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Abstract
Food wastage is a major issue impacting public health, the environment and the economy in the context of rising

population and decreasing natural resources. Wastage occurs at all stages from harvesting to the consumer, calling for

advanced techniques of food preservation. Wastage is mainly due to presence of moisture and microbial organisms present

in food. Microbes can be killed or deactivated, and cross-contamination by microbes such as the coronavirus disease 2019

(COVID-19) should be avoided. Moisture removal may not be feasible in all cases. Preservation methods include thermal,

electrical, chemical and radiation techniques. Here, we review the advanced food preservation techniques, with focus on

fruits, vegetables, beverages and spices. We emphasize electrothermal, freezing and pulse electric field methods because

they allow both pathogen reduction and improvement of nutritional and physicochemical properties. Ultrasound tech-

nology and ozone treatment are suitable to preserve heat sensitive foods. Finally, nanotechnology in food preservation is

discussed.

Keywords Food preservation � Electrothermal � Freezing � Ultrasound � Ozone treatment � Pulse electric field �
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Abbreviations
ReFED Rethink Food Waste Through Economics and

Data

GAE Gallic acid equivalent

TPC Total phenolic content

FDA Food and Drug Administration

GRAS Generally recognized as safe

EFSA European Food Safety Authority

Introduction

Food is vital for human survival and development. A recent

review shows that food transmission of the coronavirus

disease 2019 (COVID-19) is overlooked (Han et al.

2020). Food can be consumed in raw or processed form to

obtain energy and sustain growth. Food wastage has

become a major issue worldwide in the recent times. A

considerable amount of food gets wasted at various stages

of the food production and consumption chain. According

to the report of Rethink Food Waste Through Economics

and Data (ReFED), the data in Fig. 1 show the food

wastage distribution for various types of food materials

(ReFED 2016). Globally, due to inefficient supply chains,

rising population and climate change, a large number of

people are deprived of food on regular basis (Leisner

2020). Griffin et al. (2009) showed a detailed study about

the waste generation of different food communities. Out of

the food waste generated, 20% comprised production

waste, 1% of processing waste, 19% of distribution and

60% of consumer generated waste. The major reasons for

wastage were due to shrinkage of food while cooking,

manufacturing issues, supply chain barriers, high consumer

standards, changing climatic conditions, soil runoffs and
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policy constraints (Bräutigam et al. 2014; Silvennoinen

et al. 2014; Filimonau and De Coteau 2019; Gomez-

Zavaglia et al. 2020).

A recent analysis conducted in Finland in 2019 found

more than 50% of the food waste is from households

(Filimonau and De Coteau 2019). The decision between

‘best before’ or ‘use by’ was a tough call to take in

determining shelf life of product for the customers.

However, with the increase in population, consumers

demand food that is fresh, healthy and nutritious. Although

enough food is produced every day to feed the world, the

technology and food produced fails to reach those in need.

Thus, food wastage has become a key challenge to in all

food processing sectors.

Any kind of food when harvested begins to show spoi-

lage responses. One of the sustainable solutions to counter

the food wastage issues is food preservation. The idea of

food preservation was introduced in the ancient times when

our ancestors were finding ways to keep the food fresh and

edible. Concepts like sun drying, salting and pasteurization

were introduced depending on climatic and seasonal fac-

tors. Preservation enabled humans to form communities,

stopped them from killing animals and brought about a

leisure attitude keeping food for additional time.

Rapid industrialization and advent of lean methods

paved the way for processes like thermal treatment, can-

ning and freezing which gave a better shelf life extension

by controlling the pathogens. However, food safety and

security became a major concern due to the growing pop-

ulation and increasing consumer standards and demands

providing healthy and nutritious food (Saravanan et al.

2020). Thus, the concept of preserving food grew rapidly

with an aim to provide food to all. The goal of food

preservation is to inhibit any biochemical reactions and to

restrict entry of bacteria or fungi. The technique allows

minimization of wastage with improved shelf life exten-

sion. Some of the popular conventional preservation tech-

niques like heating, drying and freezing have been

implemented in large industries (Pereira et al. 2018;

Białkowska et al. 2020; Said 2020). However, it has been

found that there are certain disadvantages in heat treatment

and freezing methods such as food shrinkage, texture and

nutrient loss and organic properties leading to a huge

overall loss in the food product (Jayasena et al. 2015).

In the recent years, chemical and microbiological

treatments have been carried out with additives, coatings

and various polyphenolic plant extracts thus posing an

effective solution to food preservation. There is a lack of

research in bridging the gap between the food wastage and

food preservation techniques. This review investigates the

upcoming food preservation technologies which are likely

to play a dominant role in the food preservation industry.

Current trends and advancements in preservation tech-

niques and their applications to foods including fruits,

vegetables, liquid foods and spices are the key aspects

discussed here. The review covers a wide range of changes

brought in conventional technologies and current tech-

nologies in the above fields. Special focus is also given to

nanotechnology with its application in foods, agriculture

and packaging sectors. The data have been collected after

an extensive literature search over the subject surveyed for

the last 15 years taking into account the challenges faced in

industry during preservation. This work could be a perfect

platform for understanding the advancements in food

preservation techniques and its relevance to industry. The

advent of nanotechnology in research and a combination of

various advanced technologies as discussed in the literature

(Butnaru et al. 2019; Nile et al. 2020; Rech et al. 2020;

Tsironi et al. 2020) as well as in this manuscript could be

the ‘‘go-to’’ technologies in the future. Thus, positive steps

Fig. 1 Food wastage for

different food materials based

on weight percentage. The

demand for variety and

abundance as well as inefficient

storage conditions increases the

amount of overall food wastage.

Fruits and vegetables are among

the least expensive and fastest

spoiling foods followed by milk

and dairy products. Data from

ReFED (2016)
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need to be taken to narrow down on the enhancements of

these technologies for having a sustainable and cost-ef-

fective lifestyle.

Prevalent food preservation technologies

Thermal treatment

Heat or thermal treatment is considered as one of the novel

techniques for food preservation. For many years, the

technique is well proven in various food sectors: from

bakery and dairy to fruits and vegetables (Wurlitzer et al.

2019; Gharibi et al. 2020; Prieto-Santiago et al. 2020;

Christiansen et al. 2020). The process generally involves

heating of foods at a temperature between 75 and 90 �C or

higher with a holding time of 25–30 s. Study on preser-

vation enhancement of apple juice beverage by pasteur-

ization and thermal treatment of maize showed a great

impact on the flavor, digestibility, glycemic index, aroma,

color and sensory attributes (Charles-Rodrı́guez et al. 2007;

Zou et al. 2020). A recent report also highlighted five

different types of rice when undergoing hydrothermal

treatment showing results in par with respect to the quality

of market rice (Bhattacharyya and Pal 2020).

The heating of foods reduces the pathogens. However,

extensive research has also concluded nutrient losses,

energy wastages, flavor changes and reduction in the food

matrix (Roselló-Soto et al. 2018). A study conducted on

light and dark honey showed changes in physicochemical

characteristics, antioxidant activities and nutrient variations

post-treatment (Nayik and Nanda 2016; Zarei et al. 2019).

Liquid foods, juices and beverages too have a negative

impact causing gelatinization and browning reactions

(Codina-Torrella et al. 2017; de Souza et al. 2020). Over

the years, constant investigation has been done on opti-

mization studies of heat on exposure of food to improve its

shelf life. Adjustments and slight modification to former

technologies have recently contributed to significant

advances with a combination of electrical and thermal

methods. Different processes like electroplasmolysis,

ohmic heating, and microwave heating of foods have cre-

ated a dramatic impact in the food industry advancements.

Table 1 shows the advanced electrothermal treatment

techniques applied to different foods.

Freezing

Cooling and freezing of products have been extensively

applied for preservation of leafy vegetables, spices and

milk products to maintain the sensorial attributes and

nutrition qualities. Extensively used freezing techniques

involve air blast, cryogenic, direct contact and immersion

freezing, while advanced techniques involve high pressure

freezing, ultrasound assisted freezing, electromagnetic

disturbance freezing and dehydration freezing (Cheng et al.

2017; Barbosa de Lima et al. 2020). Cooling and freezing

process mainly relies on the process of heat transfer.

During cooling, there is a transfer of heat energy from the

food and packaged container to the surrounding environ-

ment leading to an agreement of cooling. Thus, thermal

conductivity and thermal diffusivity greatly affect the

cooling or freezing rate. During the recent years, the stor-

age technique has gained significant interest with the start

of ready-to-eat foods catering to the needs of the consumer.

The foods with their appropriate packaging material and

cool temperature will always inhibit entry of microorgan-

isms as well as maintain food safety. Although cooling and

freezing are effective in their own terms, cooling time,

uneven speed of ice crystal formation, storage expenses

and specialized environments are concerning issues. In

order to understand and overcome these challenges, tech-

nological tools like three-dimensional mathematical mod-

els and computational fluid dynamics models were

evaluated to understand the heat transfer and fluid flow

patterns with various food formulations thus showing an

approach to minimize the issue (Zhu et al. 2019a, b; Bar-

bosa de Lima et al. 2020; Brandão et al. 2020; Stebel et al.

2020). Table 2 shows a description of the various advanced

freezing techniques applied to different foods.

Ultrasound

Ultrasound treatment involves use of high intensity and

frequency sound waves which are passed into food mate-

rials. The efficient technology is chosen due to its sim-

plicity in the equipment usage and being low cost as

compared to other advanced instruments. The versatility of

ultrasound is shown in its application in different fields

ranging from medicine, healthcare to food industry (Dai

and Mumper 2010).

Figure 2 illustrates a representation of different types of

sonicators used for powdered and liquid foods. The process

deals with ultrasonic radiation passing through the target

solution. This action causes a disturbance in the solid

particles in the solution leading to particles breaking and

diffusing into the solvent (Cares et al. 2010). It should be

noted that the intensity of the technique should be kept

constant. This is because as intensity increases,

intramolecular forces break the particle–particle bonding

resulting in solvent penetrating between the molecules, a

phenomenon termed as cavitation (Fu et al. 2020; Khan

et al. 2020). Further enhancement of ultrasound extraction

is dependent on factors like improved penetration, cell

disruption, better swelling capacity and enhanced capillary

effect (Huang et al 2020; Xu et al 2007). Table 3 shows the
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Table 1 Advanced electrothermal treatment techniques used in the food industry

Advanced

techniques

Technology involved Application in food materials References

Sample(s) analyzed Conclusions

Electroplasmolysis Involves effective destruction of cell

membrane matrix of different food

materials with help of high electric

current

Helpful in increasing the efficiency of

extraction

Apple, cucumber, pear,

carrot, banana

(Pear, banana:

900–1100 V/cm

Apple, cucumber,

carrot: 200–400 V/

cm)

Electric field strength depends on

the type of tissue (Disintegration

index\ 0.5)

Electric field higher for cells having

secondary cell wall

Bazhal et al.

(2003)

Tomato

Range of field strength

test: 36–108 V/cm

Treatment time: 5– 30 s

Enzyme inactivation of pectin

methyl esterase and Aspergillus
niger decreased with increased in

treatment time at 108 V/cm

Highest amount of pectin obtained

was 3.56% at 36 V/cm for 80 s

Yildiz and

Baysal( 2006)

Microwave

heating

(post-

pasteurization)

Involves absorption of electromagnetic

energy leading to a temperature

increase of the food (due to high

dielectric capacity) thus improving

the product quality

Microwave heating is greatly

influenced by shape, size, food matrix

and equipment

Gurum

(Citrulluslanatus var.
Colocynthoide)

Microwave power:

800 W

Time: 6 min

Frequency:2450 MHz

Increase in oil extraction yield from

27.6% to 35.4%

Acid value increase from 0.68 mg

to 0.95 mg KOH/g of oil

Increase in polyphenol content from

22.6 to 25.3 mg Gallic acid

equivalent (GAE)/kg oil

Increase in antioxidant activity

from 59.2–64.7%

Karrar et al.

(2020)

Saffron

Temperature:45–125 �C
Time:10–30 min

Solvent concentration:

Ethanol (0–100 v/v

%)

Process conditions of 95.15 �C,

30 min and ethanol concentration

of 59.5% was considered

optimum for microwave heating

Sarfarazi et al.

(2020)

Apple juice

Power: 270–900 W

Frequency:2450 MHz

Treatment time: 83 �C
for 30 s

Reduction in microbes (E coli)
post-microwave treatments

Treatment between 720–900 W for

60–90 s showed 2 to 4 log

population reduction in microbes

Cañumir et al.

(2002)

Ohmic heating Involves heating of the food by the

passage of electric current. The food

product acts as an electric resistance

thus heating the whole matrix

Higher the voltage applied, better the

more the heat generated

Orange juice

Temperature: 40–95 �C
Time: 60 s

Comparison between conventional

thermal heating and ohmic

heating showed changes in the

antioxidant activity (ascorbic

acid)

7% decrease observed at 42 V/cm,

69 �C
11% decrease observed at 44 V/cm,

70 �C

Demirdöven

and Baysal

(2014); Salari

and Jafari

(2020)

Tomato juice

Conventional heating:

75–300 s

Ohmic heating: 15–60 s

Lycopene presence observation and

detection and comparison

between conventional and ohmic

heating

Conventional: 20.5–23.3% increase

observed

Ohmic heating: 21.3–23.6%

Makroo et al.

(2020); Salari

and Jafari

(2020)

Orange juice

Hot water treatment:

90 �C, 15–60 s

Cartenoids detection

Hot water: 2.3–3.9% decrease in

carotenoids

Funcia et al.

(2020);

Makroo et al.

(2020)
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Table 2 Advanced freezing techniques widely applied for different foods

Advanced freezing

techniques

Technology involved Application in foods References

Sample Conclusions

High-pressure freezing Involves freezing water at high

pressure below 0 �C so that it

forms small ice crystals

instantly once the pressure is

released

Process takes place with the

absence of heat

Crystallization occurs instantly

once high pressure is released

Preservation of original properties

and quality improvements

noticed

Comparison of sugar-rich

dairy-based food foams

(ice creams) and a non-

aerated liquid system

Maximum pressure

applied: 360 MPa at

-25 �C

Volume fraction of the air after

treatment—78%

Crystal size reduction—40 lm to

34 lm

Overall improvements in sensorial

properties

Volkert et al.

(2012); You

et al. (2020)

Kombu seaweed

(Laminaria
ochroleuca)

Process conditions: 5 �C,

400–600 MPa, 5 min

followed by

refrigeration at 5 �C or

freezing at -24 �C

Comparison of salted and unsalted

seaweed

Detection of 103 volatile

compounds found. Major

compounds detected were

aldehydes, alcohols,

ketones, alkanes,

alkenes, and acids

Freezing lowered levels of

hydrocarbons, alkanes and

thiazoles

Salting increased levels of acids,

alcohols, pyranones, lactones and

thiazoles

López-Pérez

et al. (2020)

Ultrasound-assisted

freezing

Involves passing of sound waves

in between the food. Can be of

low frequency (\ 100 kHz) or

high frequency (20–100 kHz)

No destruction of food

Intensity, frequency of ultrasound,

position of samples, cooling

medium temperature key

parameters for the process

Can be used to treat both solid and

liquid samples

Cantaloupe melon juice

(Microcystis
aeruginosa)

Testing for probiotic substrate

Lactobacillus casei

Study done for a period of 42 days

at 4 �C
Reduced caloric value observed

Zendeboodi

et al. (2020)

Grape juice

Amplitude of 50% and

70% with treatment

times of 0, 2.5 and

5 min

Temperature

maintenance: 50–80 �C

Comparison of ultrasound and

pasteurization treatment was

done

Total phenolic content (TPC) was

same for both the treatments at

10 min with amplitude of 70%

pH decreased and total soluble

solids increased with amplitude

and treatment time

Results indicated usefulness of

juice sonication to enhance

inactivation of pathogens

Margean et al.

(2020)

Pomegranate juice Results showed ultraviolet 5.1 W/

cm2 dosage, 3.5 L/min flow rate

and 50 �C microbes were below

the detection limits

Lower temperatures could reduce

the microbial activity preserving

the bioactive compounds

Khan et al.

(2020);

Alabdali et al

(2020)

Radioactive freezing Not predominantly used in

freezing

Radio waves generate a turning

force in the water molecule, and

an ice cluster is created due to

dielectric and dipolar properties

of water

Onion, potato, ginger,

carrot

Dosage: 0.05–0.15 kGy

Inhibition of sprouting

Shelf life enhancement

Prakash (2016)

Cereals, fruits

Dosage: 0.15–0.5 kGy

Phytosanitation

Sterilization purposes

Mycotoxin decontamination

observed most effect with

advantages in nutrient qualities

Ravindran and

Jaiswal

(2019);

Mousavi

Khaneghah

et al. (2020)
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types of ultrasound technologies available which have

created paths for efficiency improvements.

Ultrasound is slowly paving way into two most thriving

sectors in the food industry, namely wine making and dairy

production. Figure 3 shows the thermosonication process

widely used in processing of milk and wine.

Milk is generally pasteurized in various industries to

prevent spoilage and kill the microorganisms present. The

utilization of a low-frequency ultrasound or combination of

thermosonication (to 11.1 s) or manothermosonication

could enhance the safety, quality and functional properties

of product by 5 log times (Bermúdez-Aguirre et al. 2009;

Deshpande and Walsh 2020; Gammoh et al. 2020). Low-

frequency ultrasound alone has also played a significant

role in improving the textural and homogenization effects

of yoghurt, cheese and skimmed milk (Yang et al. 2020).

With a shorter time interval, and thermosonication-applied

(20 kHz, 480 W, 55 �C) production was improved to 40%

and also had a positive impact on its organoleptic proper-

ties (Tribst et al. 2020).

Production of wine fermentation and alcoholic drinks

always faces an issue in tackling microorganisms or yeast.

Conventional methods generally involve use of chemical

preservatives like sulfur oxide to prevent spoilage or

Table 2 (continued)

Advanced freezing

techniques

Technology involved Application in foods References

Sample Conclusions

Dehydration freezing

or

osmodehydrofreezing

Involves osmotic dehydration and

freezing techniques

Food is first dehydrated (water

removal) and immediately

frozen

Shelf life extension observed due

to accelerated freezing process

Low energy consumption, low

cost of packaging

Mango

(Unripe vs Ripe ‘‘Kent’’
mangoes)

Treatment: 50 �C in 60

brix sugar solution with

2 g calcium lactate/

100 g with pectin

methyl esterase

Unripe mangoes showed two- to

fivefold soluble solid gain as

compared to ripe

Unripe samples had lowest water

loss with reduction in lightness.

Ripe samples were stable

Pectin methyl esterase improved

rigidity in mangoes

Sulistyawati

et al. (2018)

Pineapple with sucrose

syrup

Treatment: 2 h at 40 �C

Changes in pH, total acidity,

soluble solids, and water

observed

Dry matter content increase during

multiple stage

osmodehydrofreezingStudy

conducted showed multistage

osmodehydrofreezing gave better

performance than single stage

osmodehydrofreezing

Fernández et al.

(2020)

Fig. 2 Types of ultrasound

treatments: bath sonicator and

probe sonicator. The treatment

works on the principle of

cavitation in which there is an

energy transfer among food

particles leading to bubble

formation and collapsing. The

technique requires minimal

power providing more

efficiency than traditional

drying methods. It is used for

treating various powdered or

liquid foods
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thermal pasteurization followed by filtration to get the pure

beverage. A recent study reported significant reduction of

about 85–90% lactic acid bacteria with high power ultra-

sound at 24 kHz for 20 min for treatment of wine (Luo

et al. 2012; Gracin et al. 2016). However, careful handling

should be carried out in order to maintain the flavor and

texture (Izquierdo-Cañas et al. 2020; Xiong et al. 2020).

Ultrasound studies have also found applications in iso-

lation of bioactive compounds and processing pastes and

juices in many fruits and vegetables. Recently, the tech-

nique was used to find the total phenolic content in spices

like saffron (Teng et al. 2019; Azam et al. 2020; Yildiz

et al. 2020). Table 4 shows the application of ultrasound

technologies for various food crops. Thus, it can be con-

cluded that ultrasound is a more sustainable technique than

other traditional drying treatments.

Ozone treatment

With the growing demands of consumer slowly moving

towards healthy meals and sustainable lifestyle, the

demand for organic foods have increased rapidly. Con-

sumers need a functional food that is free from additives,

preservatives with a decent shelf life span. Thus, the con-

cept of ozone treatment technology has risen in recent

years. The reason for choosing ozone is due to its diverse

properties and quick disintegration.

In simple words, ozone is an allotrope of oxygen. The

molecule is formed when oxygen splits into a single oxy-

gen or nascent oxygen in the presence of light or ultravi-

olent radiation. Ozone formation is described by chemical

equations as mentioned below (Eqs. 1 and 2) (Brodowska

et al. 2018).

O2 þ e� ! 2O ð1Þ
O2 þ O ! O3 ð2Þ

The compound quickly decomposes into oxygen molecule

and possess a high oxidation potential (2.07 V) making it a

good antimicrobial and antiviral agent (Fisher et al. 2000;

Nakamura et al. 2017) as compared to chemical preserva-

tives like chlorine (1.35 V), hydrogen peroxide (1.78 V)

and hypochlorous acid (1.79 V) (Pandiselvam et al. 2019;

Afsah-Hejri et al. 2020). Apart from this, ozone removes

the necessity to store harmful chemicals as the gas can be

made instantly. The energy required is also minimal as

compared to thermal treatment giving more importance to

the shelf life (Pandiselvam et al. 2019).

Over the recent years, ozone has been listed by the Food

and Drug Administration (FDA) as a generally recognized

as safe (GRAS) solvent. This has led to a demanding

choice in food processing and preservation sectors to

ensure safety and standards in products. When in com-

parison with chlorine, its degradation leaves negligible

residue when treated with solid foods or beverages. The

technology in combination with ultrasound was also shown

to enhance the bacterial safety without any damage in

cabbages (Mamadou et al. 2019). Consumer grade ozone

was recently proven effective in disinfecting plastic boxes

for storage (Dennis et al. 2020).

Table 5 shows the effect of ozone treatment on pesticide

degradation in various fruits and vegetables production.

The effect of ozone treatment depends on the type of

pesticide and food material, environmental conditions, time

interval and the strength of pesticide. When horticulture

crops were compared, tomato and lettuce had the best

pesticide removal efficiency while apple and chili were the

least. It was seen that the type of food matrix and structure

also play a key role in preventing the growth of pathogens.

Ozone can thus be considered as an advanced emerging

method for multiple sectors due to its feasibility, easiness

and less time consumption.

Fig. 3 Thermosonication

processing generally used for

treating milk and wine samples

for improving the shelf life. The

treatment can prove to be cost-

effective with reduced

processing temperature due to

the use of sonication as

compared to conventional heat

treatment or addition of

synthetic preservatives

Environmental Chemistry Letters (2021) 19:1715–1735 1723
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Pulse electric field

Pulse electric field technology is an advanced pre drying

treatment involving shorter residence time for treatment of

foods. The method was widely recognized due to its con-

tinuous operation and low requirement of electric fields

(1–5 kV/cm). The method could be considered as a sub-

stitute for thermal drying and could enhance the food

drying as it requires a very low temperature of 40 �C for

functioning (Barba et al. 2015; Wiktor et al. 2016). Fig-

ure 4 shows the representative diagram of the process

involved in treatment of liquid foods and paste using pulse

electric field.

The methodology of pulse electric field involves placing

the food (fruit, vegetable, milk or any juices) between two

electrodes after which a pulse is applied with high voltage

(50 kV/cm) for short time intervals. The principle is a

combination of electroporation and electropermeabilization

(Barba et al. 2015). The electric field breaks the cell

membrane matrix of the food thus enhancing the nutritive

qualities, safety and increasing shelf life. The factors

affecting pulse electric field involve field strength, pulse

width, frequency, treatment time, polarity and temperature

used (Odriozola-Serrano et al. 2013; Wiktor et al. 2016).

Over the years, demand for pulse electric field has

grown drastically in all food sector areas. It can be used for

destruction of bacteria (E coli) in milk. The treated milk

Table 4 Ultrasound technologies for various food crops

Food matrix Method Frequency

(KHz)

Time

(min)

Temperature

(�C)

Power

(W)

Conclusion References

Onion Ultrasound with

blanching

20 1,3,5 70 in hot

water

200 Retention of quercetin and other

bioactive compounds observed

Posed as a better method as

compared to drying treatment and

in terms of sustainable

approaches

Ren et al.

(2018); Ruivo

Da Silva et al.

(2020);

Santiago et al.

(2020)

Tomato

paste

processing

waste

Ultrasound – 1.5–18 – – Lycopene extraction using

sunflower oil (2.18–36.8%) as

green solvent

87.25% yield contrast as compared

to conventional organic solvents

(at 70 W/m2 at 10 min)

Reductions in peroxide and

p-anisidine values observed

Rahimi and

Mikani (2019);

Sengar et al.

(2020)

Pomegranate Ultra violet

radiation

sterilization and

ultrasound

– 10 at 3.5

L/min

flow

50 59 Microbial activity (at 200 W) with

ultraviolet and ultrasound was

limited as compared to traditional

pasteurization process preserving

bioactive compounds

Alabdali et al.

(2020)

Soursop

nectar

Thermosonication 24 10 51 – Inactivation of E. coli and S. aureus
for maintaining quality and

stability of nectar using acoustic

energy density of 1.3–1.4 W/mL

4.5–5 log (colony forming unit per

mL) reduction in pathogens

Inactivation of polyphenol oxidase

found

Thermosonication nectar mainly

contained 85% ascorbic acid

(Anaya-Esparza

et al. 2017)

Saffron Ultrasound,

microwave

assisted extraction

and ohmic heating

assisted extraction

30 – – 45–225 Highest total phenolic content

(928 mg/100 g) was found for

ohmic heating assisted extraction

Extracts showed inhibition in lipase

enzyme

Presence of kaempferol and

anthocyanins found in all extracts

Sarfarazi et al.

(2020);

Hashemi et al.

(2020)
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was found to be high in quality and possessed an increased

shelf life. A recent investigation was also carried out on

watermelon and citrus juices which showed changes in

physicochemical and antimicrobial properties (Aghajan-

zadeh and Ziaiifar 2018; Bhattacharjee et al. 2019). Table 6

summarizes the outcomes of application of pulse electric

field treatment on various food materials.

Nanotechnology for food preservation

Nanotechnology has become a huge breakthrough with

great potential to promote sustainability. It integrates

branches of applied sciences such as physics, biology, food

technology, environmental engineering, medicine and

materials processing. In simple terms, nanotechnology

involves any material or nanoparticle having one or more

dimensions to the order 100 nm or less (Auffan et al. 2009;

He et al. 2019). The technology is preferred as they possess

different properties like slow release action, target specific

nature, precise action on active sites and high surface area

(Joshi et al. 2019). The reason for the success of nan-

otechnology is due to its promising results, no pollutant

release, energy efficient and less space requirements. Apart

from these success factors, nanotechnology has also shown

versatile applications in terms of safety, toxicity and risk

assessment in areas of agriculture, food and environment

(Kaphle et al. 2018). Figure 5 shows the different avenues

of nanotechnology development in the food sector.

Nanomaterials are broadly classified into two types,

namely organic and inorganic, depending on their nature

and functionalities (Table 7).

Nanotechnology has been regarded as a promising tool

for growing the economy in near future as well as main-

taining the plant growth and nutritional qualities of the

food commodity. Use of nanofertilizers and precision

farming has posed several benefits in weed control and

decrease in chemical pesticide thus enhancing shelf life.

Growing use of nanotechnology in agro-food system

industry may even pose as a solution to solve challenges in

Table 5 Effect of ozone treatment on pesticide degradation in horticulture production

Food

material

Type of pesticide Concentration of pesticide Time kept under

ozone (min)

Level of

reduction (%)

References

Apple

fruit

Boscalid 3 ppm in ozonized water 15–20 42 Sadło et al. (2017)

Cabbages Chlorothalonil 250 mg/h ozone gas 15 77 Chen et al. (2013)

Carrots Difenoconazole 5 mg/L ozone gas 10–15 95.3 Souza et al. (2018)

Chili Chlorpyrifos Ozone fumigation with constant flow rate

of 5.5 g/h

30 68 Sintuya et al.

(2018)

Lettuce Chlorpyrifos 5 ppm ozone gas 15 97.15 Wu et al. (2019)

Spinach Chlorpyrifos

Acetamiprid

Ozone wash with water (0.4 mg/L) 30 53 Wu et al. (2019)

Tomato Fenitrothion Ozone wash with water (2 ppm) in a

microbubble format

20 98.32 Pandiselvam et al.

(2020)

Fig. 4 Application of pulse

electric field generally used for

treating liquid foods and pastes.

The technique is a nonthermal

food preservation method

involving usage of pulses of

electricity into the food

material. The treatment gives

high quality food with almost no

change in texture or quality thus

maintaining the original taste of

food

Environmental Chemistry Letters (2021) 19:1715–1735 1725
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food security and agriculture (Yata et al. 2018; Ghouri

et al. 2020). The three primary avenues where the tech-

nology could grow include food processing, agriculture and

packaging.

Nanotechnology in food processing

The concept of nanotechnology has paved the way in

processing and formulation of colorants, sensors, flavors,

additives, preservatives and food supplements (nanoen-

capsulation and nanoemulsion) in both animal and plant

Table 6 Effect of pulse electric field treatment on food materials

Food

material

Process conditions Outcomes References

Blueberries 2 kV/cm, 30 ls for 4–6 h

at 40 �C, 60 �C, 75 �C
Least impact on the nutritive qualities post-treatment till

75 �C
Process saved the drying time by 2–30 h

Yu et al. (2017)

Date palm

fruit

1,2,3 kV/cm, 30 pulses, 100 ls Positive impact and increase in carotenoids,

anthocyanins, flavonoids and phenolic

Increase in the volatile and bioactive compounds at

3 kV/cm

Better feasibility as compared to solvent extraction

Yeom et al. (2004); Siddeeg

et al. (2019)

Apple

juice

12.5 kV/cm, 27.6 L/h flow at 76.4 kJ

72 �C for 15 s

85 �C for 30 s

Huge variations in peroxidase activities and change in

polyphenol oxidase

Wibowo et al. (2019); Salehi

(2020)

Red beet 2–6 kV/cm, 10–80 ls Betanin concentration in red beet increased by 6.7–7.2

times post-treatment

Luengo et al. (2016)

Olive paste 16 kV, 145 A, 30 �C, 200 ls, 75 Hz,

30 min

Extractability increase from 79.5% to 85.5%

Enhancement of elenolic acid and tyrosol

Overall olive oil extraction and quality found

Tamborrino et al. (2020)

Clover

sprouts

1,2.5,5 kV/cm, 21 �C and 80%

humidity, 12 h for 7 days

Dominant carotenoid was lutein during light exposure

Increase of 6–8% beta-carotene found in red clovers

Decrease of 3.3% zeaxanthin observed

Gałązka-Czarnecka et al.

(2020)

Fig. 5 Applications for nanotechnology in agriculture, food process-

ing and packaging. Nanotechnology has gained a lot of interest with

versatile applications and unique properties enabling efficient

processes and quality products. The use of nanomaterials, nanosen-

sors, precision agriculture and advanced packaging can play a

promising role in improving the food sector
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based products (He et al. 2019). The diversity of nan-

otechnology in various fields has led to introduction of

nanosensors in food processing industries. Nanomaterials

have shown several electrochemical and optical properties

in different sauces, beverages, oils and juices. Table 8

shows the different nanomaterials used as sensors in food

industry.

Distinctive characteristics have shown great qualities in

the area of food processing as ingredients and supplements.

Oxide chemicals such as magnesium oxide and silicon

dioxide can act as a food flavor, food color and a baking

agent. The use of titanium dioxide has also been certified as

an additive in gums, sauces and cakes (Weir et al. 2012).

Additionally, copper oxide, iron oxide and zinc oxide have

been categorized as GRAS materials by European Food

Safety Authority (EFSA) for animal and plant products (He

et al. 2019).

Nanotechnology in agriculture

The use of nanotechnology in agriculture and the concept

of precision agriculture has gained a lot of interest in the

recent years. The main goal of agriculture is to reduce the

volume of chemicals, minimize nutrient losses and increase

the overall performance of crops. Although chemical fer-

tilizers are added for increasing the crop yields, it pollutes

and harms the soil, water, food and environment (Riah

et al. 2014). Precision agriculture is one of the green ways

to tackle this issue. It is a system based on artificial intel-

ligence that understands crop quality, soil quality and

Table 7 Types and functionalities of nanomaterials

Category Nanomaterial Use of nanomaterial Application in foods References

Inorganic

nanoparticles

Silver

nanoparticles

Generally used as antimicrobial agents in food

packaging and storage containers

Recently used as a stabilizing agent in nanofillers

Effective food

packaging solution

preventing entry of

pathogens

Crop yield variations

seen in chili, radish,

lettuce

Li et al. (2020);

Zorraquı́n-Peña et al.

(2020); Seray et al.

(2020)

ZnO

nanoparticles

Considered a biocompatible material

Nanomaterial found positive in control of food borne

pathogens

Increase in quality of

cucumber by 36%

Carotene, zinc and iron

increase in cucumber

observed

(Venkatasubbu et al.

2016; Seray et al.

2020)

Se

nanoparticles

Combination of Cu ? Se nanoparticles increased the

overall yield and chlorophyll content of tomato

Modification in the

enzymatic activity of

tomato plant

Tomato yield increased

by 21% with 10 mg/L

Se nanoparticles

(Hernández-Hernández

et al. 2019)

TiO2

nanoparticles

Photo activities shown on food contact surfaces

Dual usage found in cosmetic (in sunscreens)

Packaging film of TiO2

proved better for

storage of green

lettuce

(Weir et al. 2012; Peter

et al. 2015;

Yemmireddy and Hung

2015)

SiO2

nanoparticles

Anti-caking agent in certain powdered foods

Abiotic stress resistant in plants and crops

Reduced the

development stages of

grapes (dosage: 0.5 g/

L)

Lim et al. (2015); Zahedi

et al. (2020)

Organic

nanoparticles

Lipid

nanoparticles

Used as oral delivery systems in drugs and active

ingredients

Nutraceutical and drug

delivery systems

Severino et al. (2012);

Ban et al. (2020);

Paliwal et al. (2020)

Protein

nanoparticles

Great potential in catalysis, synthesis, bio imaging

Found in foods in the form of casein

Bovine milk and other

dairy foods

Samadarsi et al. (2020)

Carbohydrate

nanoparticles

They are digestible or indigestible polysaccharides

like sodium, alginate, pectin and cellulose.

Physicochemical stability and solubility over algal

oil nanoparticles showing high efficiency of 98.57%

in the system

Encapsulation of oil Verma et al. (2020);

Wang et al. (2020b)
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detects weed controls generally through drones. The area

has recently gained interest in nutritional management and

various optical properties to address food wastage and to

feed the growing population (Duhan et al. 2017). Majority

of plant species (cereal grains like wheat, rice, barley,

tobacco, soybean, rye) follow the biophysical process of

photosynthetically active radiation and electron transport.

These targets have been identified to improve photosyn-

thesis activity.

There has been many discussions and investigation on

the concept of plant nanobionics and photosynthesis. Plant

nanobionics deals with appropriate insertion of nanoparti-

cles into the chloroplast of the plant cell for improving the

plant productivity. It has been proven that titanium dioxide

nanoparticles (nTiO2) have become the ‘‘go-to’’ nanopar-

ticles for efficient photosynthesis process (Hong et al.

2005; Gao et al. 2006, 2008). The application of nTiO2

with spinach and tomato leaves under mild heat stress

improved the overall photosynthesis process showing sig-

nificant improvement in the transpiration and conductance

rates (Gao et al. 2008; Qi et al. 2013).

Nanomaterials like silver ions, polymeric compounds

and gold nanoparticles are also being investigated for use

in pesticides. Usage of gold and silver nanoparticles has

also had a positive effect to restrict the pest and improve

plant growth (Ndlovu et al. 2020). Studies have also

investigated on sulfur-based nanoparticle (35 nm) for

organic farming which prevent fungal growth from apple

tomatoes and grapes (Joshi et al. 2019).

Nanotechnology in food packaging

Many fresh fruits and vegetables are sensitive to oxygen,

water permeability and ethylene leading to deterioration of

food quality (Gaikwad et al. 2018, 2020). Thus, food

packaging plays a critical role in addressing this issue.

Nanoparticles and polymer-based composites have proven

to be the best solutions (Auffan et al. 2009; Joshi et al.

2019). The application of a natural polymer or a biopoly-

mer and coating it on the food surface has recently shown

promise in preserving foods (Luo et al. 2020). Table 9

shows the different applications of nanomaterials used in

food packaging. Although the application of nanomaterials

in smart packaging is in its early stage, rapid advancements

have been carried out through the years as it offers safe and

sustainable approach (Rai et al. 2019).

Table 8 Use of nanomaterials as sensors in the food industry

Food sensor

type

Material Detection Sample

chosen

Nanomaterial Functions and outcomes References

Electrochemical Tert-

butylhydroquinine

Edible oils in

bakery

industry

Au nanoparticles

electrodeposited on

graphene ribbons

Conductivity improvements due to

increase in surface area on the

target sites

Delfino et al. (2020)

Antioxidants Mixed fruit

juices

Graphene nanoribbons Enhanced surface and

electrochemical properties seen

Ye et al. (2020)

Glucose, sucrose

and toxins

Soft drinks Cu nanoparticles based

inks

Carbohydrate oxidation Pradela-Filho et al.

(2020)

Melamine Milk Carbon nanoparticles Conductive and functional layer for

detection of Salmonella strains

Nguyen et al. (2020)

Adulterants Chili sauce Pd/Au nanocrystals Enhanced catalytic activity and

high surface area

Zou et al. (2020)

Residual pesticides Potato, onion

and

cabbage

TiO2/Pd nanostructure Improved electrochemical

properties and conductivity

Naser-Sadrabadi

et al. (2020)

Pathogens

(Salmonella
species)

Skimmed

milk

Au Nanoparticles Electrochemical generation of

signals

Echegoyen et al.

(2016); Nguyen

et al. (2020)

Heavy metals

(Hg ?)

Water Au Nanoparticles Higher surface area for thiophenol

modified species

Tian et al. (2020)

Optical Mycotoxins Milk CeO2 nanoparticles Catalytic activity Goud et al. (2020)

Gallic acid Clove and

green tea

extracts

Au nanotubes bismuth

based

Physical and morphological

changes

Madhusudhana et al.

(2020)

Antibiotics

(Sulfonamides)

Honey Au nanoparticles Surface plasmon resonance

properties

Ye et al. (2020)
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The usage of chitosan and chitosan-based additives and

films has been recently explored with multiple functional-

ities with positive outcomes. Chitosan-based films, in

general, possess antioxidant, antimicrobial and antifungal

properties making it a good replacement for synthetic

chemicals (Yuan et al. 2016; Yousuf et al. 2018). The use

of chitosan-based derivatives offer a promising solution

towards maintaining the shelf life of foods without dis-

turbing its sensorial properties (Kulawik et al. 2020). A

recent study proved that chitosan-based matrices can also

be used for clarification, preservation and encapsulation of

different beverages (alcoholic, non-alcoholic as well as

dairy based), fruit juices, tea and coffee (Morin-Crini et al.

2019). Apart from this, nanocomposites (combination of

different nanomaterials) have shown efficient thermal and

barrier properties at a low cost. Researchers evaluated the

concept of the nanocomposites membranes and concluded

that it decreased the water permeability in foods by a value

of 46 (Jose et al. 2014). An increase in corrosion resistance

was evaluated with use of clay and epoxy composites

(Gabr et al. 2015).

Edible coatings with nanomaterials have also shown

increasing potential towards food storage of fruits and

vegetables. These coatings hold useful while transportation

from factory to retailers and also maintain the nutritional

qualities without causing any physical damage. Edible

coatings are generally prepared from fats, proteins and

polysaccharides which have been shown to block gases.

Nanoclays and nanolaminates have also shown promising

results to improve their barrier properties to gases for

efficient food packaging (Echegoyen et al. 2016).

Nanolaminates involve layer-by-layer deposition of a spe-

cial coating where the charged surface is applied on food.

The application of carbon nanotubes as nanofillers in

gelatin films has also been successfully demonstrated (Rai

et al. 2019). The biofilms are found to have improved

tensile strength, mechanical, thermal and antimicrobial

properties (Jamróz et al. 2020; Zubair and Ullah 2020).

Thus, nanomaterials have emerged as an integral part while

addressing nanotechnology in food packaging.

Conclusion

With tons of foods being wasted every single day, food

preservation has been the need of the hour for extending

the shelf life to help feed millions of people globally.

Although plenty of advanced technologies have been

introduced, major strides need to be taken to have a sus-

tainable food system. Availability, access and proper uti-

lization of food should be well balanced in order to

understand the value of food security. It is important to

maintain a correct and precise balance of technology with

respect to design and cost effectiveness. Constant investi-

gation is also being carried out in the area of finding more

natural preservatives with excellent antioxidant and

antimicrobial properties as they are safe to consume and

eliminate processed food. The concept of hurdle technol-

ogy, which combines multiple techniques to measure dif-

ferent variables like temperature, water activity, pH,

moisture content and enzyme activities has also been

explored to meet the consumer demands for an efficient

food system. Another growing solution is in the area of

nanotechnology in foods which has been discussed in this

article. However, research on different nanomaterials, its

toxicity, its safety to consumers and genetic factors is still

under debates and discussions. The concept of bioencap-

sulation and nanoencapsulation in food supplements and

drug developments is also growing at a fast pace keeping in

mind the health and environmental effects. Further work

needs to be done in data visualization and artificial intel-

ligence, internet of things and machine learning. This

would help changing the food and agricultural industry in

the area of functional foods and crops through

digitalization.
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Table 9 Applications of nanomaterials in food packaging

Nanomaterial Packaging material Food samples Application of nanomaterial References

Ag Cellulose films Tomatoes Antibacterial properties Gu et al. (2020)

TiO2 Chitosan Grapes Preservative possessing antimicrobial activity Zhang et al. (2017)

TiO2 Polyacrylonitrile Tomatoes Ethylene scavenging property Zhu et al. (2019b)

ZnO Chitosan Black grape, apple, mango, tomato Antioxidant and antibacterial properties Yadav et al. (2021)
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