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Abstract
Antimicrobial resistance (AMR) represents a major global health threat, as well as a major hazard to sustainable economic 
development and national security. It remains, therefore, vital that current research aligns to policy development and imple-
mentation to alleviate a potential crisis. One must consider, for example, whether drivers of antibiotic resistance can be 
controlled in the future, or have they already accumulated in the past, whether from antibiotics and/or other pollutants? 
Unfortunately, industrial heritage and its pollution impact on the prevalence of environmental AMR have largely been 
ignored. Focussing on industrialised estuaries, we demonstrate that anthropogenic pollution inputs in addition to the natural 
diurnal environmental conditions can sufficiently create stressful conditions to the microbiome and thus promote selective 
pressures to shift the resistome (i.e., collection of resistance traits in the microbiological community). Unfortunately, the 
bacteria’s survival mechanisms, via co-selective pressures, can affect their susceptibility to antibiotics. This review high-
lights the complexity of estuarine environments, using two key contaminant groups (metals/toxic elements and polyaromatic 
hydrocarbons), through which a variety of possible chemical and biological pollutant stressors can promote the emergence 
and dissemination of antimicrobial resistance. We find compelling divers to call on more focused research on historically 
disrupted ecosystems, in propagating AMR in the real world.
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Introduction

The development of bacterial antimicrobial resistance 
(AMR) represents a central contributor to ecosystem-medi-
ate health impacts (Munita and Arias 2016). However, these 
“superbugs” not only develop from exposure to antibiot-
ics, but also, among other factors, exposure to natural and 
anthropogenic conditions in their environment. As a survival 
strategy, some bacteria can acquire genes as an attempt to 
resist the stressors—e.g., SOS response (Beaber et al. 2004). 
Any acquired, or developed, resistance traits proven benefi-
cially effective to their survival becomes retained in future 

generations and increases the prevalence of resistance genes 
within a single population. However, there are cases where 
resistance genes can become horizontally transferred on 
genetic elements to other bacteria; the unfortunate conse-
quence is that recipient bacteria could be pathogenic. This, 
in summary, highlights the possibility that stressed bacteria 
could trigger genetic exchanges, which may ultimately lead 
to increased antibiotic resistance.

Antibiotics are pharmaceutical products used to fight 
bacterial infections and are considered a type of antimicro-
bial; sub-inhibitory exposures to antibiotics can result in 
bacteria developing a resistance as a natural adaptive reac-
tion (European Centre for Disease Prevention and Control 
2014; Lemire et al. 2013; Bernier and Surette 2013). Fur-
thermore, this can be applicable to other micro-organisms 
such as fungi, viruses and some parasites, which collectively 
would be referred to as resistant organisms (World Health 
Organization 2018). These are known to be the cause of 
antimicrobial resistance.
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Furthermore, there has been an increase in pharmaceu-
tical products within effluent introduced into water bodies 
(Larsson 2014); industrial effluent and pollution can be 
considered a major contributor to ARG presence which is 
discussed below.

Here, we focus on the conditions within estuaries and 
how they may stress the bacteria. The determination of AMR 
development (or retention) in estuarine systems is critical 
as they often represent highly impacted sensitive ecosys-
tems: (1) they have historically been chosen for industrial 
and shipping activities; (2) they represent a major receptors 
and conveyors of pollutants that could, either currently or in 
future, threaten public or aqua-cultural health; (3) the con-
fluence of marine and fresh waters continuously change in 
water properties, which can ecologically impact the micro-
biomes (communities of micro-organisms) with a range of 
sedimentary and geochemical conditions; and (4) the inter-
tidal zones are globally the most densely populated regions 
(Martinez 2008).

In many developed nations, contemporary regulations 
help limit discharges into major estuaries, and many systems 
have (at least) begun the process towards ecological recov-
ery. However, issues of legacy pollutants, which have been 
deposited and accumulated from past anthropogenic activi-
ties, often remain. People tend to investigate, remediate and 
minimise the risks associated with their chemical toxicity 
but often ignored (or not considered) are the biological risks 
that tend to be associated with past microbial depositions, 
but also their chronic exposure and adaptations to pollutants. 
Should we be concerned with increased bacterial risks due 
to legacy pollution—in particular, towards the development 
and dissemination of antimicrobial resistance?

It is no longer acceptable to state that AMR solely pre-
vails from the selective pressures of antibiotics. Anthropo-
genic pollution “stress” and geochemical conditions promote 
genetic dissemination by cross and or co-resistance (Knapp 
et al. 2017; Ashbolt et al. 2013; Berg et al. 2010; Wright 
et al. 2006). As such, in this review, we examine the factors 
that contribute to antimicrobial resistance in environmental 
bacteria and whether pollution conditions in the estuarine 
environment could have an impact. We pay particular atten-
tion to the possible impact of legacy pollution, which may 
be: either ignored or unknown; assumed remediated or con-
tained; or remain technologically or economically infeasible 
to treat.

Industrial pollution in estuaries

Industrial activity, whether contemporary or historical, 
has often occurred along major watercourses. However, 
adverse impacts include impaired water quality, habi-
tat loss and diminished resources which results into poor 

water quality, deleterious changes in ecosystem structure 
and tropic dynamics, and risks to human and aquaculture 
health. Examples of investigations of historical environmen-
tal pollution events have included: The Clyde (Scotland), 
Nerbioi-Ibaizabal (Spain), Gironde (France) and Australian 
estuaries (Hursthouse et al. 1994; Birch et al. 2015; Rod-
riguez-Iruretagoiena et al. 2016; Larrose et al. 2010; Petit 
et al. 2015). On the Clyde and its tributaries, subsurface coal 
and ironstone mining, ship-building, textiles, chemical pro-
duction and paper and engineering industries have all had a 
significant environmental impact on sediment quality during 
the conurbation of Glasgow in the nineteenth and twentieth 
centuries (Edgar et al. 1999, 2003). Consequently, the river 
Clyde has received pollution from the onset of the Industrial 
Revolution (AD 1770) up to the present day (Edgar et al. 
2006; Vane et al. 2007, 2011), resulting in elevated PAH 
(polycyclic aromatic compounds) and PTE (potentially toxic 
elements, e.g., metal) concentrations.

Sediments are often considered “windows to the past”. 
Deposition layers are created over time with distinct com-
positional changes and can highlight environmental condi-
tions, e.g., the abundance and composition of siliceous dia-
tom shells in sectioned sediments determine carbon dioxide 
trends (Friedlingstein et al. 2006). A relevant example is 
persistent toxic pollutants (e.g., metals) that can be linked 
to industrialisation as they do not degrade and are not easily 
mobilised in the sediment layers (Jordi 2016; Farmer 1991; 
Strzebońska et al. 2017). As such, legacy pollution involves 
layers of enhanced levels of contaminants from known 
human activities. They have been investigated to identify 
responsible parties for past discharges that have become a 
societal burden and require remediation—for example, Cu 
(copper), Mn (manganese) and As (arsenic) from abandoned 
brownfield sites (e.g., Castlebridge-colliery in Alloa, Scot-
land), and historical industries such as shipyards produce 
a variety of PTEs, oils, detergents and particulate matter 
(Papaioannou 2003; Oecd 2010). Additionally, legacy pol-
lutants could include diffuse emissions representing a par-
ticular era of human activity, e.g., Pb (lead) from aerially 
deposited, widely dispersed combustion processes or mis-
handling of tetraethyl lead-amended petrol.

The existence of pollutants within wider environmental 
systems, in addition to increasing levels of discharge, is con-
sidered important contributing factors influencing antimicro-
bial resistance (Singer 2017). Their fate and bioavailability 
to the micro-organisms depend on environmental conditions, 
the chemical nature of the compound (e.g., sorption constant 
Kd), affinities to minerals (e.g., Fe–Mn oxides and/or organic 
matter; (Peng et al. 2009; Konhausera et al. 2002; Akcil 
et al. 2015; Zaaboub et al. 2015), sediment properties (e.g., 
grain size, surface area to volume ratio, fine-grained sedi-
ments accumulate higher concentrations due to their greater 
surface area; (Eggleton and Thomas 2004), and additionally 
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the composition and nature of the bacterial populations, 
and their innate abilities to resist and/or adapt to pollutant 
exposure.

Dynamic nature of environmental 
conditions

Potentially toxic elements (PTEs)

A number of PTEs [e.g., arsenic (As), cadmium (Cd), chro-
mium (Cr), copper (Cu), mercury (Hg), iron (Fe), nickel 
(Ni), lead (Pb) and zinc (Zn)] (Besta et al. 2013) are included 
within the Water Framework Directive (2000/60/EC), and 
are classified as “priority substances” or “priority hazardous 
substances” in Annex II of Environmental Quality Standards 
Directive (2008/105/EC) (as amended by 2013/39/EU), and 
appear on the “key pollutant” list of the European Pollutant 
Release and Transfer Register (Cuculić et al. 2009; Khan 
et al. 2017; Larrose et al. 2010). Inputs of PTEs to an estu-
ary depend on the (1) catchment area, (2) geological and 
soil erosion, (3) precipitation reactions, e.g., Fe/Mn oxides 
with organic matter, and (4) industry (Table 1). Although 
these elements are associated with anthropogenic stress on 
environmental systems, it has been reported that the major 
PTEs that affect estuarine health are Pb, Cu and Zn (Birch 
et al. 2015); these have previously been found to be the triad 
of PTEs associated with anthropogenic influence in other 
ecosystems (Mclellan et al. 2013).

Using a “metal enrichment index” to determine the mag-
nitude of anthropogenic induced change, Birch et al. (2015) 
found that human influence on estuarine health is more 
greatly impacted by high population density than high popu-
lation; however, this is not always the case as industrial areas 
(i.e., intense, localised activity with low population density) 
will exhibit greater anthropogenic influence. Alongside the 
industrial emissions, infrastructure development affects the 
hydrodynamic and sedimentation patterns and conditions, 
therefore, will affect the sediment sorption and pollutant 
dispersal (Legorburu et al. 2013).

The highest concentrations of PTEs in sediments are 
found within the “convergence zone” between fresh water 
and marine water (i.e., within an estuary) due to the high 
turbidity (PTE sorption to suspended particulate matter) 

and pH, which affects solubility, sorption and precipita-
tion reactions (Caccia et al. 2003; Berner and Berner 2012; 
Petit et  al. 2015). The association with the solid phase 
determines bioavailability and re-dissolution to the water 
column with mobility and bioavailability in the order of 
Mn > Cu > Zn > Fe (Palleiro et al. 2016; Rodriguez-Irureta-
goiena et al. 2016) suggesting that, based on natural versus 
human PTEs, anthropogenic inputs create greater environ-
mental stress on sediment biota.

Determining the PTE source in estuarine sediments can 
be difficult due to (1) different sources for the same PTE, 
(2) bio-turbation between aerobic and anaerobic horizons, 
(3) continual mixing of top most sediment layer, (4) chang-
ing sediment inputs during seasonal changes and (5) dredg-
ing and bank restoration disrupting systems and bringing 
buried contamination to the surface and interfering with 
legacy tracking (Legorburu et al. 2013; Uncles et al. 2014). 
Often, multivariate approaches such as principal component 
analysis (PCA) are used, which allows us to correlate data 
according to cluster analysis, to elucidate inputs on a site-
specific basis.

Polycyclic aromatic hydrocarbons (PAHs)

PAHs are recalcitrant organic compounds that consist of 
conjoined aromatic rings; they are ubiquitous in the envi-
ronment (Bosch et al. 2015; Choi et al. 2013) and have pyro-
genic, petrogenic and biological sources. Pyrogenic PAHs 
are formed in high temperature (> 350 °C), low oxygen con-
ditions; biological PAHs are formed during degradation of 
vegetation material. Petrogenic PAHs are associated with 
oil maturation process, and major sources in the environ-
ment are from oil spills and releases of petroleum, oil and 
other transportation materials (Abdel-Shafy and Mansour 
2016). There are hundreds of PAHs, although the “US 
EPA 16” is the most commonly studied in environmental 
systems: naphthalene, acenaphthylene, fluorine, phenan-
threne, anthracene, fluoranthene, pyrene, benz[a]anthra-
cene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, 
benzo[a]pyrene, benzo[g,h,i]perylene, dibenz[a,h]anthra-
cene and indeno[1,2,3-c,d]pyrene; a number of these are 
listed as “priority hazardous substance” list (2008/105/EC as 
amended), including anthracene, benzo[a]pyrene, benzo[b]

Table 1  Sources of PTEs within 
sediments

PTE Source Citation

Cr, Cu, Mn, Ni, Pb, Zn Agriculture: fertiliser application Caccia et al. (2003)
Cd, Co, Cr, Cu, Sn, Zn Boat traffic Caccia et al. (2003)
Mn Wastewater treatment works Rodriguez-Iruretagoiena et al. (2016)
Al, Co, Fe, Mg, Mn, Ni Geology Birch et al. (2015)
Pb Leaded petrol Lenart-Boroń and Boroń (2014)
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flouranthene, benzo[g,h,i]perylene, benzo[k]flouranthene, 
indeno[1,2,3-c,d]pyrene and naphthalene.

The number of rings reflects the origin from which they 
were derived; i.e., lower molecular weight compounds are 
typically natural in origin, whilst higher weights tend to 
be anthropogenic (Yan et al. 2009). Studies have shown 
that “total PAH” concentrations (i.e., summation of US 
EPA 16) often increase with sediment depth (Curtosi et al. 
2007; Ke et al. 2005) and that up to 89% of these PAHs 
consisted of four–six rings at all depths (Li et al. 2009)—
i.e., anthropogenic sources. Furthermore, PAHs have been 
proven to increase in industrial areas (Huston et al. 2009). 
“Total PAH” abundances have been quoted to vary greatly 
across the world with Scottish sediment studies ranging 
150–> 750 μg kg−1 (Webster et al. 2001), estuary sediments 
in Mexico 27–418  μg kg−1 (Jaward et al. 2012) and dry 
sediments in Japan 21–1447 μg kg−1 (Onozato et al. 2016).

PAHs have a high tendency to bio-accumulate and cause 
eco-toxicological concerns (Schwarzenbach et al. 2003; 
Sawulski et al. 2014; Atsdr, 2005). As a consequence, they 
have been extensively studied to better understand their 
environmental fate, distribution and effects (Haftka 2009; 
Pavlova and Ivanova 2003). The environmental origin of 
PAHs in sediments typically comes from atmospheric mix-
tures (and particulate matter–soot), consisting of four rings 
or more that readily adsorb onto particulate matter and sub-
sequently become deposited into sediment due to weak water 
solubility (Skupinska et al. 2004).

As a consequence of their non-polar structures, they are 
unlikely to dissolve in waters. Hydrophobicity increases with 
the number of aromatic rings, and larger PAHs which have 
a potential anthropogenic source are less environmentally 
mobile and bio-available or subject to microbial degrada-
tion (Sawulski et al. 2014). Further, in estuarine (and other) 
systems, the dissolved organic matter (DOM) is the driv-
ing force for the absorption of hydrophobic pollutants, and 
changes in salinity affect the movement of DOM. Increasing 
salinity causes DOM to partition from water to sediments, 
and vice versa (Kafilzadeh 2015; Li et al. 2009; Chapman 
and Wang 2001).

Conversely, smaller PAHs are more soluble and will be 
bio-available to biota through presence in pore water (Abdel-
Shafy and Mansour 2016). PAH degradation into smaller 
ringed structures allows them to become either bio-availa-
ble or become part of the pore water matrix and becoming 
adsorbed onto colloidal organic matter and accumulate in 
sediment concentrations (Abdel-Shafy and Mansour 2016; 
Jelena and Maja 2017). Furthermore, their bioavailability 
can also be dictated according to source and PAH species, 
e.g., PAHs from oil spills are more available in comparison 
with those from coal (Wang et al. 2014).

Their environmental behaviour and toxic effects have 
made them priority substances according to the water 

framework directive (WFD) (Nikolaou et al. 2009), but 
effects are PAH specific. For example, benzo[a]pyrene, orig-
inally isolated from coal tar in the 1930s, has been linked 
with carcinogenic properties and been linked to lung cancer 
(Kasala et al. 2015). Research also shows that certain PAH 
metabolites can interact with DNA and are genotoxic caus-
ing negative and heritable genetic damage (Agency for Toxic 
Substances and Disease Registry 2012). Some have also 
been highlighted with potentially carcinogenic properties, 
e.g., benzo[a]anthracene, chrysene, benzo[b]fluoranthene, 
benzo[a]pyrene and benzo[g,h,i]perylene.

The source identification of PAHs in sedimentary envi-
ronments has proven difficult to determine, as the individual 
compounds cannot easily be distinguished from natural or 
anthropogenic sources. Typically PAH markers (Stogian-
nidis and Laane 2015), PAH-ratio methods (Yan et al. 2009), 
multivariate analysis (Jang et al. 2013) or isotope ratio mass 
spectrometry (Philp 2007) have been used with the potential 
to relate to historical industrial pollution (Ma et al. 2016).

Sediment microbiome

The co-discipline of sediment microbiology is concerned 
with microscopic and macroscopic organisms, including 
bacteria, protozoa, fungus, algae and soil-dwelling inver-
tebrates (mesofauna) (Paul and Clark 1989) dwelling in 
sediments down to 2 m (Table 2). Microbial communi-
ties are found in habitats as diverse as environmental sys-
tems (the microbiome) in the human body, and often with 
similar interspecies interaction relationships (Drissi et al. 
1995). This causes increased concerns that this can become 
linked to the increased spread and evolution of AMR in the 
microbiome.

Bacteria form the majority of sediment biomass and 
are well suited to a sedimentary environment as their size, 
metabolic versatility, and their collectively diverse nutri-
ent and redox capabilities allow them to flourish in equally 

Table 2  Variation of microorganism biomass with sediment depths 
and percentage decrease from surface adapted from (Bhattarai et  al. 
2015; Fierer et al. 2003)

Stratified layers of sediments accumulated over a reasonably long 
period of time, which can be cut in a series of successively receding 
flat surfaces (Velde and Barre 2010)

Depth (cm) Microorganism biomass (g/
m2)

% decrease

0–5 9.8 (1.6)
5–15 4.0 (0.16) 59.18
15–25 2.0 (0.12) 79.59
50 0.63 (0.044) 93.57
100 0.18 (0.030) 98.16
200 0.081 (0.0053) 99.17
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diverse environments (Nealson 1997). Numerous conditions 
affect the presence and quantity of microbial communities 
(including those species with antimicrobial resistant genes 
(ARGs) present), and the knowledge of expected key com-
munity characteristics can be linked to their responses to 
physicochemical properties (e.g., conductivity (EC), pH and 
redox), nutritional quality (e.g., total nitrogen, phosphorus, 
carbon and minerals), source of carbon—including organic 
matter (Wang et al. 2016)—and pollutant conditions (includ-
ing PTE and PAH content) of sediments (Fig. 1). This can 
create extreme spatial differences of species composition 
and community structures (Abd-El-Aziz et al. 2017). Fortu-
nately, the advent of community DNA extractions and high-
throughput sequencing has provided wealth of information 
related to this through metagenomics, whether targeted (e.g., 
via small sub-unit rRNA or specific genes) or “shot gun” 
(i.e., random).

The communities (and their potential to “share” or hori-
zontally transfer genetic traits—discussed later) are shaped 
biologically by their ecological interactions. However, the 
make-up of the microbiome and its functional complexity 
can be likely influenced by legacy exposures. Like chemical 
conditions, they too can be archived in the sediment layers. 
What we will demonstrate is that past stress events, in turn, 
can have a major impact on the microbiome, but also the 
resistome—the collection of genes/traits related to resist-
ance, whether latent or active.

Development of antimicrobial resistance

Evolutionary processes have recently been linked with the 
accumulation of antimicrobial resistance, which include 
the accumulation and selection of genetic mutations 

Fig. 1  Microbial structuring of an estuary sediment. Dissolved 
organic matter is almost exclusively taken up by bacteria and respired 
as  CO2 or re-introduced into the classical food chain (phytoplankton, 
zooplankton and fish). This, in turn, alters the carbon cycle that influ-
ences the microbiome as well as sediment horizons. The redox-strat-

ified zone (0–5 cm) includes a thin layer of oxygen where a few fauna 
species exist and microeukaryotes in addition to large numbers of 
highly active bacteria. Below 5 cm is the transition zone; here 50% of 
the DNA has already decomposed and is found below the sulphate–
methane transition
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(Woodford and Ellington 2007) and development and 
spread of accessory plasmids. Due to difficulties in culti-
vating sediment micro-organisms (Great Plate Anomaly), 
it is currently unknown how many types of ARGs exist. 
However, the development of sequencing-based descrip-
tive metagenomic approaches has provided the means to 
analyse the occurrence and abundance of previously unrec-
ognised ARGs with examples of |successful applications 
(Li et al. 2015a; Monier et al. 2011; Chen et al. 2017). The 
extent that environmental conditions impact antimicrobial 
resistance is becoming increasingly known.

Resistance traits propagate in the presence of a stress 
factor, which ultimately selects bacterial populations with 
enhanced survivability. Once a resistance trait is selected, 
host bacteria can transfer genes between individuals cre-
ating an enhanced resistome—collection of latent and 
active resistance traits in a community. Thus, resistance 
can spread among micro-organisms once a gene enters a 
system, either vertically or horizontally.

Vertical transfer involves the increase in resistance 
trait via inheritable traits and selective pressures. Basi-
cally, populations with enhanced genetic traits that con-
fer selective advantage will likely replicate and outcom-
pete other strains; the genes are passed on to “daughter” 
cells during replication. In this manner, the resistance 
traits develop greater representation in the microbiome 
through improved survivability and replication of specific 
populations.

However, in many microbial communities (e.g., biofilms) 
the close proximity of bacteria to each other, genetic mate-
rial can also become horizontally exchanged among different 
population by various mechanisms (Fig. 2):

• Transformation—the assimilation of free DNA, released 
from lysed bacteria.

• Transduction—i.e., bacterial phages (viruses) acquire 
pieces of host DNA and transfer it to the next infected 
bacterial cell.

• Conjugation—the direct exchange of plasmid DNA.

The increase in ARGs occurs as a consequence of its abil-
ity to spread, via transformation or conjugation, between 
bacteria under antimicrobial stresses (Cottell et al. 2014; 
Turner et al. 2014); this a nature of many bacteria as part 
of their SOS response to stress (Beaber et al. 2004). Fur-
thermore the “mobile resistome/mobilome”, i.e., the ability 
for resistant genes to associate and transfer between dis-
tantly related bacteria (Wellington et al. 2013) exacerbates 
ARG presence in environmental matrices and has become a 
greater focus among current environmental-AMR research, 
as a potential target for the transfer of resistance traits could 
be a pathogen.

The determination of antibiotic resistance through identi-
fication of antibiotic resistance genes (ARGs) has provided 
evidence that ARGs have been increasing in environmen-
tal systems experiencing anthropogenic stress, e.g., soils, 
water and sediments in particular since the beginning of the 

Fig. 2  Hypothesised molecular mechanisms that can result in AMR 
when antibiotics and metals are introduced into a biochemical sys-
tem: “Co-selection”. Mechanisms such as cross-resistance, co-

resistance or co-regulatory resistance can result in AMRs prevalence 
(adapted from Baker-Austin et al. 2006; Mata et al. 2000)
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antibiotic era in 1940s (Chen et al. 2013; Knapp et al. 2010; 
Graham et al. 2016). The most common entry routes for 
ARGs in the environment are from sewage outfall (Daughton 
and Ternes 1999), agricultural fertilisers (Kinney et al. 2006) 
and veterinary pressures (Blackwell et al. 2007; Topp et al. 
2008). The increasing prevalence of AMR/ARG in the “real 
world” suggests an emerging global human health concern; 
it is reported that by 2050 global annual mortality is pro-
jected to be 10 million if action is not immediately taken 
to combat antimicrobial resistance (Shallcross et al. 2015).

Role of pollution on resistant genes/AMR

The environmental contribution to the spread of AMR is 
becoming more commonly recognised, and regulators are 
beginning to monitor pathways and controlling the release 
of resistant-driving chemicals, e.g., antimicrobials, met-
als and biocides (Singer et al. 2016). A common type of 
resistance that has become a contemporary concern is resist-
ance to antibiotics, but it has recently been observed is that 
other substances can also select for antibiotic resistance. 
For example, metal pollution and some persistent organic 
compounds co-select for antibiotic resistance genes. This 
co-selection of metal (or other) resistance and antibiotic 
resistance can occur by one of two processes: co-resistance 
or cross-resistance. Co-resistance occurs when selection of 
one phenotype simultaneously selects for genes on the same 
genetic element. On the other hand, cross-resistance occurs 
when, for example, the antibiotic and metal have similar 
paths into the cell, therefore when a resistance response is 
triggered, cell defence is effective against both metal and 
antibiotic toxicants. Since metals, e.g., are also widespread 
in the environment (and probably in elevated concentration 
in zones of industrial activity) and do not degrade, these tox-
icants can potentially provide a long-term selection pressure.

Like soils, sediments are considered a reservoir of anti-
biotic resistance bacteria (Azarbad et al.) and ARGs, with 
a large variety of novel ARGs and RGs being frequently 
discovered—representing different types of resistance mech-
anisms (Nesme and Simonet, 2015), and there are anthro-
pogenic pressures that can exacerbate this. Sources of ARB 
(and ARG) include the discharge of improperly treated 
municipal wastewater treatment effluents, agricultural run-
off, and wildlife. The bacteria entering the waterways could 
become bound, and eventually entombed, in the sediments 
and contributing to the resistome “potential”.

However, estuarine systems offer additional complica-
tions. Due to the continual changes in salinity, estuarine 
biota are subject to naturally stressful conditions and become 
more susceptible to stress from anthropogenic pollution. 
With the sediments acting as both a sink and source of pol-
lutants, also switching between absorption and desorption 
reactions due to alternating salinity changes (Chapman 

and Wang 2001), indigenous bacteria repeatedly become 
exposed to contaminants. Consequently, they develop sur-
vival strategies for stress, including the enhanced transfer 
of mobile genetic elements. The unfortunate result is these 
genetic exchanges could include antimicrobial resistance 
(AMR).

Elevated antibiotic resistance (AR) is evident in environ-
ments with high levels of anthropogenic stress (Chen et al. 
2013; Knapp et al. 2010) which challenges the common per-
ception that AMR solely occurs as a consequence of anti-
biotics. A study along the Almendares River/estuary, Cuba 
demonstrated a high level of resistant genes present despite 
minimal use of antibiotics, both agriculturally and medically 
in the country; there were, however, high levels of pollu-
tion including metals and other contaminants (Graham et al. 
2011; Reid-Henry 2008). Unfortunately, efforts to reduce 
and control antibiotic use may have limited impact on AR if 
antibiotics are not the sole cause of AMR in environments.

PTEs and AMR

PTEs within environmental matrices impact microbial 
communities and represent important vector in the main-
tenance and proliferation of AMR (Summers 2002; Alonso 
et al. 2001; Eldon and Smith 2006). The synergistic effects 
of PTEs and antibiotics have also been shown to influence 
the development of AMR (Chen et al. 2015; Baker-Austin 
et al. 2006). For example, the co-exposure to Zn and oxy-
tetracycline increases the microbial community’s resistance 
towards antibiotics (Peltier et al. 2010; Besta et al. 2013). 
Further the presence of Cu caused microbial resilience, as 
well as a co-resistance, to ampicillin, chloramphenicol and 
tetracycline (Berg et al. 2005; Mccluskey and Knapp 2017). 
Additionally, Ni and Cd have increased the frequency of 
bacterial resistance in microcosms to chemically unrelated 
antibiotics including ampicillin and chloramphenicol (Step-
anauskas et al. 2006). This suggests that (1) the prolifera-
tion of antibiotic resistance can be caused by the presence 
of PTEs enhancing the enrichment of ARG in indigenous 
bacterial growth in the microbial communities where ARGs 
are already present (Chen et al. 2015) or (2) that resistance 
occurs only in bacteria sensitive to antibiotics which in turn 
could be induced by synergistic effects of the co-existence 
of PTEs (Zhu et al. 2013).

PTEs such as Zn, Cu, Mn, Ni, Cr and Fe are essential 
nutrients for micro-organisms (Lima De Silva et al. 2012) 
and provide vital co-factors for metallo-proteins and 
enzymes; however, once concentrations exceed “ideal” 
levels, PTEs inhibit bacteria by blocking the essential 
functional sites (Koena Sinah 2005)—whereby metal ions 
become displaced from their “native” binding site, caus-
ing conformation modifications of the molecules (Olaniran 
et al. 2013). Besides diminished enzyme function, some 
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could damage DNA. PTEs with no biological role, e.g., Pb 
and Cd, can cause oxidative stress, lipid peroxidation and 
mutagenesis (Oyetibo et al. 2010). Further, Cu and Zn are 
also commonly used antimicrobials (Poole 2017).

Hypothesised mechanisms for metal resistance include 
PTE accumulation in the form of protein-metal associa-
tions, blockages at the level of the cell walls, and enhanced 
membrane transportation (Hassen et al. 1998), sorption of 
metals (Chang et al. 1993; Kinkle et al. 1987), and release 
of organic chelators (Abd-El-Aziz et al. 2017; Lemire et al. 
2013). The processes are complex, which are in-turn con-
trolled by a vast variety of variables including, but not lim-
ited to PTE presence, nature of environmental medium and/
or the microbial species. A number of potential mechanisms 
causing the increase in ARGs in the presence of PTEs have 
been evidenced, including in areas resulting from intense 
industrial activity (Abella et al. 2015; Graham et al. 2011; 
Hu et al. 2016; Knapp et al. 2012; Stepanauskas et al. 2005; 
Wright et al. 2006), wastewater treatment outflows (Knapp 
et al. 2012; Graham et al. 2011; Su et al. 2015), run-off of 
agricultural wastes (Ji et al. 2012; Li et al. 2015b; Zhu et al. 
2013) and direct experiments (Berg et al. 2005, 2010; Knapp 
et al. 2011; Stepanauskas et al. 2006).

While most evidence is found in areas of elevated human 
impact, correlations have been found in more “pristine”, 
or baseline environmental levels, as well (Knapp et  al. 
2011, 2017). The driving force (as mentioned previously) 
is believed to result from co- and cross-selection processes 
(Ashbolt et al. 2013; Baker-Austin et al. 2006; Berg et al. 
2010; Perry and Wright 2013). Many resistance elements 
may co-exist on a single genetic element, or bacteria will 
seek improved resistance traits via lateral gene transfer 
mechanisms and receive the additional traits. Given that 
metals do not degrade; selective pressures are likely to per-
sist longer than pharmaceutical compounds which could 
breakdown in the environment.

PAHs and AMR

Microbial degradation has an important role in the natu-
ral attenuation of PAHs in contaminated matrices (Van 
Dillewijn et  al. 2009); however, the presence of PAHs 
changes the community structure of indigenous bacteria with 
the number of hydrocarbon-degrading bacteria increases 
with increasing available hydrocarbons (De Menezes et al. 
2012; Zhang et al. 2010; Maila et al. 2005); it is difficult to 
understand which communities are present in historically 
contaminated sediments (Azarbad et al. 2016; Singleton 
et al. 2013). However, many PAH-tolerant bacterial isolates 
often exhibit strong resistance to metals and antibiotics (Ben 
Said et al. 2008; Máthé et al. 2012), and ARGs have been 

found in PAH-contaminated matrices (Chen et al. 2017; 
Kang et al. 2015).

PAHs have mutagenic properties (Liu et al. 2017; Sun 
et al. 2015), which could contribute towards AMR—either 
by directly changing DNA composition, or triggering 
stress/repair systems. There is little knowledge of specific 
mechanisms, but metagenomic profiling has demonstrated 
that PAH-contaminated soils with ARGs is in abundance 
approximately 15 times more than those less contaminated 
(Chen et al. 2017).

In comparison with the number of investigations con-
ducted examining other drivers of antimicrobial resist-
ance (e.g., pharmaceutic compounds and PTEs), there 
have been relatively minimal studies on the effects of PAH 
contamination to AMR, and few prediction models exist. 
However, research has demonstrated that naphthalene and 
phenanthrene exposure were primarily linked to conjugative 
transfer of genes mediated by class I integrons (Wang et al. 
2017); these genetic mechanisms allow bacteria to adapt and 
evolve rapidly through the acquisition, stockpiling and dif-
ferential expression of new genes and have been previously 
correlated with clinical antibiotic resistance (Gillings et al. 
2008; Deng et al. 2015; Loot et al. 2017). Genes for PTEs 
and ARGs have been found in bacterial plasmids and could 
facilitate the dissemination of these genes under elevated 
stresses (Li et al. 2015a; Zhai et al. 2016). The effect of 
the co-exposure is complicated; however, (Lu et al. 2014) 
found that a moderate dosage of pyrene promotes the micro-
bial prosperity in soils and alleviating metal stress. Previous 
studies have investigated and shown a co-exposure effect 
with PAHs and metals which is a consequence of increased 
anthropogenic activities and contamination; this includes 
the research of (Gauthier et al. 2014) who summarised that 
the more-than-additive deleterious effects of PAHs-metal 
mixtures to microbes.

Conclusion

The genetically diverse array of micro-organisms with their 
respective metabolisms, as well as the complex array of 
environmental pollutants, i.e., PTEs, PAHs and their deriva-
tives, makes understanding their combined roles in induced 
antimicrobial resistance a complicated task. This review 
highlights that PTEs and PAHs create stressful conditions 
to exacerbate AMR in the environment and can be used as 
model pollutants for further public-health risks related to 
these genetic pollutants. The effects are not just related to 
current pollution scenarios; rather, legacy industrial effects 
could be lingering drivers for resistance. The combined 
effect of various single and multiple mechanisms can be 
hypothesised to explain the genetic mutation and develop-
ment of AMR; however, further exploration is required to 
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elucidate a more causal explanation. No antimicrobial agent 
will be efficacious forever; however, by establishing a bet-
ter understanding of the environmental impact and its role 
in AMR’s prevalence may aid in its control. This is critical 
to combat AMR growth and prevalence across the world, 
with a target on the prospects for prevention, treatment or 
remediation.
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