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Abstract
Volcanic clouds detection is a challenge especially when meteorological clouds are present in the same area. Several algo-
rithms have been developed to detect and monitor volcanic clouds by using satellite instruments based on different remote 
sensing techniques. This work aims at classifying volcanic clouds based on atmospheric profiles retrieved by the GNSS 
(Global Navigation Satellite Systems) radio occultation technique. We collocated the radio occultations with the volcanic 
cloud detection from AIRS (Atmospheric InfraRed Sounder) and IASI (Infrared Atmospheric Sounding Interferometer) for 
11 big eruptions happening in the period 2008–2015 resulting in about 15000 profiles. We created an archive with the col-
locations and a corresponding number of profiles in “non-volcanic” environment in the same area and on the same period of 
the year. A support vector machine algorithm was applied to the archive in order to classify the clouds and to distinguish the 
volcanic clouds from the other types. The model performances are promising: the GNSS radio occultations are able to dis-
tinguish the volcanic clouds with an accuracy higher than 80% when the eruption occurs at high latitudes. The performances 
of the model are affected by the number of collocations used for the training. Nowadays, the number of radio occultations is 
higher than in the period considered in this research, making this work a pioneering study for a future operational product.
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Introduction

Explosive volcanic eruptions present several serious hazards 
to society, including impacts to health (Baxter et al. 1999; 
Forbes et al. 2003; Horwell 2007, 2015) and safety, to life 
and economic assets from proximal threats (e.g., volcanic 
ash fall, pyroclastic density currents, lava, and toxic gases), 
and potential longer term deleterious effects on weather 
and climate (e.g., global cooling from large scale eruptions) 
(Robock 2000, 2013). Explosive eruptions are known for 
emitting large amounts of gases and aerosols, which can 
reach high altitudes, i.e., stratospheric layer (Robock 2000), 
and can last for weeks or even longer, such as Mt. Kelut 
eruption in 2014 (Zhu et al. 2020), and so monitoring them 
during and after eruption events is crucial (e.g., for aviation 

safety). They can emit different types of aerosols and gases 
into the atmosphere. The most abundant gases typically con-
sist of water vapor, carbon dioxide  (CO2), and sulfur dioxide 
 (SO2), and the latter injected into the stratosphere forms fine 
sulfate aerosols with long residence time producing a domi-
nant radiative effect (Robock 2000). Satellite remote sens-
ing techniques play a key role for tracking and monitoring 
volcanic clouds (VCs), as they can cover large geographic 
areas. Satellite sensors based on Ultraviolet (UV) and Infra-
red (IR) technologies can provide accurate information about 
the dispersing volcanic aerosols and gases emissions in 
upper troposphere and lower stratosphere layers, but cannot 
provide accurate height information. Instead, active remote 
sensing techniques, such as CALIPSO lidar, can provide 
accurate height information, but have poor temporal and 
spatial coverage (Carn et al. 2009; Prata 2009). However, 
fundamental parameters of VCs, such as precise cloud top 
altitudes are challenging to be detected using ground based, 
in situ and satellite remote sensing techniques (Biondi et al. 
2017). The space-based Global Navigation Satellite Systems 
(GNSS) Radio Occultation (RO) atmospheric remote sens-
ing is a limb sounding satellite technique, which enables 
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measurement of atmospheric density structure, such as tem-
perature, pressure, and specific humidity, in any meteoro-
logical condition, and in remote geographic areas with high 
vertical resolution, accuracy and precision (Kursinski et al. 
1997; Yen et al 2010; Yu et al. 2014). The availability of 
GNSS RO data (since 2001) has been widely used for study-
ing various atmospheric applications, and all of these tech-
nique advantages allowed it to be powerful and appreciated 
by the scientific community (Wickert et al. 2009; Yen et al 
2010; Yu et al. 2014). For example, applications relevant to 
this work have used GNSS RO profiles collocated with VC 
maps for high vertical resolution detection and monitoring of 
VCs altitude (Biondi et al. 2017; Cigala et al. 2019; Tourni-
gand et al. 2020a, 2020b).

The primary goal of this paper is to develop an automated 
machine learning algorithm able to discriminate the pres-
ence/absence of VCs starting from GNSS RO profiles. This 
algorithm is based on the support vector machine (SVM) 
classifier (Cortes and Vapnik 1995), a kernel-based machine 
learning model for classification and regression analysis. 
Thanks to its good theoretical foundations and excellent 
generalization performance, the SVM has been applied in 
numerous scenarios across diverse fields of science, par-
ticularly when dealing with small- to medium-sized datasets 
(Cervantes et al. 2020; Boateng et al. 2020). The SVM has 
become one of the most commonly used classification meth-
ods in recent years and has been shown by many researchers 
to be superior to other supervised learning methods, espe-
cially for solving practical binary classification problems 
(Cervantes et al. 2015, 2020; Boateng et al. 2020; Sun et al. 
2005; Liang et al. 2017; Raheja et al. 2016; Bhowmik et al. 
2009).

In this study, volcanic eruptions events are selected from 
the database created by Tournigand et al. (2020a) which 
includes the most significant volcanic eruption events that 
occurred from 2006 to 2018 and characterized by a Volcanic 
Explosivity Index (VEI) equal to 4 or larger. The paper is 
organized as follows. We first report the GNSS RO tech-
nique, the initial dataset at the base of the model as well as 
the analyses implemented on it to prepare the data for the 
SVM algorithm training; then, the results of the analysis are 
presented in Section “Results and discussions”, showing the 
best runs of the model and the final model setup.

Materials and methods

This section provides a comprehensive overview of the 
materials and methods employed in this paper. Initially, the 
GNSS RO technique is presented, followed by a detailed 
description of the volcanic cloud and atmospheric back-
ground datasets, including information on their preprocess-
ing steps and associated uncertainties. Lastly, the support 

vector machine algorithm is introduced, accompanied by a 
thorough explanation of the 17 experiments conducted.

GNSS remote sensing: GNSS RO technique

The GNSS RO (Kursinski et al. 1997) is a technique allow-
ing to profile the atmospheric parameters by using the signal 
transmitted by a GNSS satellite and analyzed by a receiver 
on board of a Low Earth Orbit (LEO) satellite. The radio 
signal is refracted and bent in the atmosphere by the vertical 
density gradient, thus information about the vertical struc-
ture of the troposphere and stratosphere can be obtained. The 
horizontal resolution of the RO varies from about 50 km in 
the troposphere to 300 km in the stratosphere (Kursinski 
et al. 1997), while the vertical resolution varies from 100 m 
in the troposphere to 500 m in the stratosphere (Zeng et al. 
2019).

Datasets

In this study, from each RO profile, we considered the 
bending angle (BA) and the temperature (T) parameters and 
calculated their respective anomalies  (BAanom and Tanom) 
as described in the following section. The BA is the most 
directly observable parameter in RO and contains informa-
tion on the atmospheric vertical structure due to pressure, 
temperature, and water vapor (Biondi et al. 2011). In the 
lower troposphere the BA is mostly affected by the water 
vapor content, while in the upper troposphere and lower 
stratosphere (UTLS), the water vapor content decreases, and 
the temperature contribution prevails (Biondi et al. 2011, 
2012, 2015, 2017).

As demonstrated by Biondi et al. (2017), the  BAanom and 
Tanom, calculated using the anomaly technique, have been 
demonstrated to be more effective than the BA and T param-
eters in detecting VC tops and their impacts on the thermal 
structure (Biondi, 2017; Cigala, 2019)..

In order to develop classification algorithms capable of 
discriminating between the presence or absence of VC using 
GNSS RO data, two datasets were created and used in this 
work: Base_dataset, and FVC_dataset (fresh volcanic cloud).

The Base_dataset consists of two classes of GNSS RO 
profiles:

• RO-VC, Volcanic Cloud: GNSS ROs that belong to the 
eruptive period. These data are selected from the multi-
sensor satellite-based archive collecting all the ROs col-
located with the largest  SO2 VCs since 2006 (Tournigand 
et al. 2020a). In particular, the volcanic eruption for the 
events of Okmok, Kasatochi, Sarychev, Eyjafjallajökull, 
Grímsvötn, Tolbachik, Nabro, Merapi, Kelut, Puyehue-
Cordón Caulle (PCC), Calbuco have been analyzed, as 
reported in Table 1. In Fig. 1 is shown the location of the 
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analyzed volcanoes. As a background for the  SO2, esti-
mations from Atmospheric InfraRed Sounder (AIRS) and 
Infrared Atmospheric Sounding Interferometer (IASI) 
data were used.

• RO-AB, Atmospheric Background: GNSS ROs that 
belong to the non-eruptive period. These data represent 
a background for ROs that belong to the non-eruptive 
period and are selected from the Wegener Center for Cli-
mate and Global Change (WEGC) archive (Angerer et al. 
2017) with the procedure described in following section, 
point 2.

The number of profiles in the RO-VC datasets depends on 
the data availability in the Tournigand et al. (2020a). Over-
all, around 14900 profiles were extracted over a period of 
about 200 days, from the eruption to the following 35 days. 
The same number of RO-AB profiles were extracted to have 
a balance between the two classes of GNSS RO profiles dur-
ing model training.

Instead, the FVC_dataset represents a subset of Base_
dataset containing only the data relating to the first days of 
the eruption. Therefore, reducing the period between the 
main eruption and the RO acquisition date, it is possible 

to focus on the “fresh cloud” in order to better analyze its 
initial phase. In this case the number of ROs is obviously 
significantly reduced (Table 1) With approximately 2700 
profiles over a period of about 40 days, from the eruption to 
the following 9 days.

Data pre‑processing

For the creation of Base_dataset and FVC_dataset, for each 
volcano eruption the RO data were processed following this 
procedure:

1. Selecting all the RO profiles from the multi-sensor satel-
lite-based archive (Tournigand et al. 2020a) that belong 
to the considered volcano (RO-VC).

2. Selecting the same number of RO profiles in non-erup-
tive period (RO-AB) from the WEGC archive (Angerer 
et al. 2017) to be used as a reference background. Par-
ticularly, for each RO-VC profile we chose the nearest 
one out of all the profiles within a radius of 0.5 degrees 
and a time range of 10 days from the RO-VC event date 
in a year different from the eruption event.

Table 1  Eruption events data, number of RO (total of RO-VC and RO-AB) and analyzed period for Base and FVC datasets

Eruption event Main eruptive 
event date

Hemis n° RO
base dataset

Period of analysis
base dataset

n° RO
FVC dataset

Period of analysis FVC dataset

Okmok 12/07/2008 North 894 07/12/2008–08/06/2008 432 12/07/2008–17/07/2008
Kasatochi 07/08/2008 North 10284 08/07/2008–08/29/2008 772 08/08/2008–11/08/2008
Sarychev 14/06/2009 North 4668 06/11/2009–07/16/2009 1238 11/06/2009–20/06/2009
Eyjafjallajökull 20/03/2010 North 1150 05/05/2010–05/21/2010 466 05/05/2010–13/05/2010
Grímsvötn 21/05/2011 North 1934 05/22/2011–06/18/2011 468 22/05/2011–25/05/2011
Tolbachik 27/11/2012 North 438 11/27/2012–12/03/2012 118 27/11/2012–29/11/2012
Nabro 12/06/2011 Equat 1864 05/31/2011–06/25/2011 312 12/06/2011–15/06/2011
Merapi 04/11/2010 Equat 428 10/26/2010–11/11/2010 232 05/11/2010–08/11/2010
Kelut 13/02/2014 Equat 60 02/17/2014–02/18/2014 60 17/02/2014–18/02/2014
PCC 04/06/2011 South 1148 06/07/2011–06/18/2011 352 07/06/2011–08/06/2011
Calbuco 22/04/2015 South 6930 04/24/2015–05/24/2015 844 24/04/2015–27/04/2015

Fig. 1  Location of analyzed 
volcanoes: 1 Okmok, 2 
Kasatochi, 3 Eyjafjallajökull, 
4 Grímsvötn, 5 Tolbachik, 6 
Sarychev, 7 Nabro, 8 Merapi, 9 
Kelut, 10 PCC, and 11 Calbuco. 
The volcanoes of the northern 
hemisphere are shown with 
the black symbols, red for 
Equatorial area, and blue for the 
southern hemisphere, according 
with Table 1
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3. For all the selected RO-VC and RO-AB profiles, both 
BA and T parameters have been extracted, and their rela-
tive anomaly profiles have been calculated as follows 
(Biondi et al. 2011, 2012, 2017; Cigala et al. 2019):

a. Calculation of the BA reference climatology 
 (BAclim) and T reference climatology (Tclim) in the 
same area of RO: the reference climatology is cal-
culated by selecting BA and T profiles of all ROs 
collected from 2007 to 2017 and located within the 
same area of RO, with a radius of 2.5 degree of lati-
tude and longitude. Then, averaging all on a monthly 
basis.

b. Applying the anomaly technique to calculate the BA 
anomaly  (BAanom) as:

c. where BA is the bending angle profile into the VC, 
and  BAclim is the bending angle climatology in the 
same area.

d. Similarly, the temperature anomaly (Tanom) has been 
evaluated as:

where T is the temperature profile, and Tclim is the tempera-
ture climatology.

The  BAanom is computed as a percentage because the 
absolute value of BA is really small, while the Tanom is com-
puted in absolute value because it has an intrinsic impor-
tance in the atmospheric vertical structure (Biondi et al. 
2017).

As a last step of data preparation, the filling values have 
been cleaned, the data above the altitude of 40 km have been 
removed (not of interest for our analysis), and the profiles 
have been rescaled in order to improve the model training 
performance. In particular the BA and T profiles have been 
rescaled in the range [0, 1] as they are positive values, while 
the  BAanom and Tanom profiles have been rescaled in the range 
[− 1, 1] as they are both positive and negative values. Con-
sequently, as result of data preprocessing, for RO-VC and 
RO-AB four parameters have been extracted respectively: 
BA, T,  BAanom, and Tanom. The described procedure has been 
implemented by an ad hoc MATLAB algorithm.

Data uncertainties

As described in previous subsection, for the creation of 
Base_dataset and FVC_dataset three different instruments 
are combined in order to detect VCs from eruption events: 
GNSS RO, AIRS, and IASI. The temporal and spatial col-
location between GNSS RO and AIRS or IASI represents 

(1)BA
anom

=

BA − BA
clim

BA
clim

∗ 100

(2)T
anom

= T − T
clim

one of the main uncertainties in this work, i.e. RO data are 
collocated with AIRS or IASI at ± 0.2° spatially and ± 12 h 
temporally (Tournigand et al. 2020a). Moreover, there is an 
uncertainty related to the VC detection from AIRS and IASI 
instruments, depending on the injected amount of aerosols 
erupted, and the unknown altitude and thickness of the cloud 
(Tournigand et al. 2020a).

Support vector machine (SVM) algorithm

The support vector machine (SVM) is a set of supervised 
learning methods used for common tasks in data mining, 
pattern recognition and machine learning (e.g., classifica-
tion, regression, and outliers’ detection). Especially in recent 
years SVM has proven to be one of the best “out of the box” 
classifiers, with applications in several fields of science and 
in real-world problems (Cervantes et al. 2015, 2020; Sun 
et al. 2005; Liang et al. 2017; Raheja et al. 2016; Bhowmik 
et al. 2009). However, the classification accuracy can be 
improved by increasing sample numbers (James et al. 2013; 
Sordo et al. 2005). In this study, the SVM is particularly a 
suitable algorithm for the limited size and complex nature of 
the dataset used. This is because it is effective in managing 
nonlinear relationships by employing different kernel func-
tions (in fact the SVM is a kernel-based machine learning 
model) and excels in high-dimensional spaces, facilitating 
the identification of the hyperplane that optimally separates 
classes by maximizing the margin. Such characteristics ena-
ble the SVM algorithm to generalize effectively to test data 
while mitigating overfitting. The models created using the 
SVM algorithm are able to classify the RO profiles into pro-
files associated and not associated with VC, following this 
procedure: 1) selection of training and test dataset, 2) model 
creation based on the training dataset, 3) classification of test 
dataset using the produced model, 4) model performance 
evaluation. The best kernel for studying individual problems 
is to use a-priori information. Since the a-priori information 
is not available in this specific study, the choice of kernel is 
based on the characteristics of the data (Horn et al., 2018; 
Cervantes et al. 2020). The most accurate solutions for our 
binary classification problem are the 3rd-degree polynomial 
(poly3) and the Radial Basis Function (RBF) kernels (Nanda 
et al., 2018; Kasnavi et al. 2018). In the initial stages of the 
analysis, we also experimented with other popular kernels, 
such as linear and 2nd-degree polynomial kernels. However, 
the results were not as satisfactory as those obtained with 
the poly3 and RBF. Hence, we limited our focus to these two 
kernels to prevent the article from becoming overly complex 
and difficult to read.

The kernel that returns the best results on the studied 
datasets has been subjected to hyperparameters optimiza-
tion using k-fold cross-validation technique over the train-
ing dataset to further improve the classification accuracy. 
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Hyperparameters optimization is used to find the best 
parameters that are not directly learnt within the model, and 
in conjunction with the k-fold cross-validation technique in 
order to control problems, such as reducing overfitting. In 
this work the parameter tuning was used applying a grid 
search strategy and doing fivefold cross-validation for sev-
eral possible specified values of a model parameter and then 
choosing the parameters value with the lowest cross-valida-
tion average error.

Two different metrics have been used to evaluate the 
model performance in order to calculate a value for the cor-
rectly classified samples (accuracy, acc, as defined in Chicco 
and Jurman (2020) Eq. 1) and one that allows to balance 
also the false negatives (F1 score, as defined in Chicco and 
Jurman (2020), Eq. 4). Both assume values between 0 and 1, 
with 1 best value for classification. To have also an estima-
tion of the degree of overfitting the Training Test Accuracy 
Rate (TTAR) has been defined as the ratio of the acc on 
training and on the test. Values of TTAR close to 1 indicate 
the absence of overfitting. All the SVM analyses and the 
metrics calculation have been implemented in Python 3.6.

Experiments performed

A total of 17 experiments were performed, varying the data 
used to train and test the model, following the indications 
given in Table 2. The first 8 experiments (named Okm, 
Kas, Sar, Eyj, Gri, Nab, PCC, Cal) refer to the analysis on 
single eruptions, where the profiles of each single event 
are considered to train the model and to validate it. In this 

way a specific model for each single eruption is created. 
In the Okm-Kas experiment the eruptions of Okmok and 
Kasatochi, very close in space and time (about 500 km and 
27 days between the main eruption of Okmok and main 
eruption of Kasatochi), were considered in the same data-
set to create a model capable of representing the 2 events 
together with a simple merging of their relative datasets. 
The same dataset merging operation was performed for 
experiments North, Equat, and South, to train models 
based on latitudinal events selection, while in all experi-
ment all the events were considered. For these 13 experi-
ments (Okm, Kas, Sar, Eyj, Gri, Nab, PCC, Cal, Okm-Kas, 
North, Equat, South, and All) a random 80%/20% split was 
used for the training/test set while simultaneously ensur-
ing an approximately balanced distribution of both target 
classes (RO-VC and RO-AB profiles) in order to ensure a 
correct training of the model.

Additional 4 experiments were performed using some 
events for the training phase and different events for the 
test phase, with the aim of creating models that can be 
used for detecting other VC eruptions for which there is 
no data yet:

• Test1—Training on Okmok, Kasatochi and Sarychev 
events and testing on Eyjafjallajökull, Grímsvötn and 
Tolbachik events data;

• Test2—Training on Okmok and Kasatochi events and 
testing on Sarychev events data;

• Test3—Training on Okmok, Kasatochi and Sarychev 
events and testing on Nabro event data;

Table 2  Experiments description

Experiment name Description Type of experiment

Okm Okmok event data Single event
Kas Kasatochi event data Single event
Sar Sarychev event data Single event
Eyj Eyjafjallajökull event data Single event
Gri Grímsvötn event data Single event
Nab Nabro event data Single event
PCC PCC event data Single event
Cal Calbuco event data Single event
Okm-Kas Okmok and Kasatochi events data Set of 2 close events
North Okmok, Kasatochi, Sarychev, Eyjafjallajökull, Grímsvötn and Tolbachik events data Cluster of events
Equat Nabro, Merapi and Kelut events data Cluster of events
South PCC and Calbuco events data Cluster of events
All All volcanic events data Cluster of events
Test1 Training on Okmok, Kasatochi and Sarychev events and testing on Eyjafjallajökull, 

Grímsvötn and Tolbachik events data
Test on cluster of events

Test2 Training on Okmok and Kasatochi events and testing on Sarychev events data Test on cluster of events
Test3 Training on Okmok, Kasatochi and Sarychev events and testing on Nabro event data Test on cluster of events
Test4 Training on Okmok, Kasatochi and Sarychev events and testing on PCC event data Test on cluster of events
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• Test4—Training on Okmok, Kasatochi and Sarychev 
events and testing on PCC event data;

In these cases, the training/test ratio is not 80/20 but 
adjusted to the data availability: 82/18 for Test1, 71/29 for 
Test2, 89/11 for Test3, and 93/7 for Test4. Considering 
that the robustness of the model depends on the length of 
the training dataset, only experiments with at least about 
750–800 ROs have been considered (see Table 1).

During the initial stage of analysis, we chose to train the 
models without a validation set (only from experiments not 
subjected to the cross-validation technique), intending to 
generally evaluate the performance and accuracy of various 
experiments involving different combinations of the kernel 
functions with all profile parameters. Instead, in a second 
stage, the validation set was taken into account for all experi-
ments subjected to the cross-validation technique. Specifi-
cally, for each experiment, we employed a "Stratified 5-folds 
Cross Validation" strategy over the training dataset to ensure 
that the frequencies of the two target classes (RO-VC and 
RO-AB profiles) were approximately preserved in each train-
ing and validation fold.

Results and discussions

In this work the RO associated with VC data generated by 
the 11 largest eruptions of this century have been processed 
and organized into 2 groups of datasets: Base_dataset (for all 
data associated with eruptions) and FVC_dataset (for data 
related to the first days of the eruption). A total of 29800 

ROs (RO-VC and RO-AB) were selected for Base_dataset 
while 5300 of these were selected for FVC_dataset. Each 
dataset reports information for 4 parameters: the bending 
angle (BA), the temperature (T), and their respective anoma-
lies  (BAanom and Tanom). These datasets were used to train 
models (one model for each parameter, separately) based on 
SVM algorithms to classify if they are collocated or not with 
VC, representing a first attempt in detecting the VC starting 
from RO data.

Considering that the performance of the SVM is related 
to the kernel used for the classification, preliminary tests 
have been conducted to find the best kernel for the studied 
datasets. Tests were performed with poly3 (Table S1), and 
RBF (Table 3). The values of acc and F1 score obtained 
with the last 2 kernels are similar (RBF results are slightly 
better than poly3) but the TTAR values are higher consider-
ing poly3, as can be seen comparing Table 3 with Table S3 
(a graphical comparison of the two tables is shown in Fig-
ure S2). This means that using the RBF kernel the overfit 
of the model is limited, thus the RBF proves to be the most 
appropriate kernel for the objectives of this study. Therefore, 
all the values reported in the paper refer to the SVM algo-
rithm with RBF kernel, while some examples with poly3 
are reported for completeness as supplementary material 
(Table S1 and Table S2).

In Table 3 are shown the models performance on the 
test sets for the anomalies of BA and T for Base_dataset. 
Analyzing initially the first 8 experiments (Okm, Kas, Sar, 
Eyj, Gri, Nab, PCC, Cal) the values of acc and F1 score 
are greater than 0.60. The best performances are obtained 
for Eyj, Gri, and Okm experiments, while the worst for 

Table 3  Model results (without 
cross-validation) for base 
datasets using SVM RBF kernel

Experiment name BA anom acc BA anom 
F1 score

BA anom TTAR T anom acc T anom 
F1 score

T anom TTAR 

Okm 0.82 0.80 1.07 0.74 0.74 1.16
Kas 0.68 0.71 1.10 0.69 0.71 1.08
Sar 0.61 0.62 1.17 0.65 0.65 1.09
Eyj 0.85 0.85 1.06 0.84 0.84 1.08
Gri 0.78 0.79 1.08 0.82 0.83 1.04
Nab 0.76 0.76 1.14 0.74 0.75 1.14
PCC 0.74 0.77 1.08 0.77 0.80 1.05
Cal 0.74 0.76 1.07 0.75 0.75 1.05
Okm-Kas 0.69 0.71 1.08 0.70 0.72 1.05
North 0.63 0.64 1.09 0.66 0.68 1.04
Equat 0.72 0.72 1.15 0.76 0.77 1.08
South 0.67 0.69 1.13 0.73 0.73 1.05
All 0.61 0.62 1.11 0.63 0.64 1.06
Test1 0.46 0.31 1.55 0.46 0.34 1.52
Test2 0.56 0.56 1.33 0.57 0.56 1.30
Test3 0.54 0.50 1.31 0.47 0.43 1.48
Test4 0.57 0.49 1.25 0.57 0.57 1.23
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Sar. In the cases with good acc (range from 0.74 to 0.84 for 
Eyj, Gri, and Okm) of the model the number of FP and FN 
is low, therefore no wrong overestimation/underestimation 
of VC is shown in these models (Powers 2020).

The values of acc and F1 score reported in Table 3 dem-
onstrate that the developed models can correctly classify 
the ROs associated with the VCs for individual events, on 
par with those from other previous similar studies (Torrisi 
et al 2022; Cervantes et al. 2020).

Good model performances have been found both on the 
anomalies of T and BA, while the acc and the F1 score 
decreases when considering the absolute values of BA and 
T. Specifically the acc decreases by about 11% by compar-
ing the performances of BA and  BAanom and about 12% 
by comparing T and Tanom (see Table 3 and Tables S1, S2, 
S3). Also in this study, the anomaly technique (Biondi 
et al. 2017) proves effective on both BA and T profiles.

The same performances of Sar (worst case for the accu-
racy of the models) were obtained by training the model 
on all volcanoes (All experiment), while grouping events 
by latitude returns more satisfactory results (acc between 
0.72 and 0.76 for Equat experiment). In general, training 
the model considering multiple events together leads to 
worse results. This is evident by comparing the separate 
Okm and Kas experiments with the Okm-Kas experiment, 
which shows a lowering of the accuracy in the Okm-Kas 
experiment, especially when BA and T are considered in 
absolute value.

As additional proof, experiments in which the SVM 
model has been trained on past events and tested on events 
that have not yet occurred were conducted. These are the 
experiments labeled Test1 and Test4 in Table 2. In Test 1 
the north latitude events prior to 2010 were used for model 
training (Okm, Kas and Sar) while those after 2010 for the 
test (Eyj, Grim and Tol). The same models were tested on 
2011 events (Test 3 on Nab, Test 4 on PCC), while in Test 2 
the north latitude events prior to 2009 were used for model 
training (Okm and Kas) and that of 2009 for the test (Sar). 
Unfortunately, in terms of acc and F1 score, the results are 
not satisfying in this last set of experiments: the models con-
structed in this way overestimate the cases of false positives 
(the number of real positives that are wrongly predicted as 
negative), which means that the models tend to underesti-
mate the VCs on the test. Another evidence is the strong 
overfitting (high TTAR values), which demonstrates that fur-
ther investigations are needed to carry out similar analysis.

The low performances of Tests 1–2 demonstrate that the 
algorithm must be customized at regional scale due to dif-
ferent factors:

• The reference climatology used to compute the anomaly 
is different according to the latitude—moving towards 
higher (lower) latitudes, the tropopause height decreases 

(increases) and this affects the computation of the anom-
aly at different layers;

• A higher frequency of convection in the area decreases 
the tropopause temperature;

• Each volcano is usually characterized by a specific type 
of eruption (e.g. mainly SO2, mainly ash, water vapor 
rich clouds, mixed clouds, …) affecting in different way 
the atmospheric structure in terms of density and radia-
tive effect;

• In some cases there can be a combination of different 
clouds (e.g. 2 eruptions or a volcanic eruption during 
convective activity).

In order to improve the model performance with a fur-
ther increase of classification acc for each experiment, an 
optimization of the SVM hyperparameters C and γ was per-
formed for the BA and T anomaly profiles. The parameters 
have been optimized by cross-validated grid-search over 
a parameter grid as described in section “Support Vector 
Machine (SVM) algorithm”. As expected, an improvement 
in model acc was found in each experiment (Table 4) up to 
4% in  BAanom in the Gri experiment (acc from 0.78 with-
out Cross Validation to 0.81 with Cross Validation) and 
10% in Tanom in the Kas experiment (acc from 0.69 without 
Cross Validation to 0.76 with Cross Validation). However, 
the experiments Test1—Test4 have been excluded from the 
parameter optimization training processes considering the 
low performances obtained.

The structure and properties of a VC over time can be 
affected by meteorological and atmospheric factors as it dis-
perses in the atmosphere. Considering a FVC that belongs 
to the first days of volcanic eruption, and possibly near to 
the volcano geographic area, may increase the reliability 
and robustness of the classification accuracy results. Conse-
quently, for each volcanic eruption event it has been selected 
from the archive Tournigand et al. (2020a) only the profiles 
that belong to the first days of the eruption event, and thus 
obtaining the FVC_dataset (a subset of Base_dataset) as 
explained in previous section and Table 2.

Analogous to the Base_dataset analysis, the same study 
was also repeated on FVC_dataset training SVM models 
on  BAanom and Tanom profiles with RBF kernel. However, 
considering that the FVC_dataset refers only to the first few 
days following the eruption, some events have a small num-
ber of profiles, and so they have not been considered. Only 
the following experiments have been analyzed: Kas, Sar, 
Cal, Okm-Kas, North, South, All. The produced models with 
default parameters based on the  BAanom profiles showed acc 
values between 0.70 and 0.76 in the Cal, Kas, North, Okm-
Kas and Sar, low values form the All and South experiments 
(between 0.63 and 0.66). Similar values were also found for 
Tanom profiles, with acc ranging from 0.70 to 0.81 for the Cal, 
Kas, North, Okm-Kas and Sar experiments, and lows values 
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in the All and South cases (0.67 and 0.65 respectively), as 
shown in Table 5.

Lastly, hyperparameters optimization along with k-fold 
cross-validation technique have been applied for the experi-
ments related to FVC_datasets. The results are shown in 
Table 6. As the Base_dataset analysis case, also here the 
created models from  BAanom and Tanom profiles showed an 
increase in the acc and F1 score values.

The performance of the proposed machine learning 
algorithm is comparable to other algorithms based on 
machine learning techniques (Torrisi et al. 2022), but it 

also represents the first attempt to create a model work-
ing at global scale and not for case studies (Corradini et al. 
2010; Torrisi et al. 2022; Piontek et al., 2021; Corradini 
et al. 2021; Romeo et al. 2023). The algorithm's performance 
can be improved, e.g., by setting other specific thresholds 
for the  BAanom and Tanom profiles, but this will be the sub-
ject of future investigations, as it is not the objective of this 
study. Additionally, this algorithm has the advantage of not 
depending on other parameters and models as it happens for 
the Brightness Temperature Difference algorithm (Corradini 
et al. 2010, 2021; Prata and Lynch 2019; Romeo et al. 2023) 

Table 4  Model results with 
cross-validation for Base 
datasets using SVM RBF kernel

Experiment name BA anom acc BA anom 
F1 score

BA anom TTAR T anom acc T anom 
F1 score

T anom TTAR 

Okm 0.82 0.80 1.09 0.77 0.76 1.19
Kas 0.71 0.72 1.25 0.76 0.77 1.19
Sar 0.62 0.63 1.22 0.66 0.67 1.09
Eyj 0.88 0.88 1.10 0.86 0.86 1.12
Gri 0.81 0.82 1.10 0.84 0.85 1.10
Nab 0.77 0.77 1.21 0.75 0.76 1.20
PCC 0.78 0.79 1.10 0.81 0.82 1.16
Cal 0.75 0.76 1.08 0.77 0.77 1.18
Okm-Kas 0.71 0.73 1.18 0.75 0.76 1.17
North 0.66 0.67 1.17 0.70 0.70 1.19
Equat 0.75 0.75 1.17 0.78 0.79 1.18
South 0.70 0.71 1.20 0.75 0.75 1.20
All 0.63 0.63 1.20 0.67 0.67 1.19

Table 5  Model results (without 
cross-validation) for FVC 
datasets using SVM RBF kernel

Experiment name BA anom acc BA anom 
F1 score

BA anom TTAR T anom acc T anom 
F1 score

T anom TTAR 

Kas 0.76 0.76 1.14 0.81 0.79 1.07
Sar 0.72 0.74 1.15 0.71 0.73 1.12
Cal 0.71 0.69 1.20 0.79 0.77 1.05
Okm-Kas 0.73 0.75 1.17 0.78 0.80 1.04
North 0.70 0.72 1.11 0.70 0.71 1.09
South 0.63 0.65 1.29 0.65 0.67 1.27
All 0.66 0.68 1.13 0.67 0.68 1.09

Table 6  Model results with 
cross-validation for FVC 
datasets using SVM RBF kernel

Experiment name BA anom acc BA anom 
F1 score

BA anom TTAR T anom acc T anom 
F1 score

T anom TTAR 

Kas 0.77 0.77 1.15 0.83 0.82 1.08
Sar 0.73 0.75 1.20 0.76 0.77 1.12
Cal 0.72 0.68 1.14 0.83 0.80 1.12
Okm-Kas 0.74 0.75 1.12 0.80 0.82 1.10
North 0.72 0.73 1.20 0.73 0.73 1.15
South 0.65 0.64 1.17 0.68 0.65 1.17
All 0.68 0.69 1.19 0.70 0.71 1.18
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for which in most cases, it is also necessary the supervision 
of an operator to discriminate the components of VC.

Moreover, this work uses an “uncommon” data source 
(GNSS RO) for this type of studies supporting the necessity 
of using “potential new satellites and instruments dedicated 
to monitoring volcanic ash plumes and eruptions due to the 
urgent need to gather information on the vertical structure 
of evolving VC” (Zehner et al., 2010) and using a reliable 
detection system not dependent on the meteorological con-
ditions necessary to have a weather independent warning 
capacity as suggested by Tupper et al. (2004).

Conclusions

The work shows a first classification study to classify the VC 
starting from GNSS RO data. Based on the validation of the 
models, the SVM algorithm with the RBF kernel function 
showed good performance in most case studies, especially 
working with BA and T anomaly profiles on single eruption 
events. Model acc decreases if more events are considered to 
train the models, which suggests that further investigations 
are needed to carry out analysis on event clusters. It is inter-
esting to note that the resulting accuracy from BA  (BAanom) 
and T (Tanom) showed different values but with small dif-
ferences. This could be explained by the algorithm's better 
performance in detecting the anomaly signatures at higher 
altitudes, as they are more distinguishable, such as in the 
UTLS, where VCs typically reach, with minimal or negligi-
ble water vapor content.

This study shows that the GNSS RO profiles are able 
to distinguish the VC from other atmospheric conditions. 
The use of the anomaly provides a performance improve-
ment up to 15% (acc from 0.63 to 0.72 in the case of PCC 
experiment) depending on the volcano and this is due to the 
fact that the anomaly highlights the density variation of the 
atmospheric layers in which the VC lies. However, it is not 
possible to state at the moment when the  BAanom accuracy 
is better than the Tanom accuracy or vice-versa. This will be 
the topic of future investigations.

The RO-AB were selected in different years of the vol-
canic eruption in a random environment to build a realistic 
and robust reference background. The results could show a 
further relevant improvement if the RO-AB were selected 
in a clear sky environment when the atmospheric profile 
approximately follows the climatology, but this can alter 
the model accuracy robustness in presence of dense mete-
orological clouds. The presence of the VCs in environ-
ments prone to convective activity can be the reason of the 
different performances of the algorithm for single erup-
tions. Eyj, Gri, and Okm clouds were just at high latitudes 
(Figure S1) where the convection is rare, while Sarychev 
(lowest performance) is in the area where the typhoons 

become extratropical cyclones (Biondi et al. 2015) and 
really strong convection can happen affecting the BA and 
T profiles in a similar manner.

The algorithm must be customized due to the atmos-
pheric vertical profile structure changing with longitude 
and (mostly) latitude, so the model can provide the best 
performance when applied regionally. This is the main 
reason why the performances of the Test1, Test2, Test3 
and Test4 are low and the performances increase when 
working on latitudinal bands.

The use of SVM algorithm based on RBF kernel with 
optimized hyperparameters C and γ for the anomaly pro-
files shows an improvement in classification acc accu-
racy for most of the performed experiments detecting 
the respective VCs with a good accuracy. Hyperparam-
eter optimization has also contributed to improvements 
in terms of acc working on event clusters (e.g. Okm-kas, 
South, and Equat experiments). Moreover, the experiments 
based on the FVC_dataset showed a similar results trend to 
those based on the Base_dataset. Therefore, even a limited 
amount of data in the first few days following the event is 
enough to have good performance.

The number of ROs acquired in the period 2008–2015 is 
really small compared to the actual number of ROs avail-
able nowadays (Ho et al. 2022), and this provides a good 
prospective to increase the performance of the model in 
the future and to potentially include the GNSS RO profiles 
into already existing early warning system for monitoring 
volcanic clouds.
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