years after that, in the mid-1970s, the first 
cyclodextrin monomers were produced and polymerized 
by Furue et al. (1975). This acrylic polymer exhibited a 
greater catalytic effect in the hydrolysis of p-nitrophenyl 
esters due to the “cooperative effect” between two neigh-
bouring cyclodextrin moieties on a polymeric chain 
(Harada et al. 1977) (Fig. 2).

The next type of cyclodextrin polymers in our clas-
sification corresponds to the attachment of cyclodextrin 
moieties to previously existing macromolecular materi-
als. In this case, Szejtli, Fenyvesi et al. attached cyclo-
dextrin units to polyvinyl alcohol using epichlorohydrin 
and epoxy ethers in the late 1970s (Szetjli et al. 1979). 
Hirayama et al. (1984) used epichlorohydrin to prepare a 
β-cyclodextrin/starch composite gel. In the 1990s, Pöp-
ping and Deratani (1992) reported the production of 

Fig. 1  Uses of cyclodextrin polymers in the food and pharmaceutical 
sectors

Fig. 2  Cyclodextrin-containing 
macromolecular systems: 
a crosslinked cyclodextrin 
polymers (more than three 
units); b linear polymers, either 
grafted-cyclodextrin polymers 
or monomeric cyclodextrin (co)
polymers; c amphiphilic and 
star-like unimeric cyclodextrins; 
d (pseudo)polyrotaxanes; e 
nanocomposites and immobi-
lized cyclodextrins. Only the 
first two types of structures are 
covered in this review
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monochlorinated cyclodextrins and, later on, other deriva-
tives containing heterocycles were synthesized (Reuscher 
et al. 1998). Earlier, in 1981, Tanaka et al. had immobi-
lized derivatives of α- and β-cyclodextrin on polyurethane 
and also onto a polyacrylamide support after activating it 
with succinyl hydrazide (Tanaka et al. 1981, 1982) with 
the aim of obtaining stationary phases for the separation of 
benzene derivatives. About twenty years ago, Crini et al. 
used cyclodextrin tosyl derivatives to produce macropo-
rous polyamines (1998a) or to modify polyethyleneimines 
in order to coat silica beads (Crini et al. 1995). Cyclodex-
trin side chain polyesters were also obtained in those years 
(Weickenmeier and Wenz 1996). Wenz et al. also reported 
the synthesis of thickeners based on the specific interac-
tion between cyclodextrin polymers and guest polymers 
(Weickenmeier and Wenz 1996).

A comprehensive collection of the first polymers can 
be found in the review of cyclodextrin-containing adsor-
bents by Crini and Morcellet (2002). In the last two dec-
ades, more complex cyclodextrin polymer structures have 
been produced, namely interpenetrated networks, molecular 
imprinted polymers, dendrimers, nanogels, polymer assem-
blies, and nanocomposites. The especial cases of the feasible 
uses of these materials in these two sectors will be the goal 
of the last section of this review.

Covalent and supramolecular architectures

Cyclodextrins crosslinked in covalent networks

Cyclodextrin crosslinked with epichlorohydrin polymers, 
the most abundant in the literature, were also the first type 
known, synthesized by Solms and Egli (1965). The reac-
tion of saccharides such as glucose with epichlorohydrin is 
well known (Dumitriu 1996), and the primary product of 
the reaction of β-cyclodextrin with epichlorohydrin in alka-
line media is a heterogeneous mixture of several ethers, of 
low molecular weight and viscosity, soluble in water. In this 
reaction, the self-polymerisation of epichlorohydrin, which 
is favoured at high temperatures, can also occur (Renard 
et al. 1997).

The bulk synthesis procedure of Solms and Egli (1965) 
produced irregular polymer particles. A few years after 
that, Wiedenhof et al. (1969) proposed a two-phase emul-
sion polymerisation with controlled stirring, in which the 
cyclodextrin dissolved in water is dispersed in a non-polar 
organic solvent containing a non-ionic surfactant and the 
crosslinker in order to produce uniform microspheres, or 
beads, with better physicochemical properties. As potential 
drug delivery devices, cyclodextrin–epichlorohydrin hydro-
gels made with a controlled geometry are useful to obtain 
kinetic parameters (Machín et al. 2012).

Among the most frequently used non-epoxide crosslink-
ers are diisocyanates, first introduced by Buckler et  al. 
(1969), as mentioned above. Dihalogenated acid dihalides 
or dihalogenated dicarboxylic acids of different sizes have 
also been used as space arms (Buckler et al. 1969; Zemel 
and Koch 1990), besides other agents such as dihalogenated 
alkenes or, later on, maleic anhydride (Girek et al. 2000). 
Shono et al. prepared insoluble porous polymers with a high 
cyclodextrin content, polymerising α- and β-cyclodextrin 
with diisocyanates as crosslinking agents in pyridine or 
dimethylformamide, and studied their capability to absorb 
aromatic derivatives (Mizobuchi et al. 1980; Tanaka et al. 
1981). Certain properties and applications have been stud-
ied thereof: stationary phases in chromatography (Lee et al. 
2002); artificial cholesterol receptors (Asanuma et al. 1998); 
solid phase for the extraction of carcinogenic aromatic com-
pounds (Bhaskar et al. 2004). Ma’s group, which also used 
these two diisocyanates, postulated the presence of intercon-
nected nanoporosity in these polymers (Li and Ma 1999; 
Ma and Li 1999). The use of difunctional crosslinkers with 
longer spacers can lead to macromolecular networks with 
increased porosity, more flexible and less compact. In these 
networks, smaller molecules can increase their diffusion 
rates and bulkier substances may also become entrapped 
(Mocanu et al. 2001). The use of non-toxic crosslinkers like 
the polycarboxylic acids is also feasible. Martel’s group 
described the synthesis of soluble and insoluble polymers 
(Martel et al. 2005) and the production of cotton-bound 
cyclodextrin using these crosslinkers (Martel et al. 2002).

The analysis of cyclodextrin polymers crosslinked with 
epichlorohydrin is complicated when it comes to infrared or 
Raman spectroscopic techniques (Crini et al. 2000) because, 
as mentioned above, both the crosslinked cyclodextrin units 
and the self-polymerised epichlorohydrin possess hydroxy-
alkyl and ether groups. Nevertheless, the interpretation of 
the infrared spectra of starch crosslinked with epichlorohy-
drin was resolved at the time (Dumoulin et al. 1998; Delval 
et al. 2004).

While the spectroscopic characterization of cyclodex-
trin–epichlorohydrin polymers is not easy, that of cyclo-
dextrin polymers crosslinked with diisocyanates seemed to 
be simpler. Qualitative characterizations by infrared spec-
troscopy (Li and Ma 1999; Bhaskar et al. 2004) or Raman 
(Lee et al. 2002) were attempted, and the successful quanti-
tative analysis was achieved thanks to the intense carbonyl 
band of the crosslinker (García-Zubiri 2005). Thermal and 
thermogravimetric analysis were also used in most of those 
studies, as well as NMR spectroscopy (Asanuma et al. 1998; 
Lee et al. 2002). For polymers with other crosslinkers, such 
as maleic anhydride, there were also some NMR results of 
interest (Girek et al. 2000).

As for the cyclodextrin content of the polymer, the most 
common procedures used already in the 1990s were the 
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colorimetric methods using chlorotetrazolium blue (Crini 
et al. 1995; 1998b; Janus et al. 1999) or iodometry (Renard 
et al. 1997) and phenolphthalein (Mäkelä et al. 1987). For 
soluble cyclodextrin polymers, proton nuclear magnetic 
resonance spectroscopy could be used (Renard et al. 1997), 
and for the insoluble resins 1H or 13C solid-state NMR were 
employed (Crini et al. 1998b; 2000).

Another technique used to determine the cyclodextrin 
content in the polymers is CHN elemental analysis (Lee 
et al. 2002). Nevertheless, it must be used with great care 
in the case of cyclodextrin–epichlorohydrin polymers due 
to the similar elemental composition of both constituents 
(Romo et al. 2006). Important advances in this area have 
been achieved along the years but the precise characteriza-
tion of cyclodextrin polymers continues being a challenge 
as occurs in any other macromolecular materials.

Other novel cyclodextrin polymers

The reticulated cyclodextrins, also known as nanosponges, 
have evolved into more complex structures in the last 
10–20 years (Caldera et al. 2017). Thus, molecular imprinted 
polymers using cyclodextrin moieties were already produced 
in the late 1990s (Piletsky et al. 1998). Stimuli responsive 
polymers based on cyclodextrins were prepared in 1995 
using the ubiquitous N-isopropylacrylamide monomer 
(Nozaki et al. 1995). Interpenetrated networks containing 
cyclodextrins also appeared at that time (Sreenivasan 1997). 
Fenyvesi et al. encapsulated several cationic disinfectant 
agents, in chemically modified (carboxymethylated) nano-
sponges, based on cyclodextrin linked to polyvinyl alcohol, 
to be used in the prolonged treatment of wounds (1996).

Nanogels combine the advantages of hydrogels and nano-
particles into a single carrier (Moya-Ortega et al. 2012). 
Liu et al. prepared cyclodextrin microgels, including one 
interpenetrated network, by inverse-emulsion polymeri-
sation (2004). About ten years ago, nanoparticles were 
synthesized by a one-step condensation polymerisation of 
β-cyclodextrin, choline chloride and epichlorohydrin by Gil 
et al. (2009). The top-down approach can break bigger net-
works into the nanoscale size by using ultrasounds (Swami-
nathan et al. 2010). The water-in-oil emulsion method has 
been thoroughly employed in the last decade, but their direct 
synthesis by polymerisation of cyclodextrin monomers is 
more rare (Moya-Ortega et al. 2012).

Another interesting method of producing nanogels was 
designed by Gref et  al. and consist on supramolecular 
nanoassemblies between a cyclodextrin–epichlorohydrin 
polymer and an alkyl-grafted dextran (Gref et al. 2006). 
Other potential uses of cyclodextrins as ‘smart’ components 
of polymer nanoparticles were reviewed by Gref and Duch-
êne (2012). A variety of cyclodextrin-based architectures, 
e.g. linear, dendrimers, stars, polyrotaxanes, were used in 

the preparation of polyplexes for gene delivery (Mellet et al. 
2011). In 1997, β-cyclodextrin was attached to dendrimer 
polyethyleneimines (Suh et al. 1997). Two years later, lin-
ear cationic alternate copolymers capable of binding DNA 
with transfection efficiency were prepared by Davis’ group 
(Gonzalez et al. 1999). Later on, Choi et al. prepared poly-
plexes grafting cyclodextrin to poly-l-lysine instead of using 
poly(ethyleneimine) (2005).

Electrospun nanofibres have been used as drug delivery 
materials due to their high specific area and, obviously, vari-
ous formulations including cyclodextrins have been tested 
in the last 5 years (Costoya et al. 2017). Cyclodextrin poly-
mers have been also explored as components of electrospun 
nanofibres recently (Oliveira et al. 2015). As shown in this 
short account of the major findings in this field, the evolution 
of cyclodextrin polymers goes in parallel with the progress 
in the production of novel macromolecular materials with 
more complex structures and morphologies, controlled or 
‘smart’ behaviours, and specific applications.

Applications in the food and pharmaceutical 
areas

Cyclodextrin polymers in food science

In the food industry, cyclodextrins have been applied as 
sorption/release agents and for packaging purposes (Sarkar 
et al. 2017). They can be used as single cyclodextrins incor-
porated into fibres (Celebioglu et al. 2018) or films (Plackett 
et al. 2006). Crosslinked cyclodextrins were firstly proposed 
for food related applications as early as the 60s with the 
patent of Bucker et al. (1969) as agents for concentration of 
flavours or aromas in the food industry.

Cyclodextrin–epichlorohydrin polymers were developed 
to reduce the bitterness of fruit juices (Shaw et al. 1984), 
and a selectivity study between bitter molecules and caffeine 
was tested (Shaw and Buslig 1986), using γ-cyclodextrin 
polymer as well. It was proved that cyclodextrin polymers 
do not complex with the latter and studied the importance 
of the crosslinking agent.

For the same application, β- or γ-cyclodextrin was linked 
to chitosan through succinyl or maleyl bridges to improve the 
sorption of bitter compounds (Binello et al. 2004). Thanks 
to a pilot-plant fluidised-bed procedure, Wagner successes 
a regeneration of β-cyclodextrin polymer over twenty times 
without apparent loss of capacity (1988). The debittering of 
other juices has also been reported later (Szejtli and Szente 
2005).

In the last decade, another area of application searched 
in food science and cosmetics is the retention of fragrance 
or aroma molecules. Encapsulation of linalool and cam-
phor, composing Lavandula angustifolia essential oil, using 
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crosslinked cyclodextrin–epichlorohydrin polymers was 
compared to those of the parent and derivative cyclodextrins 
(Ciobanu et al. 2012). To absorb unwanted molecules pre-
sent in wine, beads produced using epichlorohydrin (Fliszár-
Nyúl et al. 2020) or hexamethylene diisocyanate can be used 
(Dang et al. 2020).

In 2009, cyclodextrin polymers were used in solid phase 
extractions to determine additives in food (Li et al. 2009). 
In parallel, molecular imprinted cyclodextrin polymers were 
prepared using monomeric cyclodextrin/maleic acid with 
Congo Red as template and N,N′-methylenebisacrylamide 
as crosslinker (Liu et al. 2015). Also, a cyclodextrin polymer 
with a higher specific area has been prepared (Li et al. 2018), 
grafted onto metallic graphene (Li et al. 2016a), added to 
ionic liquids (Feng et al. 2015), or imprinted on carbon 
nanotubes (Liang et al. 2019), in order to remove and/or 
determine the amount of organic molecules present in food.

Single cyclodextrins are also common for food packag-
ing; they began to be exploited for that purpose at the end 
of the past century (Szente and Fenyvesi 2018). The first 
reported use of a cyclodextrin polymer in packaging was to 
remove an undesirable product in food such as cholesterol 
(López-De-Dicastillo et al. 2011).

On the other hand, active films are designed to liberate 
chemicals encapsulated in them using UV stimuli (Tan et al. 
2016). To achieve an antibacterial potential, it is also feasible 
to integrate ZnO nanoparticles into polymer films (Andrade-
Del Olmo et al. 2019) or to crosslink a sorbate/cyclodextrin 
complex, such that with sodium benzoate (Yang et al. 2019). 
Starting with the applications to extract unwanted molecules 
from food products several decades ago, the modern uses of 
cyclodextrin polymers focus also on smart packaging.

Cyclodextrin polymers in drug delivery

The first reviewing of the potential applications of cyclodex-
trin polymers in the pharmaceutical industry was written by 
Fenyvesi (1988), and it was mainly based on cyclodextrin 
crosslinked with epichlorohydrin. A pioneering bioavailabil-
ity study using a soluble cyclodextrin polymer was reported 
in the mid-1980s (Uekama et al. 1985). The absorption-
promoting effect of the soluble cyclodextrin polymer on 
the sublingual route was also demonstrated in the case of 
steroids (Pitha et al. 1986). Karadake et al. (1982) showed 
that the drug release was retarded and the stability against 
oxidation and degradation was greatly increased when pen-
icillin complexed with soluble cyclodextrin polymer was 
microencapsulated.

On the other hand, some applications of the insolu-
ble crosslinked cyclodextrin polymers were also investi-
gated. For instance, its effect on wound healing was tried 
on tissues of rats (Felméray et al. 1996). In addition, the 

cyclodextrin–epichlorohydrin sorption capabilities were 
tested for the removal of phenylalanine from a protein hydro-
lysate in order to make it digestible for children suffering 
from phenylketonuria (Specht et al. 1981). Also at that time, 
the effectiveness of a cyclodextrin polymer as a tablet disin-
tegrant was studied in direct compression systems (Fenyvesi 
et al. 1984).

Those first attempts to show their capabilities in the 
sorption and release of aromatic model molecules pointed 
to the use of cyclodextrin polymers as controlled release 
agents (Friedman et al. 1989). Specifically, the release of 
cetylpyridinium chloride, an antimicrobial agent, and iodine, 
using cyclodextrin polymers, were patented in the late 1980s 
(Friedman 1988; Szejtli et al. 1988). An earlier example of 
a cyclodextrin polymer as a macromolecular carrier in the 
field of antitumor chemotherapy was published also in the 
mid-1980s (Kaji et al. 1985).

The following decade showed only a few other distinct 
examples in drug delivery. Thus, drugs complexed in cyclo-
dextrin polymers were entrapped into liposomes (McCor-
mack and Gregoriadis 1994). On the other hand, the need 
to prepare degradable materials for medical applications, 
including drug delivery, associating networks using cyclo-
dextrin–epichlorohydrin polymers and degradable copoly-
esters containing adamantyl groups were tested and were 
shown to be pH sensitive (Cammas et al. 1999).

Cyclodextrin-based nanosponges have been designed in 
the last years to increase the dissolution rate, the solubil-
ity and stability of drugs, or to prolong the release time, 
and also applied in semisolid formulations for skin delivery 
(Ansari et al. 2011; Shende et al. 2013; Conte et al. 2014). 
Recently, experimental design has been used to formulate 
tablets using polymeric nanosponges for a combination 
therapy of three anti-inflammatory drugs (Moin et al. 2020).

As mentioned above, cyclodextrin moieties can be incor-
porated to pre-existing polymeric materials via grafting reac-
tions. In most of the drug delivery applications, cyclodex-
trins are attached to polysaccharides (Luzardo-Alvarez et al. 
2014), such as chitosan, for which the adsorption and release 
of ketoprofen, a model drug, was evaluated some time ago 
(Prabaharan and Mano 2005). Although cyclodextrin adds 
new drug inclusional properties to the polycationic poly-
mer, a decrease in mucoadhesion of cyclodextrin-chitosan 
was observed (Venter et al. 2006). More recently, cellulosic 
substrates were grafted by a cyclodextrin polymer to sustain 
the release of antibacterial agents (Cusola et al. 2013). Other 
materials such as poly(hydroxyethylmethacrylate) have also 
been grafted with β-cyclodextrin for its application in soft 
contact lenses conservation liquids and to sustain drug deliv-
ery in the lacrimal fluid (dos Santos et al. 2009). The use of 
some cyclodextrin polymers for therapeutics delivery was 
patented in 2013 (Cheng et al. 2013).
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In the turn of the century, a new class of polymers for the 
delivery of macromolecular therapeutics arose (Gonzalez 
et al. 1999). Thus, low molecular weight polyethylenimine 
crosslinked by cyclodextrins demonstrated its lower cyto-
toxicity and higher transfection efficiency for the delivery 
of plasmid DNA compared with those of polyethylenimine 
(Huang et al. 2006). Another significant achievement has 
been, for instance, the use of a specific functional group such 
as folic acid grafted to polyethyleneimine-cyclodextrin car-
riers, to target the tumour cells (Yao et al. 2009). Intranasal 
mRNA vaccination with the aid of a cationic cyclodextrin-
polyethyleneimine conjugate, capable of overcoming the 
nasal epithelial barrier, has also been recently proposed (Li 
et al. 2016b).

Drug release behaviour can be modulated with the aid 
of stimuli responsive polymers and the design of interpen-
etrated networks (interpenetrated network) permits to com-
bine the temperature responsiveness of poly(N-isopropyla-
mide) gels with the inclusional capabilities of cyclodextrin 
networks (Zhang et al. 2005). Another semi-interpenetrated 
network was prepared by the radical polymerisation and 
crosslinking of N-isopropylacrylamide in the presence of 
β-cyclodextrin-grafted polyethylenimine (Zhang et al. 2008). 
Interpenetrated networks can also be used to develop new 
selective and synergistic sorption capacities for specific 
purposes such as a combined drug release (Fujiyoshi et al. 
2019).

A remarkable pH-responsive behaviour can be achieved 
using acrylic acid containing polymers (Siemoneit et al. 
2006). Other examples have been reported in the recent lit-
erature: highly pH-dependent swelling in graft cyclodextrin/
acrylic acid copolymers for the delivery of ketoprofen (Wang 
et al. 2009), or mucoadhesive hydrogels by the crosslinking 
of poly(acrylic acid) with cyclodextrins for the controlled 
release of diflunisal and fluconazole (Kutyła et al. 2013). A 
biocompatible system based on guar gum, poly(acrylic acid) 
and β-cyclodextrin using a non-toxic crosslinker, tetraethyl 
orthosilicate, for intestinal delivery of dexamethasone, has 
also been reported (Das and Subuddhi 2015). A combination 
of cocktail chemotherapy, photothermal therapy and inhibi-
tion of angiogenesis was investigated using an injectable 
nanocarrier developed by functionalization of carbon nano-
tubes with a pH a thermoresponsive cyclodextrin polymer 
(Das et al. 2020).

In the last decade, triple-response (pH, temperature, and 
glucose) semi-interpenetrated hydrogels were prepared by 
polymerisation in the presence of the magnetite  (Fe3O4) 

nanoparticles, a cyclodextrin/epichlorohydrin polymer 
and a crosslinker (Huang et al. 2012). More recently, a 
carboxymethyl-β-cyclodextrin polymer was grafted on the 
surface of chitosan-coated magnetite nanoparticles by an 
emulsion chemical crosslinking method (Ding et al. 2015).

Finally, cyclodextrin polymers have also recently found 
applications in the field of regenerative medicine (Alvarez-
Lorenzo et al. 2017). Vascular polyester and polyamide 
prostheses can be coated with grafted cyclodextrins that can 
be loaded with an antibiotic in order to reduce the risk of 
post-operative infections (Blanchemain et al. 2005). Poly-
vinylidene difluoride membranes can also be grafted with 
cyclodextrins to improve the capture and subsequent release 
of antiseptic agents (Tabary et al. 2007). Polyamide inguinal 
meshes (El Ghoul et al. 2008) or polypropylene abdominal 
wall implants for the prolonged delivery of ciprofloxacin 
(Laurent et al. 2011) have been prepared using citric acid 
as a crosslinker. Hydroxyapatite used in bone implants can 
also be functionalized with a cyclodextrin polymer for load-
ing antibiotics (Hoang Thi et al. 2010; Taha et al. 2014). 
Recently, injectable hydrogels of polyelectrolyte complexes 
between chitosan and cyclodextrin polymers have been rheo-
logically tested (Palomino-Durand et al. 2019).

As in the case of ‘monomeric’ both natural and deriva-
tive cyclodextrins, an increasing number of publications can 
be found in the most recent literature concerning cyclodex-
trin polymers, e.g. about 80 papers and reviews in 2020. As 
Table 1 shows, many reviews have been published in the 
last six years, and the interested reader is referred to them 
to acquire a better idea of the goals this field of research is 
heading and the paths, or approaches, taken. In addition, 
some other recent reviews also include a section on cyclo-
dextrin-based systems (Larrañeta et al. 2018; Levack et al. 
2018; Solanki et al. 2018; Gim et al. 2019). Cyclodextrins 
have also been recently used to design treatments against the 
coronavirus disease 2019 (COVID-19) (Carrouel et al. 2020; 
Ergoren et al. 2020; Sofiane et al. 2020; Szente et al. 2021).

Conclusion

Immobilized cyclodextrins were first used in the food indus-
try to improve taste, extract some nutrients or flavours, or, 
more recently, as constituents of the smart packaging of 
comestible products. The capabilities of the parent and mod-
ified cyclodextrins as carriers of substances of low solubility, 
such as most drugs, were soon exploited for pharmaceutical 
applications as well. Although the research involving these 
polymers in the food sector is comparatively scarce, the 
potential uses in the pharmaceutical and medical sector have 
been thoroughly investigated, especially in the last decade. A 
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vast amount of papers are currently being published in order 
to explore the applicability of these interesting materials.
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