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Abstract
The centimeter-level positioning accuracy of real-time kinematic (RTK) depends on correctly resolving integer carrier-phase 
ambiguities. To improve the success rate of ambiguity resolution and obtain reliable positioning results, an enhanced Kalman 
filtering procedure has been developed. Based on a posteriori residuals of measurements and state predictions, the measure-
ment noise variance–covariance matrix for double-differenced measurements is adaptively estimated, rather than approxi-
mated by an empirical function which uses satellite elevation angle as input. Since, in real-world situations, unexpected 
outliers and carrier-phase outages can degrade the filter performance, a stochastic model based on robust Kalman filtering 
is proposed, for which the double-differenced measurement noise variance–covariance matrix is computed empirically with 
a modified version of the IGG (Institute of Geodesy and Geophysics) III method in order to detect and identify outliers. The 
performance of the proposed method is assessed by two tests, one with simulated data and one with real data. In addition, the 
performance of F-ratio and W-ratio tests as proxies for the success of ambiguity fixing is investigated. Experimental results 
reveal that the proposed method can improve the reliability and robustness of relative kinematic positioning for simulation 
scenarios as well as in a real urban test.
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Introduction

In kinematic GNSS positioning, the Kalman filtering tech-
nique is widely used to produce optimal state estimation 
when the functional and stochastic models are correct. In 
practice, however, even with correctly defined functional 
models for the state and observation equations, appropri-
ate stochastic modeling for pseudorange and carrier-phase 
measurements is not trivial, particularly for real-time appli-
cations (Wang et al. 2000). Any insufficient accuracy in 
modeling has the potential to lead to filter divergence. The 
state-of-the-art procedure to deal with unknown stochastic 
models in the estimation process is called adaptive Kalman 

filtering, for which two main approaches exist, namely mul-
tiple model-based adaptive estimation (MMAE) and inno-
vation-based adaptive estimation (IAE), in which the latter 
adaptation is more suitable for an integrated inertial naviga-
tion system/global positioning system (INS/GPS) (Mohamed 
and Schwarz 1999). To apply the adaptive Kalman filtering 
technique in real-time GPS kinematic positioning, a precise 
estimator of the measurement noise Variance–Covariance 
(VC) matrix has been suggested by Wang et al. (1998). This 
approach does not require intensive computations, and the 
measurement noise VC matrix can be estimated directly and 
is ensuring a positive definite measurement noise VC matrix 
(Wang 1999).

In standard kinematic GNSS processing, the VC matrix for 
differenced measurements is typically representing the vari-
ance of code- and carrier-phase measurements weighted by 
the satellite elevation angle. However, such a stochastic model 
might not be appropriate for challenging environments, such 
as urban areas. Wang (1999) has shown that the estimated 
measurement noise VC matrix, based on a posteriori residuals 
of both measurements and state predictions rather than only 
residuals corresponding to measurements (Hewitson and 
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Wang 2007), can significantly improve the reliability of ambi-
guity resolution and the accuracy of kinematic positioning. 
However, due to carrier-phase outages, i.e., only pseudorange 
measurements are available, the convergence of the Kalman 
filtering may be perturbed, degrading the filter performance 
with fewer valid Double-Differenced (DD) measurements. 
In addition, the optimal choice of the estimation window 
width depends strongly on trajectory dynamics (Mohamed 
and Schwarz 1999), leaving the risk that the DD measure-
ment noise VC matrix contains incorrectly predicted stochas-
tic information. Thus, robust estimation should be utilized to 
obtain solutions with high accuracy and reliability (Liu et al. 
2019).

In this work, we study how to deal with the degraded reli-
ability and robustness of GPS-only real-time kinematic (RTK) 
positioning in complex environments when measurements 
are contaminated or interrupted. The performance of the sug-
gested algorithm is evaluated against a Kalman filtering proce-
dure implemented with the Gauss–Markov model. Besides, the 
F- and W-ratio tests (Frei and Beutler 1990; Wang et al. 1998) 
for validating integer ambiguity estimation are investigated. 
Their performance is analyzed based on real data collected in 
urban areas. Additionally, in a simulation test, the accuracy 
and robustness of the Kalman filter are investigated based on 
a reference trajectory, which has been artificially contaminated 
with normally distributed measurement outliers. Finally, the 
results of both simulated and realistic GPS single-frequency 
datasets indicate that a better performance of RTK positioning 
can be achieved by utilizing the proposed method.

Kalman filter

In general, the Kalman filtering algorithm comprises two 
steps, prediction and update, as follows.

Prediction:

Updating:

where x̂n∣n−1 and Pn∣n−1 represent the state vector and its VC 
matrix predicted from the previous epoch n − 1 to the present 
epoch n ; x̂n∣n is the updated state vector at epoch n ; Pn∣n is 
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its corresponding VC matrix; Kn is the Kalman gain matrix. 
In the “predict–update” loop of the Kalman filter, possible 
round-off errors due to different precision magnitudes of 
state parameters in computing Pn∣n can be accumulated, then 
lead to non-symmetric matrices, even let the state covariance 
matrix lost the positive-definiteness. Considering the numer-
ical stability, the Joseph stabilized version of the covariance 
correction equation described as (Simon 2006; Chang 2014)

is the one that should be used to guarantee that the updated 
VC matrix is symmetric and positive definite.

Conventional Kalman filter

In conventional Kalman filtering, the VC matrix of DD 
measurements is expressed as (Takasu and Yasuda 2009)

where D is the single-differenced (SD) matrix; �2
L,SD

 and 
�2
P,SD

 represent the variance of the carrier- and code-phase 
measurements, respectively, since the carrier-phase noise 
is roughly 100 times smaller than the pseudorange noise 
(Kee et al. 1997), for which the variance can be calculated 
as follows

where �2
L
 denotes the variance of the undifferenced carrier-

phase measurement, which can be approximated as inverse 
proportional to the sine of satellite elevation angle as (Xi 
et al. 2018)

where E is the elevation angle of the satellite; a and b are 
the carrier-phase error factors, which are empirically set to 
3 mm.

Adaptive estimation of the measurement noise 
matrix

Basically, there are four main approaches for adaptive 
Kalman filtering—Bayesian, maximum likelihood (ML), 
correlation, and covariance matching (Mehra 1972). The 
Bayesian and ML estimation methods are time-consuming, 
while the correlation method is only suitable when the 
design matrix has invariant elements (Wang 1999). Con-
sidering real-time processing, it is more efficient to apply 
the covariance-matching technique. In this paper, the state 
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vector contains the position and velocity components of 
the rover 

(
rx, ry, rz, ṙx, ṙy, ṙz

)
 and its corresponding process 

noise matrix Qn [see (2)] can be expressed according to 
Schwarz et al. (1989) and Yang et al. (2001) as

where �2 is the spectral density for velocities; Δt represents 
the sampling time interval. In this case, the estimation of 
measurement noise VC matrix R can be handled more suc-
cessfully by covariance-matching (Mehra 1972).

The concept of the covariance matching approach is 
based on the idea of obtaining elements of the actual inno-
vation VC matrix which are consistent with their theoreti-
cal values (Mehra 1972; Maybeck 1982; Wang 1999). The 
innovation sequence or predicted residual vector vn can be 
expressed as

While the theoretical innovation VC matrix is presented by

The actual VC matrix of vn is approximated by its sample 
covariance (Mehra 1972; Mohamed and Schwarz 1999; 
Almagbile et al. 2010), i.e.,

where m is the size of an empirically selected window width 
at epoch n.

Inserting (13) into (12), the innovation-based adaptive 
estimate of the measurement noise VC matrix is obtained 
and written as

However, due to the subtraction between two positive defi-
nited matrices, it is not guaranteed that a positive definite 
matrix R can be obtained. Therefore, the integrated measure-
ment model using the least squares principle is performed 
by Wang et al. (1998) for which the Gauss–Markov model 
is described as

where
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together with the stochastic model, which is given as

The optimal estimator of the state parameters can be deter-
mined by

Cln
 and C−1

ln
 denote the VC matrix and weight matrix of the 

measurement vector ln . Residuals vn are divided into residu-
als of measurements vzn and predicted states vx̂n|n−1 . Both a 
posteriori residuals are calculated as follows

Thus, using the error propagation law, the VC matrix of the 
measurement residuals can be derived as

Then, matching the approximately computed actual VC 
matrix Ĉvzn

 of the innovation sequence with its theoretical 
form Cvzn

 , the positive definite VC matrix of the measure-
ment noise can be estimated according to Wang (1999) as

The goodness of this approach strongly depends on the 
proper choice of the moving window width length m . At 
epoch n , only measurement residuals from previous m 
epochs are considered. In practice, a filter divergence may 
occur if the window size is smaller than the number of 
update measurements (Mehra 1972). If the window size is 
sufficiently large, up to the length of the dataset, the adaptive 
filter behaves identically to a conventional filter. It should be 
noted that the application of the adaptively estimated meas-
urement noise matrix implicitly introduces a time-correlated 
VC matrix. While this should not pose a problem for the 
actual RTK algorithms, it could happen that elements of 
the VC are too large or too small, leading to too optimistic/
pessimistic formal errors. Although very unlikely, it could 
therefore happen that wrong integer ambiguity solutions 
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studied further and the above suggested method is applied in 
data processing presented in the following sections.

Robust estimation based on the IGG III method

If an outlier occurs, the variance of the affected observation 
should be inflated to reduce its weight (Yang et al. 2002). By 
such an adaptation of the VC matrix or weight matrix, the 
robust Kalman filter outperforms the conventional one. To 
maintain the intrinsic correlation among all observations fol-
lowing the matrix adjustment, it is required to construct an 
equivalent VC matrix or weight matrix. The weight element 
pij of a robust equivalent weight matrix P can be expressed 
according to Gui and Zhang (1998); Yang (1999); Yang et al. 
(2002) as

where �ij =
√
�ii ⋅ �jj is the weight reduction factor; �ii and �jj 

are called “bifactor.”
Considering the standardized residuals ṽi =

vi

σ
 , the reduc-

tion factor for the weight element is given as (Yang 1999; 
Yang et al. 2002)

where c0 and c1 are two empirical constants, which are usu-
ally chosen between 1.0 and 1.5 , and 2.5 and 3.0 , respectively 
(Gui and Zhang 1998). In the Kalman filtering approach 
formulated with the Gauss–Markov model (cf. “Adaptive 
estimation of the measurement noise matrix” section), the 
IGG (Institute of Geodesy and Geophysics) III scheme with 
c0 = 1.0 and c1 = 2.5 is utilized. Based on (15), standard-
ized residuals can be used to detect and identify outliers. 
Since the number of states including position and velocity is 
constant, the rejected segment ( ||�vi|| > c1 ) should be handled 
with caution. These state values cannot be eliminated, even 
if their weights are decreased to zero. Besides, to improve 
the robustness in adaptive estimation of R , the integrated 
VC matrix Cln

 in (16) is replaced by the robustly estimated 
VC matrix composed of both measurements and predicted 
states. And the correlation of DD measurements should be 
unaffected by the variance inflation factor �ij defined as (Liu 
et al. 2019)

To ensure the stability of filtering and the equivalence of the 
VC matrix, �ij is set to 10−5 for ||�vi|| > c1 , as depicted in Fig. 1.

As a result of this modification, large outliers will not 
be simply neglected, but remain in the observation system 
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(22)𝛾ii =

⎧⎪⎨⎪⎩
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with very low weight. Additionally, the intrinsic correlation 
of measurements and predicted states will also be unaltered.

Integer ambiguity resolution

Actually, only the fractional phase can be measured for car-
rier phases, and each carrier phase contains an unknown 
integer number of full cycles (Verhagen and Teunissen 
2006). Hence, the integer ambiguity resolution, which is the 
process of resolving unknown DD carrier-phase ambiguities, 
is crucial for high-precision GNSS applications. Despite the 
fact that the master satellite has the highest elevation mask, 
it is still possible that its carrier-phase measurements are 
blocked, or after a long observation time, its elevation angle 
is not dominant, so that the hand-over problem of the master 
satellite occurs. In this case, the DD form of carrier-phase 
ambiguities is hard to distinguish it from cycle slips, which 
can result in an inappropriate initialization for the corre-
sponding ambiguity. To avoid this problem, we apply the SD 
form rather than the DD form for carrier-phase ambiguities 
in the state vector.

Ambiguity resolution procedure

Conceptually, the ambiguity resolution procedure includes 
four steps:

(1)	 Computation of the float solution
(2)	 Estimation of integer ambiguities
(3)	 Ambiguity validation test
(4)	 Computation of the fixed solution

First, SD ambiguities and other unknown state parameters 
are estimated by the Kalman filter. In our dynamic model of 
RTK positioning, each SD ambiguity is modeled as a random 
walk with a noise spectral density of 10−8cycle2∕s , whereas 
the rover position is assumed to follow an integrated random 
walk process. This small spectral density enables the variation 

Fig. 1   Curve of the reduction factor �
ij
 for the weight elements (Yang 

et al. 2002)
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in SD ambiguity independent of time. Due to the uncorre-
lated property of SD ambiguity among satellites, covariance 
values of all SD ambiguities in the process noise matrix are 
set to zero. Prior to the next step, updated states and their VC 
matrix in (4) and (5) are converted to the DD form according 
to Takasu and Yasuda (2009) as

where (⋅)ij and (⋅)rb denote the SD form between satellites 
and between both receivers, respectively; G is a transition 
matrix containing the SD matrix D to convert the SD ambi-
guity to DD ambiguity; Nij

rb
 represents the DD carrier-phase 

ambiguity.
In order to yield the solution for Integer Least-Squares 

(ILS) ambiguities ⌣a , the Least-squares AMBiguity Decor-
relation Adjustment (LAMBDA) method (Teunissen 1993; 
1994; 1995) is employed to solve the minimization problem 
as follows

where the float ambiguity estimate â is assumed to be nor-
mally distributed with integer mean a and VC matrix Qâ.

Given that it has been demonstrated that the LAMBDA 
method effectively resolves the ambiguities, this contribution 
focuses solely on ambiguity validation techniques. An ambi-
guity validation test is employed to determine whether the 
integer ambiguity estimate ⌣a is acceptable or not. Once the 
best integer candidate set is identified with the corresponding 
critical value, state parameters other than float ambiguities can 
be updated by using fixed integer ambiguities.

Both, the F-ratio and the W-ratio, use the squared distance 
between the float solution and integer candidates as a criteria. 
The F-ratio as defined by Counselman III and Abbot (1989); 
Teunissen and Odijk (1997); Teunissen and Verhagen (2009) 
and expressed as
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tance from the float solution to the second-best integer solu-
tion, and to the best integer solution, respectively. Noting 
that both quadratic forms are not independent, the F-ratio 
cannot be considered to follow a Fisher distribution (Teunis-
sen 1998; Wang et al. 1998; Teunissen and Verhagen 2009). 
An alternative validation procedure utilizes the W-ratio to 
assess the likelihood of the best ambiguity relative to the 
second-best combination (Wang et al. 1998).

where d = q
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a
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 denotes the difference between 

the second minimum and minimum quadratic form of least-
square residuals; Var(d) is the estimated variance of d . If a 
critical value, later referred to as c , does not exceed the test 
statistic W , the likelihood of the best ambiguity combination 
is statistically significantly greater than that of the second-
best one.

Success probability of ambiguity resolution

A ratio test is applied to determine whether the float solution 
is close to its nearest integer vector, rather than whether the 
ILS solution is correct (Teunissen and Verhagen 2009). A criti-

cal value c is used to decide whether q
(

⌣

a
′
)

 significantly 

exceeds q
(

⌣

a
)
 . If so (i.e., if the ratio of (26) or (27) is not less 

than c ), the ILS solution ⌣a is acceptable.
Generally, the threshold value T = 1∕c can be determined 

using look-up tables based on the pre-defined failure rate Pf  
and the calculated ILS failure rate Pf ,ILS (1 minus the ILS suc-
cess rate). Compared to a single fixed value for c , this feasible 
method has been shown to be more effective (Teunissen and 
Verhagen 2009). Due to the complexity of the geometry of 
the ILS pull-in region, the exact ILS success rate Ps,ILS can-
not be calculated (Verhagen and Teunissen 2006). To provide 
a lowerbound for Ps,ILS , the success probability of the boot-
strapped integer estimation using decorrelated ambiguities is 
given according to Teunissen (1998) as

where Φ(x) denotes the integral of the standard normal prob-
ability density function from minus infinity to x ; �âi|I is the 
conditional standard deviation of the i-th ambiguity. In the 
following data processing, the pre-defined failure rate Pf  is 
set to 0.01.
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The Ambiguity Dilution of Precision (ADOP), which 
measures the average precision of ambiguities, can also be 
used to provide an upperbound for the success rate of integer 
bootstrapping (Teunissen 1997, 1998; Teunissen and Odijk 
1997; Odijk and Teunissen 2008)

where det
(
Qa

)
 is the determinant of the n-dimensional float 

ambiguity VC matrix, and its scalar depends on the variance 
and covariance of ambiguities.

A novel stochastic model with robust 
Kalman filtering

The Kalman filter is an optimal estimator, which operates 
recursively based on the functional and stochastic models in 
a linear dynamic system. The functional models consist of 
the dynamic model

and the measurement model

where xn is the state vector at epoch n ; �n∣n−1 denotes the 
state transition matrix; un is the random error vector; zn is the 
vector of measurements at epoch n ; Hn represents the design 
matrix to describe the correlation between the measurements 
and the state vector; vn is the measurement noise vector.

The corresponding stochastic models are assumed as 
(Wang 1999)

where E{⋅} denotes the expectation function; vn and un are 
two mutually uncorrelated noises. Either the measurement 
noise vn or process noise un follows a zero-mean Gaussian 
distribution; Rn and Qn are the corresponding VC matrices. 
In this paper, the process noise VC matrix Qn is completely 
known, and we only concern the stochastic modeling for 
measurements.
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The optimality Kalman filter can be hold only when the 
process and measurement noises are Gaussian distributed 
(Simon 2006). In other words, the estimate variance, which 
is the main diagonal value of the VC matrix of update states

can be minimized by the Kalman gain Kn , when there are 
no outliers in dynamic and measurement models. However, 
the functional models are prone to be influenced by the non-
Gaussian distributed outliers in practice. Even applying the 
estimated measurement VC matrix R̂n , the adaptive Kalman 
filter is still hard to resist the outliers and show the robust-
ness. Thus, we improved this adaptation process by utilizing 
the IGG III equivalent weight method to the integrated VC 
matrix Cln

 in (16).
Generally, based on the least-squares (LS) Bayesian 

estimation and the principle of M (maximum likelihood-
type) estimates, there are three robust estimators: M-LS, 
LS-M and M-M. The interested reader is directed to Yang 
(1991) for more details. Differing from the M-LS filter, 
the measurement noise VC matrix in proposed filtering is 
based on a Gauss–Markov model directly estimated, rather 
than changed by reduction factors of the weight elements. 
This inherits the characteristics of the adaptative Kalman 
filter studied by Wang et al. (1998). To improve the robust 
resistance to the contaminated measurements or the pre-
dicted states by outliers, the robust M estimation is firstly 
combined with the adaptive Kalman filter formulated with 
Gauss–Markov model. Compared to that the LS-M or M-M 
filter utilizes the equivalent weights of the state parameters 
to resist model errors, we simultaneously use a posteriori 
residuals of both measurements and state predictions to 
reweight the updated measurements and predicted states, 
respectively, so that the adaptively estimated measurement 
noise VC matrix can contain more information and hence 
enhance the filter robustness. The flowchart of the proposed 
filter compared to the conventional and adaptive Kalman 
filter is shown in Fig. 2.

Experiments and results

To access the performance of the stochastic model with 
robust Kalman filtering in a challenging environment, where 
the number of observed satellites is limited, and measure-
ments can be randomly contaminated or interrupted, a kin-
ematic experiment was conducted in an urban area. The data 
set was collected on March 25, 2022, using two Trimble 
receivers sampling at 10 Hz with Trimble Zephyr 3 Geo-
detic antennas. One of the receivers (Trimble NetR9) was 
configured as a rover, with its antenna mounted on top of 
an experimental vehicle, while the other receiver (Trimble 
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{
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T
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}
= E

{(
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)(
xn − x̂n|n

)T}
,
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Alloy) and its antenna were installed at a site approximately 
1 km from the initial drive location. The experimental setup 
is depicted in Fig. 3.

In the subsequent analysis, pseudorange and carrier-phase 
measurements only on the GPS L1 frequency are utilized. 
The elevation cutoff angle is set to 5◦ . As depicted in Fig. 3, 
five satellites (G02, G04, G05, G16, and G20) have elevation 
angles lower than 20◦ , which means that during the experi-
ment, their signals are more likely to be disrupted or con-
taminated by building blockages or reflections. Nevertheless, 

constantly adjusting the cut-off angle to exclude satellites 
with low elevation is not the optimal strategy. Even though 
multipath errors can be avoided by excluding satellites, such 
a rejection is not recommended since there are only a few 
GPS single-frequency observations in urban environments, 
and a reduction in the number of observations would result 
in a high value of Position Dilution of Precision (PDOP) and 
ADOP. Therefore, to detect and identify outliers, we employ 
the IGG III method based on the integrated standardized 
residuals of measurements and predicted states.

Fig. 2   Filter flowchart with three different measurement noise VC matrices

Fig. 3   Experimental configura-
tion (left column): setup of the 
experimental vehicle (top panel) 
and test components for base 
receiver and antenna (bottom 
panel); skyplot of the observed 
GPS (right column)
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In order to demonstrate the benefit of this approach, three 
computation schemes are tested and compared against each 
other. Since F-ratio and W-ratio tests determine the accept-
ance of integer ambiguity estimates differently, estimated 
positions and velocities could also be different. To evaluate 
any processing scheme, the three schemes increase effec-
tively to six, as described in Table 1.

Test case 1—GNSS simulator

Since the intention of this work is not only to demonstrate 
the reliability and robustness of RTK positioning, but also 
the accuracy of the estimated position, one needs an error-
free reference trajectory for validation of results. Using the 
feature of the Orolia Skydel GNSS simulator to log RINEX 
data without connecting a GNSS receiver, it was possible to 
simulate error-free code- and carrier-phase measurements 
on GPS L1 frequency with an update rate of 1 Hz based on 
the user-defined trajectory as shown in Fig. 4.

A constellation with five observed GPS satellites (G18, 
G25, G26, G29, and G31) yields an almost constant PDOP 

of 1.6 , which corresponds to the PDOP value of the actual 
drive test described in the next section. Within the simula-
tion, G29 has the highest elevation angle, which turns it 
into the master satellite for RTK analysis. Since a minimum 
window width of 110 epochs is chosen for the actual data-
set at 10 Hz in the next section, for the simulated dataset at 
1 Hz, an estimation window width of 11 epochs is selected.

To consider the noise characteristics of the GNSS obser-
vations, zero-mean normally distributed noise with a vari-
ance of �2

L
 according to (9) is generated and added to the car-

rier- and multiplied by 1002 to the code-phase measurements, 
respectively. Additionally, outliers are artificially introduced 
into the observations every 50 epochs, as depicted in Fig. 4, 
where red dots represent outlier locations. These outliers fol-
low a normal distribution, which has the mean value shown 
in Table 2 and three different standard deviations of 5 cycles 
(about 0.95 m), 10 cycles (about 1.90 m), and 15 cycles 
(about 2.85 m). Thus, three different severity levels of outli-
ers can be studied. Table 2 summarizes all settings used to 
study the impact on different processing schemes.

According to Table 3, the fixing rate of ambiguity resolu-
tion with the Re -F scheme has a constant value of 93.90% 
for all three severity levels of outliers, whereas the R̂ -F and 
the R̂IGGIII -F schemes have a higher fixing rate of 96.67%. 
Thus, F-ratio test seems to perform almost similar for any 
level of outliers. In contrary, the W-ratio test leads only to 
fixing rates of 55.27% and 51.94% for severity levels 1 and 
3 (cf. Table 3), when using the Re -W scheme. Moreover, one 
notices that the R̂IGGIII scheme performs best for any severity 
level of outliers, which reveals that it might be beneficial to 
consider the historical dynamic information by using the 
estimated measurement noise matrix R.

Outliers impact the Root Mean Square (RMS) errors 
of position estimates for the Re and R̂ schemes, independ-
ent of the ratio test, by 1.0 to 3.0 m, as shown in Table 3. 
Application of the R̂IGGIII scheme significantly improves 
the accuracy of the position estimates. The corresponding 
RMS values of these errors for three severity levels of 
outliers are below 0.9 m. As depicted in Fig. 5, vertical 
errors ( ΔU ) are larger than horizontal ones, i.e., ΔE and 
ΔN , especially when using the Re and R̂ schemes for any 

Table 1   Overview of six schemes

Abbreviation Meaning

R
e
-F Kalman filter with the elevation-dependent measurement noise matrix R according to (7) and (9) based on the F-ratio test

R
e
-W Kalman filter with the elevation-dependent measurement noise matrix R according to (7) and (9) based on the W-ratio test

R̂-F Kalman filter with the estimated measurement noise matrix R according to (20) based on the F-ratio test

R̂-W Kalman filter with the estimated measurement noise matrix R according to (20) based on the W-ratio test

R̂IGGIII-F Kalman filter with the estimated measurement noise matrix R together with the IGG III method based on the F-ratio test

R̂IGGIII-W Kalman filter with the estimated measurement noise matrix R together with the IGG III method based on the W-ratio test

Fig. 4   Simulation test: top view of the trajectory with marked loca-
tions of artificial outliers
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simulated level of outlier severity. This is confirmed by 
studying the histograms of the position differences with 
respect to the true values and their mean and standard 
deviation illustrated as normal distribution plots. Hence, it 
can be concluded that the R̂IGGIII scheme has the potential 
to enhance the robustness of the filter against outliers.

Test case 2—drive test

Since the simulation test was conducted with a perfect obser-
vation scenario that was artificially degraded, an outdoor 
test was additionally performed in a real urban area along 
the trajectory depicted in Fig. 6 in order to evaluate the six 
processing schemes described in Table 1. This trajectory 

Table 2   Overview of the outlier setting

Observed Satellite1

No. Epoch
G25 G18 G26 G31 G29

Mean Value2 [cycle]

(1) 50-56 ∎ ∎ ∎ ∎ ∎ (1.24,8.15,1.74,0.57,0.60,2.94,2.01)

(2) 100-111 ∎ ∎ ∎ ∎ ∎ (1.59,2.09,7.41,1.64,5.34,11.91,0.76,3.23,11.89,7.35,4.36,0.94)

(3) 150-157 ∎ ∎ ∎ ∎ ∎ (2.01,0.70,0.52,2.97,3.04,4.04,5.29,2.13)

(4) 200-210 ∎ ∎ ∎ ∎ ∎ (3.67,3.26,5.54,2.61,5.23,6.96,0.84,7.42,0.39,3.26,2.42)

(5) 250-263 ∎ ∎ ∎ ∎ ∎ (6.06,4.02,5.22,0.80,4.27,5.95,0.77,3.36,9.85,5.96,3.96,6.91,9.51,3.97)

(6) 300-302 ∎ ∎ ∎ ∎ ∎ (0.64,5.09,8.38)

(7) 350-352 ∎ ∎ ∎ ∎ ∎ (1.31,7.23,1.58)

(8) 400-405 ∎ ∎ ∎ ∎ ∎ (5.56,1.84,6.28,2.58,7.50,8.84)

(9) 450-458 ∎ ∎ ∎ ∎ ∎ (0.09,1.87,6.54,2.26,2.01,5.36,0.82,1.31,0.45)

(10)500-502 ∎ ∎ ∎ ∎ ∎ (1.19,3.36,5.12)

: Without outlier
: With outlier

1 The left-to-right sequence of the observed satellites is determined by their respective elevation angles in ascending order.
2 An artificial outlier X ∼ N

(
�, �2

level

)
 with μ = |Z| indicates the mean value, wobei Z ∼ N

(
0, σ2

)
 with � = 5 cycles ; 

�level = 5 cycles, 10 cycles, 15 cycles.

Table 3   RMS of position estimation errors and the fixing rate

1 The RMS value of position estimation errors is calculated byRMS =

�
1

N

N∑
k=1

�
x̂
k
− xtrue

�2

RMS1 [m] Severity level 1 Severity level 2 Severity level 3

R
e
-F R̂-F R̂

IGGIII
-F R

e
-F R̂-F R̂

IGGIII
-F R

e
-F R̂-F R̂

IGGIII
-F

(93.90%) (96.67%) (96.67%) (93.90%) (96.67%) (96.67%) (93.90%) (96.67%) (96.67%)

ΔE 0.220 0.220 0.128 0.379 0.379 0.159 0.571 0.571 0.147
ΔN 0.397 0.397 0.326 0.639 0.639 0.357 0.842 0.842 0.357
ΔU 1.198 1.202 0.691 1.928 1.930 0.767 2.780 2.780 0.786
ΔPosition 1.281 1.285 0.775 2.066 2.068 0.861 2.960 2.960 0.876

R
e
-W R̂-W R̂

IGGIII
-W R

e
-W R̂-W R̂

IGGIII
-W R

e
-W R̂-W R̂

IGGIII
-W

(55.27%) (92.24%) (92.61%) (91.13%) (91.87%) (92.61%) (51.94%) (92.24%) (92.61%)

ΔE 0.237 0.220 0.129 0.377 0.378 0.158 0.580 0.571 0.147
ΔN 0.569 0.398 0.330 0.639 0.639 0.359 0.795 0.842 0.357
ΔU 1.279 1.198 0.688 1.929 1.923 0.763 2.964 2.778 0.782
ΔPosition 1.420 1.281 0.774 2.067 2.062 0.858 3.123 2.959 0.872
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includes the actual vehicle’s dynamics, as well as the dis-
continuous motion caused by traffic lights and contains sev-
eral sharp turns and near-straight-line motion in residential 
and commercial areas. In this environment, measurements 
are susceptible to contamination and interruption due to 
signal reflection and building blockage, particularly for 
carrier-phases, which are more sensitive to environmental 
variations.

In contrast with the almost constant PDOP value in the 
simulated test, the PDOP value in Fig. 6 is clearly affected 
by variations in satellite geometry. There are even epochs for 
which the number of satellites with available pseudorange 

and carrier-phase measurements is lower than four (green 
circle in Fig. 6). As summarized in Table 4, carrier-phase 
outages can still occur even if a signal is received from a 
satellite at high elevation. Notably, in most epochs, G29 is 
chosen as the master satellite; however, from epochs 1258 to 
1264, the master satellite is set to G31 due to carrier-phase 
outages with G29.

In order to evaluate the effect of estimation window width 
on filter performance, multiple window widths are utilized 
in this scenario. It has been demonstrated that the optimal 
window size is highly dependent on trajectory dynamics, 
such as turns. As pointed out by Mohamed and Schwarz 

Fig. 5   Positioning errors and their error probability distribution curves and histograms for severity level 1 (top panel); severity level 2 (middle 
panel); severity level 3 (bottom panel) based on the F-ratio test (left column) and W-ratio test (right column), respectively
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(1999), a trade-off should be considered when adjusting the 
window width. Since the collected dataset has a sampling 
frequency of 10 Hz with a maximum of 10 satellites per 
epoch, a minimum window width of (10) × (10 + 1) = 110 
epochs is selected for the subsequent analysis.

Table 5 provides the fixing rates of ambiguity resolution 
when applying the six schemes expressed in Table 1. Based 
on these studied window sizes, it is evident that the W-ratio 
test in adaptation of R with or without the IGG III method, 
which has always fixing rates exceeding 82%, should be 
preferred to the F-ratio test. In addition, the biases between 
the scheme Re and both schemes of R̂ or R̂IGGIII become 
small when the moving window width exceeds half the total 
epochs (about 2600 epochs). In this case, a nearly identical 
fixing rate of 54% is provided by using the F-ratio test. One 
notes that when the estimation window size is increased, 
a significant amount of dynamic information is actually 
smoothed out, which may diminish the effectiveness of the 
estimation noise VC matrix.

Furthermore, in the R̂ scheme, within a window width 
range of 110 to 140, the W-ratio test can achieve ambiguity 
resolution success rates of over 97%, whereas the F-ratio 
test yields only success rates of about 40%. As for the Re 
scheme, both tests lead to smaller success rates, indicating 
that the W-ratio test is still preferable. After employing the 
IGG III method, which has the potential to consider outliers 
by reducing the weight of improperly predicted states, more 
integer ambiguities are resolved. In this case, the fixing rates 
based on the F-ratio test in adaptation of R increase to 89% 
and W-ratio test rates increase slightly.

For subsequent evaluation, an estimation window size 
of 110 epochs is used as default. Figure 7 depicts vehicle 
trajectories based on the six schemes described in Table 1. 
The enlarged regions in these figures represent the sections 
where carrier-phase outages occur, and during which the 
signals from low-elevation satellites were predominantly 
blocked by buildings, resulting in a number of less than four 
satellites.

Since the drive test was conducted in a complex environ-
ment, it is generally extremely challenging to provide an 
accurate reference trajectory to which results can be com-
pared. On the other hand, a posteriori errors are influenced 
to some extent by a priori errors, which are set by the user, 
and which may vary across applications. Furthermore, the 
dynamics cannot be accurately predicted if the Kalman filter 
suffers from discontinuities. Even if a posteriori standard 
deviations of estimated states are small, ambiguity fixing 
may fail due to uncontrolled dynamic model biases in fil-
tering. Therefore, we use the ambiguity fixing rate rather 
than the formal error from a posteriori VC matrix of states 
to validate the effectiveness of the proposed schemes. The 
Up component of the local East-North-Up (ENU) system is 
depicted in Fig. 8. Discontinuities in the Up-component time 
series can be clearly assigned to the epochs listed in Table 4.

As depicted in Fig. 8, the estimated vertical coordinates 
deviate significantly, especially for the Re scheme. The pri-
mary cause is the discontinuity in Kalman filtering due to 
carrier-phase outages and signal blockages by buildings. 
Since the estimated measurement noise VC matrix uses the 
moving window to collect historical measurement residuals, 
this discontinuity changes the Up component by no more 
than 1 m. In this situation, the W-ratio test performs more 
reliably than the F-ratio test. With or without the IGG III 
method in adapting the R matrix, ambiguity success rates by 
using the W-ratio test are larger than 98%. Meanwhile, Up-
coordinates fluctuate slightly under these extreme observa-
tion conditions. However, the F-ratio test cannot demonstrate 
such robustness without the IGG III method. According to 
Table 5, the R̂ scheme has an approximate 40% fixing rate 
based on the F-ratio test, which is even lower than the suc-
cess rate of ambiguity resolution in the Re scheme.

Fig. 6   Realistic test: top view of the trajectory (top panel); The num-
ber of visible satellites with PDOP time series (bottom panel)
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In addition, as depicted in Fig. 7, discontinuity periods 
cause float solutions for short time. The most likely explana-
tion for this is the persistence of contaminated measurements 
and model errors. However, there is no improvement when 
using the IGG III method to detect only standardized residu-
als of measurements. This suggests that model errors con-
taminate state parameters, rendering resolved ambiguities in 
subsequent epochs incapable of passing the validation test. 
Thus, the IGG III method is used to control standardized 
residuals of the predicted position and velocity, so that more 
dynamic information can be transferred to the estimation of 
R by the adjusted integrated VC matrix Cln

 . Based on the 
F-ratio test, the fixing rate of the ambiguity resolution in the 
scheme of R̂IGGIII is close to 90%.

According to Fig. 9, the estimated standard deviation 
for all satellite pairs fluctuates rapidly. The high-frequency 
dynamic information provided by the estimation window is 
one reason for this. When using the Re scheme, significantly 
less fluctuations are occurring. The efficiency of robust 
filtering may suffer if the filtering process is degraded by 
improperly predicted states. To decrease the probability of 
model errors, the integrated VC matrix Cln

 is adjusted and 
transfers more information to the estimated R . Thus, more 
dispersed scatter points occur for the IGG III-scheme.

At epoch 174, F- and W-ratio tests provide an identical 
performance for all three processing schemes. As illustrated 
in Fig. 10, the estimated covariance, i.e., the elements of the 

Table 4   Variations in the received measurements and the corresponding PDOP values at epochs from 1230 to 1267

Observed Satellite1

Epoch # of Satellite
G04 G02 G16 G20 G05 G25 G18 G26 G31 G29

PDOP

1230-1232 4 ― ― ∎ ― ― ∎ ⊿ ∎ ⊿ ∎ 3.96

1233-1238 3 ― ― ⊿ ― ⊿ ∎ ⊿ ∎ ⊿ ∎

1239 3 ― ― ⊿ ― ― ∎ ⊿ ∎ ⊿ ∎

1240-1254 4 ― ― ⊿ ― ― ∎ ∎ ∎ ⊿ ∎ 1.94

1255-1257 3 ― ― ⊿ ― ― ∎ ∎ ∎ ⊿ ⊿

1258-1259 4 ― ― ⊿ ― ― ∎ ∎ ∎ ∎ ⊿ 2.38

1260-1264 5 ― ― ∎ ― ― ∎ ∎ ∎ ∎ ⊿ 2.31

–: Pseudorange and carrier-phase measurements are not received
⊿: Only pseudorange measurements are received (carrier-phase outage)

: Pseudorange and carrier-phase measurements are both received
: Pseudorange and carrier-phase measurements are received, and the corresponding satellite is regarded as the master satellite with the highest 

elevation angle in RTK positioning
1 The left-to-right sequence of the observed satellites is determined by their respective elevation angles in ascending order

Table 5   Ambiguity resolution success rate using different widths of moving window

Ambiguity validation 
test

Success rate (%)

R
e R̂ with different widths

110 120 130 140 2000 3000

F-ratio test 53.72 40.29 40.02 40.25 41.42 53.92 53.57
W-ratio test 77.86 98.88 97.56 97.38 97.75 85.20 82.06

R
e R̂

IGGIII
 with different widths

110 120 130 140 2000 3000

F-ratio test 53.72 89.30 89.16 89.05 89.20 53.61 53.34
W-ratio test 77.86 98.90 99.02 99.00 99.04 85.89 82.33
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Fig. 7   Trajectory for GPS 
single-frequency (L1) RTK 
positioning test in the scheme of 
R
e
 (top panel), R̂ (middle panel) 

and R̂
IGGIII

 (bottom panel) using 
the F-ratio test (left column) and 
the W-ratio test (right column); 
map source © OpenStreetMap 
contributors, CC-BY-SA

Fig. 8   Local Up-coordinates 
using the F-ratio test (top panel) 
and the W-ratio test (bottom 
panel)
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off-diagonals of the covariance matrix, could be negative, 
whereas the Re covariances are always positive due to the 
elevation-dependent function and the error propagation law. 
However, such negatively estimated covariances are more 
realistic for DD positioning. In addition, after the adaptive 
estimation of R with the modified matrix Cln

 , correlation 
coefficients between satellite pairs are also updated, mak-
ing them distinct from those in the R̂ scheme. In the outlier 
detection procedure, DD measurements from two satellite 
pairs G29-G18 and G29-G25 are identified as outliers since 
their respective standardized residuals exceed the thresh-
old c1 . In accordance with the zero-weight segment of the 
IGG III method, their DD measurements should be disre-
garded. However, to ensure that the intrinsic correlation of 

measurements is preserved, outlier exclusion is inappropri-
ate for the inverse transformation between the VC matrix 
and the weight matrix, particularly when predicted states are 
involved. The reduction factor for weight elements is then 
chosen as 10−5 rather than 0, leaving the number of satellite 
pairs unchanged.

The ADOP value is related to the average precision of 
estimated ambiguities. Figure 11 depicts ADOP values for 
the estimated measurement VC matrix, which are signifi-
cantly lower than those of the Re scheme. Utilizing the IGG 
III method enables a further reduction in ADOP values, 
particularly for the F-ratio test. In adapting the R matrix, 
the filtering process with the IGG III method based on the 
F-ratio test allows the generation of more reliable ambiguity 

Fig. 9   Standard deviations 
(STD) of DD pseudorange 
measurements for satellite pair 
in the GPS single-frequency 
data using the W-ratio test

Fig. 10   Measurement noise VC matrix for DD GPS pseudorange measurements at epoch 176 in the scheme of R
e
 (left column), R̂ (middle col-

umn) and R̂
IGGIII

 (right column)
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estimates, thereby increasing the ambiguity success rate by 
49%, whereas the W-ratio test along with a fixing rate larger 
than 98% reveals almost no distinction in terms of ADOP 
value independent of the use of the IGG III method.

Experiments and Results

Adaptation of the measurement noise VC matrix R takes into 
account the averaging of integrated innovation sequences 
based on the Gauss–Markov model. Despite the fact that 
the minimum size of the moving estimation window is con-
strained by the number of update measurements, the opti-
mal choice of window size still depends on the trajectory 
dynamics. In the conducted tests, there are multiple turns in 
residential and commercial areas in addition to the discon-
tinuous motion resulting from traffic conditions, like stops 
at traffic lights.

Simulations with artificially introduced outliers reveal 
that R̂

������
 -F and R̂

������
 -W schemes outperform any 

other schemes in terms of positioning accuracy as well as 
ambiguity resolution rate. In addition, tests with real data 
show that those two processing schemes have higher fixing 
rates as well. Moreover, the R̂ scheme with an appropri-
ate width of 110 epochs based on the W-ratio test leads 
to more integer ambiguity resolutions with an ambiguity 
resolution success rate of 98.88%. This is approximately 
20% higher than the Re scheme, which has a success rate 
of 77.86%. For processing schemes based on the F-ratio 

test without the IGG III method, there is a lack of robust-
ness, whereas for processing schemes based on the F-ratio 
test with the IGG III method the success rate of ambiguity 
resolution is increased to 89.30%.

In residential and commercial areas, satellite signals are 
most likely reflected and blocked by buildings or interrupted 
by carrier-phase outages. This can restrict the number of 
satellites observed. In this case, if the IGG III method is 
applied, once the standardized residual of a contaminated 
measurement exceeds the threshold c1 , the corresponding 
weight reduction factor is set to zero, resulting in deterio-
rated satellite geometry. Thus, an improved IGG III method 
in conjunction with the adaptation of R is employed to 
enhance the reliability and robustness of the Kalman filter. 
Additionally, outliers of the predicted position and velocity 
should also be controlled to avoid potential model errors. 
After adjusting the integrated VC matrix Cln

 with standard-
ized residuals of measurements and predicted states, the esti-
mated measurement noise VC matrix can contain informa-
tion about filter predictions as well as historical dynamics. 
Consequently, more reliable fixed and float ambiguities can 
be generated in the Kalman filter iteration.

Conclusions

To improve the positioning accuracy and the success rate 
of the ambiguity resolution, the adaptively estimated 
measurement noise VC matrix R is applied, which is used 

Fig. 11   ADOP time series using 
the F-ratio test (top panel) and 
the W-ratio test (bottom panel)
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for the proposed stochastic model with robust Kalman fil-
tering. When applying perfect GPS signals without any 
errors, the estimated R matrix does not differ from the 
elevation-dependent one. In kinematic applications, when 
the environment is complex and the satellite geometry and 
trajectory dynamics vary rapidly, the elevation-dependent 
R matrix might not be always suitable, and hence, the 
estimated R matrix is preferred. Meanwhile, the optimal 
choice of the estimation window width, which depends on 
the dynamics and the number of measurements, should be 
selected properly and is subject to further studies.

Although the estimated R matrix allows to better con-
sider rapid variations in the environment, there are still 
model errors in the state prediction, in particular during 
epochs with limited-view or carrier-phase outages. For 
such situations, the IGG III method leads to higher robust-
ness, better accuracy, and higher ambiguity fixing rates 
as shown.

However, it should be noted that outliers are simulated 
based on normal distributions throughout this paper. If 
there are non-normally distributed errors remaining in 
measurements, the proposed method might be less robust 
than shown in the test cases here. Besides, in the case of 
non-optimal thresholds c0 and c1 , it is possible that outlier-
free measurements are incorrectly identified as outliers, or 
correctly predicted states are identified as being wrong. 
Thus, the performance of the robust Kalman filter does not 
improve or will be even degraded in such case. Depending 
on the quality of the measurements, the dynamic trajec-
tory, the multipath environment, the frequency of cycle 
slips, and other influencing factors, the thresholds c0 and c1 
might differ from ones proposed here. Thus, further stud-
ies are required to provide those parameters for particu-
lar scenarios in urban environments. Moreover, the usage 
of inertial sensors and their tight integration into RTK 
processing scheme would be highly beneficial for epochs 
of carrier-phase outages. Additionally, for safety critical 
applications in real time, one needs to derive a functional 
error bound that relates to the true value, and thus provide 
integrity information. In addition, the ambiguity resolution 
rate requires further investigation concerning the aspect 
of integrity.
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