Skip to main content
Log in

Modulation mütterlicher Immunzellen durch plazentare extrazelluläre Vesikel und microRNA

Modulation of maternal immune cells by placental extracellular vesicles and microRNA

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Die fetomaternale Kommunikation spielt eine entscheidende Rolle während der Schwangerschaft. Dazu werden lösliche Faktoren wie Hormone und Neuropeptide, aber auch extrazelluläre Vesikel (EV) von der Plazenta in den mütterlichen Kreislauf abgegeben. EV sind membrangebundene Vesikel, die von Zellen freigesetzt werden und eine wichtige Rolle in der interzellulären Kommunikation spielen. Sie können in verschiedene Klassen eingeteilt werden, darunter Exosomen und Mikrovesikel. EV enthalten eine Vielzahl von Molekülen wie Proteine, Lipide, Nukleinsäuren und microRNAs (miRNAs), die durch verschiedene Mechanismen von Zielzellen aufgenommen werden können. EV tragen zur Kommunikation zwischen Plazenta und mütterlichen Organen und Zellen einschließlich des Immunsystems bei. Plazentare miRNAs spielen eine wichtige Rolle bei der Regulation von Zellfunktionen in der Plazenta, gelangen aber auch mittels EV in Immunzellen. Deren Aufnahme kann die Immunantwort beeinflussen und zur Entwicklung der maternofetalen Immuntoleranz beitragen. Bei Schwangerschaftsstörungen und -erkrankungen kann die Menge und Zusammensetzung plazentarer EV verändert sein. Daher haben sie das Potenzial, zukünftig als diagnostische Marker für Schwangerschaftskomplikationen genutzt zu werden.

Abstract

Fetomaternal communication plays a decisive role during pregnancy. Soluble factors, such as hormones and neuropeptides but also extracellular vesicles (EV) are transferred from the placenta to the maternal circulation. EVs are membrane-linked vesicles that are released by cells and play an important role in the intercellular communication. They can be classified into various classes including exosomes and microvesicles. EVs contain a multitude of molecules, such as proteins, lipids, nucleic acids and microRNAs (miRNAs), which can be taken up by target cells through a variety of mechanisms. They contribute to the communication between the placenta and maternal organs and cells, including the immune system. Placental miRNAs play an important role in the regulation of cell functions in the placenta but can also be transported into immune cells via EVs. Their uptake can influence the immune response and contribute to the development of fetomaternal immune tolerance. In pregnancy disorders an diseases the amount and composition of placental EVs in maternal blood can be altered. Therefore, they have the potential to be used as diagnostic markers for complications during pregnancy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abrahams VM et al (2004) First trimester trophoblast cells secrete fas ligand which induces immune cell apoptosis. Mol Hum Reprod 10:55–63

    CAS  PubMed  Google Scholar 

  2. Aryal B et al (2017) Micrornas and lipid metabolism. Curr Opin Lipidol 28:273

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Atay S et al (2011) Trophoblast-derived exosomes mediate monocyte recruitment and differentiation. Am J Reprod Immunol 65:65–77

    CAS  PubMed  Google Scholar 

  4. Awoyemi T et al (2021) Syncytiotrophoblast extracellular vesicles from late-onset preeclampsia placentae suppress pro-inflammatory immune response in thp‑1 macrophages. Front Immunol 12:676056

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human micrornas. Nat Genet 37:766–770

    CAS  PubMed  Google Scholar 

  6. Chaiwangyen W et al (2020) Mir-519d-3p in trophoblastic cells: Effects, targets and transfer to allogeneic immune cells via extracellular vesicles. Int J Mol Sci 21(10):3458

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chamley LW et al (2011) Trophoblast deportation: Just a waste disposal system or antigen sharing? J Reprod Immunol 88:99–105

    CAS  PubMed  Google Scholar 

  8. Chargaff E, West R (1946) The biological significance of the thromboplastic protein of wood. J Biol Chem 166:189–197

    CAS  PubMed  Google Scholar 

  9. Chen Y et al (2012) Syncytiotrophoblast-derived microparticle shedding in early-onset and late-onset severe pre-eclampsia. Int J Gynaecol Obstet 119:234–238

    PubMed  Google Scholar 

  10. Chim SS et al (2008) Detection and characterization of placental micrornas in maternal plasma. Clin Chem 54:482–490

    CAS  PubMed  Google Scholar 

  11. Cronqvist T et al (2020) Placental syncytiotrophoblast extracellular vesicles enter primary endothelial cells through clathrin-mediated endocytosis. Placenta 100:133–141

    CAS  PubMed  Google Scholar 

  12. Czernek L et al (2015) The uptake of extracellular vesicles is affected by the differentiation status of myeloid cells. Scand J Immunol 82:506–514

    CAS  PubMed  Google Scholar 

  13. Dai Y et al (2012) Microrna-155 inhibits proliferation and migration of human extravillous trophoblast derived htr-8/svneo cells via down-regulating cyclin d1. Placenta 33:824–829

    CAS  PubMed  Google Scholar 

  14. Davis M, Clarke S (2013) Influence of microrna on the maintenance of human iron metabolism. Nutrients 5:2611–2628

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Del Conde I et al (2005) Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106:1604–1611

    PubMed  Google Scholar 

  16. Delorme-Axford E et al (2013) Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci U S A 110:12048–12053

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Donker R et al (2012) The expression profile of c19mc micrornas in primary human trophoblast cells and exosomes. Mol Hum Reprod 18:417–424

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8:727

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Favaro RR et al (2021) Immunomodulatory properties of extracellular vesicles in the dialogue between placental and immune cells. Am J Reprod Immunol 85:e13383

    PubMed  Google Scholar 

  20. Frangsmyr L et al (2005) Cytoplasmic microvesicular form of fas ligand in human early placenta: Switching the tissue immune privilege hypothesis from cellular to vesicular level. Mol Hum Reprod 11:35–41

    CAS  PubMed  Google Scholar 

  21. French KC et al (2017) Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2017.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fu G et al (2013) Micrornas in human placental development and pregnancy complications. Int J Mol Sci 14:5519–5544

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujita Y et al (2016) Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci 107:385–390

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Germain SJ et al (2007) Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol 178:5949–5956

    CAS  PubMed  Google Scholar 

  25. Guay C, Regazzi R (2017) Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 19:137–146

    PubMed  Google Scholar 

  26. Ha M, Kim VN (2014) Regulation of microrna biogenesis. Nat Rev Mol Cell Biol 15:509–524

    CAS  PubMed  Google Scholar 

  27. Harding C et al (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

    CAS  PubMed  Google Scholar 

  28. Hedlund M et al (2009) Human placenta expresses and secretes nkg2d ligands via exosomes that down-modulate the cognate receptor expression: Evidence for immunosuppressive function. J Immunol 183:340–351

    CAS  PubMed  Google Scholar 

  29. Holder B et al (2016) Macrophage exosomes induce placental inflammatory cytokines: A novel mode of maternal-placental messaging. Traffic 17:168–178

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Holland OJ et al (2012) Minor histocompatibility antigens are expressed in syncytiotrophoblast and trophoblast debris: Implications for maternal alloreactivity to the fetus. Am J Pathol 180:256–266

    CAS  PubMed  PubMed Central  Google Scholar 

  31. James-Allan LB et al (2020) Regulation of glucose homeostasis by small extracellular vesicles in normal pregnancy and in gestational diabetes. FASEB J 34:5724–5739

    CAS  PubMed  Google Scholar 

  32. Jeppesen DK et al (2019) Reassessment of exosome composition. Cell 177:428–445.e18

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson CD et al (2007) The let‑7 microrna represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722

    CAS  PubMed  Google Scholar 

  34. Joshi BS, de Beer MA, Giepmans BNG, Zuhorn IS (2020) Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS nano 14:4444–4455

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kazemi NY et al (2021) The role and clinical interest of extracellular vesicles in pregnancy and ovarian cancer. Biomedicines 9:1257

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Knight M et al (1998a) Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol 105:632–640

    CAS  PubMed  Google Scholar 

  37. Knight M et al (1998b) Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol 105:632–640

    CAS  PubMed  Google Scholar 

  38. Konoshenko MY et al (2018) Isolation of extracellular vesicles: General methodologies and latest trends. Biomed Res Int. https://doi.org/10.1155/2018/8545347

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kurian NK, Modi D (2019) Extracellular vesicle mediated embryo-endometrial cross talk during implantation and in pregnancy. J Assist Reprod Genet 36:189–198

    PubMed  Google Scholar 

  40. Le MT et al (2009) Microrna-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 29:5290–5305

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li P et al (2013) Microrna-29b contributes to pre-eclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells. Clin Sci 124:27–40

    CAS  Google Scholar 

  42. Liu H et al (2018) Estimation of the burden of human placental micro- and nano-vesicles extruded into the maternal blood from 8 to 12 weeks of gestation. Placenta 72–73:41–47

    PubMed  Google Scholar 

  43. Ma Y et al (2021) Epithelial membrane protein 2 suppresses non-small cell lung cancer cell growth by inhibition of mapk pathway. Int J Mol Sci 22(6):2944

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Maas SL et al (2017) Extracellular vesicles: Unique intercellular delivery vehicles. Trends Cell Biol 27:172–188

    CAS  PubMed  Google Scholar 

  45. Macfarlane L‑A, Murphy RP (2010) MicroRNA: biogenesis, function and role in cancer. CG 11:537–561

    CAS  Google Scholar 

  46. Messerli M et al (2010) Feto-maternal interactions in pregnancies: placental microparticles activate peripheral blood monocytes. Placenta 31:106–112

    CAS  PubMed  Google Scholar 

  47. Mishra A et al (2020) Extracellular vesicles in embryo implantation and disorders of the endometrium. Am J Reprod Immunol 85(2):e13360

    PubMed  Google Scholar 

  48. Morales-Prieto DM et al (2012) Microrna expression profiles of trophoblastic cells. Placenta 33:725–734

    CAS  PubMed  Google Scholar 

  49. Morales-Prieto DM et al (2020) Placental mirnas in feto-maternal communication mediated by extracellular vesicles. Placenta 102:27–33

    CAS  PubMed  Google Scholar 

  50. Morales-Prieto DM et al (2014) Elsevier trophoblast research award lecture: origin, evolution and future of placenta mirnas. Placenta 35(Suppl):S39–S45

    CAS  PubMed  Google Scholar 

  51. Morhayim J et al (2016) Paracrine signaling by extracellular vesicles via osteoblasts. Curr Mol Bio Rep 2:48–55

    Google Scholar 

  52. Mulcahy LA et al (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracellular Vesicle 3:24641

    Google Scholar 

  53. Murrieta-Coxca JM et al (2022) Synergies of extracellular vesicles and microchimerism in promoting immunotolerance during pregnancy. Front Immunol 13:837281

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nair S, Salomon C (2018) Extracellular vesicles and their immunomodulatory functions in pregnancy. Semin Immunopathol 40:425–437

    CAS  PubMed  Google Scholar 

  55. Napso T et al (2018) The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol 9:1091

    PubMed  PubMed Central  Google Scholar 

  56. Newbern D, Freemark M (2011) Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 18:409–416

    CAS  PubMed  Google Scholar 

  57. Ospina-Prieto S et al (2016a) Microrna-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Transl Res 172:61–72

    CAS  PubMed  Google Scholar 

  58. Ospina-Prieto S et al (2016b) Microrna-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Transl Res 172:61–72

    CAS  PubMed  Google Scholar 

  59. Pap E et al (2008a) T lymphocytes are targets for platelet- and trophoblast-derived microvesicles during pregnancy. Placenta 29:826–832

    CAS  PubMed  Google Scholar 

  60. Parolini I et al (2009) Microenvironmental ph is a key factor for exosome traffic in tumor cells. J Biol Chem 284:34211–34222

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pitt JM et al (2016) Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest 126:1139–1143

    PubMed  PubMed Central  Google Scholar 

  62. Record M et al (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841:108–120

    CAS  PubMed  Google Scholar 

  63. Redman CW, Sargent IL (2007) Microparticles and immunomodulation in pregnancy and pre-eclampsia. J Reprod Immunol 76:61–67

    CAS  PubMed  Google Scholar 

  64. Revenfeld ALS et al (2014) Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin Ther 36:830–846

    PubMed  Google Scholar 

  65. Rice TF et al (2018) Macrophage- but not monocyte-derived extracellular vesicles induce placental pro-inflammatory responses. Placenta 69:92–95

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sabapatha A et al (2006) Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am J Reprod Immunol 56:345–355

    CAS  PubMed  Google Scholar 

  67. Salomon C et al (2014a) A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. Plos One 9:e98667

    PubMed  PubMed Central  Google Scholar 

  68. Salomon C et al (2014b) Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration. Front Pharmacol 5:175

    PubMed  PubMed Central  Google Scholar 

  69. Schuster J et al (2021) Placental extracellular vesicles and pre-eclampsia. Am J Reprod Immunol 85:e13297

    CAS  PubMed  Google Scholar 

  70. Théry C et al (2018) Minimal information for studies of extracellular vesicles 2018 (misev2018): a position statement of the international society for extracellular vesicles and update of the misev2014 guidelines. J Extracell Vesicles 7:1535750

    PubMed  PubMed Central  Google Scholar 

  71. Tong M et al (2018) Immunological effects of placental extracellular vesicles. Immunol Cell Biol. https://doi.org/10.1111/imcb.12049

    Article  PubMed  Google Scholar 

  72. Tong M et al (2017) Placental nano-vesicles target to specific organs and modulate vascular tone in vivo. Hum Reprod 32:2188–2198

    CAS  PubMed  Google Scholar 

  73. Vargas A, Zhou S, Éthier-Chiasson M, Flipo D, Lafond J, Gilbert C, Barbeau B (2014) Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J 28:3703–3719

    CAS  PubMed  Google Scholar 

  74. Wang Y et al (2012) Mir-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia. FEBS J 279:4510–4524

    CAS  PubMed  Google Scholar 

  75. Wei J et al (2017) Placental trophoblast debris mediated feto-maternal signalling via small rna delivery: Implications for preeclampsia. Sci Rep 7:14681

    PubMed  PubMed Central  Google Scholar 

  76. Yang H et al (2020) Clinical application of exosomes and circulating micrornas in the diagnosis of pregnancy complications and foetal abnormalities. J Transl Med 18:1–9

    CAS  Google Scholar 

  77. Zabel RR et al (2021) Enrichment and characterization of extracellular vesicles from ex vivo one-sided human placenta perfusion. Am J Reprod Immunol 86:e13377

    CAS  PubMed  Google Scholar 

  78. Zeng F, Morelli AE (2018) Extracellular vesicle-mediated mhc cross-dressing in immune homeostasis, transplantation, infectious diseases, and cancer. Semin Immunopathol 40:477–490

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang J et al (2020) Extracellular vesicles in normal pregnancy and pregnancy-related diseases. J Cell Mol Med 24:4377–4388

    PubMed  PubMed Central  Google Scholar 

Download references

Förderung

Während des Verfassens dieses Manuskripts erhielten D.M. Morales-Prieto und U.R. Markert Förderungen von der Deutschen Forschungsgemeinschaft (Projekt-Nummern 255955419 und 315156279), dem Bundesministerium für Bildung und Forschung (Förderkennzeichen: 03VP08692) und vom Bundesministerium für Wirtschaft und Klimaschutz (Förderkennzeichen: KK5360801NK1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo R. Markert.

Ethics declarations

Interessenkonflikt

R.R. Zabel, J.M. Murrieta-Coxca, D.M. Morales-Prieto und U.R. Markert geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Ruben Kuon, Heidelberg

Bettina Toth, Innsbruck

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabel, R.R., Murrieta-Coxca, J.M., Morales-Prieto, D.M. et al. Modulation mütterlicher Immunzellen durch plazentare extrazelluläre Vesikel und microRNA. Gynäkologische Endokrinologie 21, 248–253 (2023). https://doi.org/10.1007/s10304-023-00534-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-023-00534-1

Schlüsselwörter

Keywords

Navigation