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Abstract
The insufficient number of low-elevation observations is a limitation of the three-dimensional ionospheric computer tomog-
raphy (CT) based on the global navigation satellite system (GNSS). To solve this problem, accurate prior information on 
the regional ionosphere must be obtained. However, it is difficult to explicitly and accurately express prior ionospheric 
information. This study uses compressed sensing (CS) for ionospheric tomography for the first time. Specifically, the elec-
tron density obtained from the international reference ionosphere is used to build a dictionary to fully integrate the prior 
information into the dictionary. Then, the electron density is reconstructed by using the compressive sampling matching 
pursuit method. Subsequently, the GNSS data of China (Region I) and Europe (Region II) were utilized to validate this 
proposed method, and the results are compared with ionosonde observations. The mean and standard deviation (SD) of the 
difference with respect to the ionosonde result are 41 and 22 km, respectively. The mean and SD of relative deviation were 
16% and 9%, respectively. In Region II, the mean and SD of the deviation between the reversed peak electron density and 
the result of the ionosonde were 1.9 × 1010 m−3 and 8.1 × 1010 m−3, respectively. The mean and SD of the relative deviation 
were 3% and 13%, respectively. The mean and SD of the peak height deviation were 33 and 19 km, and the mean and SD of 
the relative deviation were 11% and 7%. The electron density distribution and variation in these two regions showed a local 
time dependence, and the horizontal gradient of the electron density in the latitude was greater than that in the longitude. 
Moreover, CT by CS is efficient, taking about 6 s per inversion based on an desktop computer with 16 GB RAM and Intel 
(R) Core (TM) i7-8700 CPU.

Keywords  Global navigation satellite system · Ionosphere · Ionospheric three-dimensional tomographic (CT) · Compressed 
sensing

Introduction

Using the total electron content (TEC) in ionospheric tomog-
raphy was first suggested by Austen et al. (1986). Andreeva 
et al. (1990) successfully implemented experimental radi-
otomographic reconstructions. Xu et al. (1995) carried out 
two-dimensional ionospheric tomography experiment at 
low latitudes in East Asia to detect ionospheric anomalies. 
Since the late 1990s, the global navigation satellite system 
(GNSS) has been widely used in ionospheric research due 

to the high temporal and spatial resolutions as well as the 
low cost, which led to the era of the three-dimensional iono-
spheric computer tomography (CT) (Rius et al. 1997). Thus, 
the GNSS measurements became the main data source in 
three-dimensional ionospheric tomography. However, three-
dimensional ionospheric tomography has certain limitations, 
especially for the insufficiency of horizontal observations 
(Yeh and Raymund 1991). Numerical inversion algorithms 
have been developed to overcome this problem. Generally, 
ionospheric tomography algorithms can be classified into 
two categories. The first is pixel-based algorithms, includ-
ing additive algebraic reconstruction (Austen et al. 1988; 
Xu et  al. 2005), multiplicative algebraic reconstruction 
(Raymund et al. 1990), simultaneous iterative reconstruc-
tion (Pryse et al. 1993), and the method of constrained 
least squares (Saito et al. 2017). To improve the iterative 
algorithm, Yao et al. (2015) imposed a priori constraints by 
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increasing the virtual observations, Yao et al. (2018) applied 
the side rays to the inversion, and Zheng et al. (2018) pro-
posed an automatic search technology of relaxation factor. 
The second is function-based algorithms, including the 
orthogonal function method and singular value decompo-
sition (Fremouw et al. 1992; Raymund et al. 1994). Far-
zaneh and Forootan (2018) improved the empirical orthog-
onal function method by combining the spherical Slepian 
function with the orthogonal empirical function. In recent 
years, some new methods have been applied to CT. Hard-
ing and Milla (2013) applied compressed sensing (CS) to 
one-dimensional imaging of coherent backscatter from iono-
spheric plasma density irregularities at the magnetic equator. 
Panicciari et al. (2015) proposed a CT algorithm based on 
l1 minimization for CT by using GNSS phase measurement. 
Hysell et al. (2019) evaluated compressed sensing (CS) 
methods in the application of two-dimensional aperture-
synthesis imaging of radar backscatter from field-aligned 
plasma density irregularities in the ionosphere, the evaluated 
CS methods included basis pursuit denoising, implemented 
with the fast iterative shrinkage thresholding algorithm, and 
orthogonal matching pursuit with a wavelet basis. Sui et al. 
(2021) applied compressed sensing (CS) based on l1 norm 
for the sparse reconstruction of 3-D regional ionospheric 
tomography using the differential STEC.

The theoretical framework of CS was constructed in 2006 
(Candès and Tao 2006; Donoho 2006). CS shows that a sig-
nal can be reconstructed from a small number of measure-
ments if the signal is sparse in a fixed basis or compress-
ible. CS includes three parts: the sparse representation of 
the signal, the requirements for the observation matrix, and 
the reconstruction algorithm.

The sparse representation of the signal means that the 
signal only contains a few large and sparse elements, or it 
can be converted into a sparse vector using a matrix which 
is called a dictionary. Although most of the signals are not 
sparse, they generally follow a certain regularity. Thus, they 
can be sparsely represented by a dictionary. The two types 
of dictionaries are the complete orthogonal dictionary and 
the over-complete dictionary (Mallat and Zhang 1993). The 
complete orthogonal dictionary includes Fourier basis and 
discrete cosine transform dictionary. The over-complete 
dictionary can be further divided into fixed and learning 
dictionaries. Once a fixed dictionary is confirmed, it will 
not change, such as the Gabor dictionary (Bergeaud and 
Mallat 1998), Gaussian dictionary (Qian and Chen 1994) 
and cascade dictionary (Elad 2010). A learning dictionary 
is obtained through learning or training. Typical learning 
methods include the method of optimal directions algorithm 
(Elad and Aharon 2006), the recursive least squares algo-
rithm (Skretting and Engan 2010), KSVD (Aharon et al. 
2006), and the double sparse method (Rubinstein et  al. 
2010).

Candès and Tao (2005) proposed that the observation 
matrix should satisfy the restricted isometry property (RIP). 
Baraniuk et al. (2008) found that the observation matrix 
was not related to the atoms in the dictionary, which was 
equivalent to RIP. Candès and Plan (2011) suggested that 
the observation matrix selects sensing vectors independently 
at random from a probability distribution F, which includes 
all standard models and a framework for new measurement 
strategies, and the probability distribution F obeys a simple 
incoherence property and an isotropy property. However, 
it is difficult to determine whether the observation matrix 
satisfies RIP. Candès and Plan (2011) also suggested that 
RIP was too strict and conservative. Zhang (2013) dem-
onstrated that, based on prior knowledge, the signal could 
be accurately reconstructed even if RIP was not satisfied. 
Moreover, Adcock et al. (2017) studied a situation where 
the observation matrix was highly correlated with the dic-
tionary, but the signal was accurately reconstructed and 
proposed a framework that included the concepts of asymp-
totic sparsity, asymptotic incoherence, multisampling, and 
infinite-dimensional CS. Candès and Tao (2006) showed 
that RIP could most likely be satisfied when the Gaussian 
matrix, Fourier matrix, and binary matrix were used as the 
observation matrices. However, these matrices were random 
matrices. In some cases, it is hard to observe randomly, such 
as in ionospheric tomography. Therefore, it is one of the 
main research directions of CS to construct deterministic 
observation matrices (Elad 2007).

CS reconstruction algorithms can be divided into three 
categories. The first one is convex relaxation algorithms, in 
which the non-convex sparsity �0-norm was replaced with 
�1 , which has the convex property, thereby obtaining a con-
vex optimization problem that is easier to solve. Convex 
optimization algorithms include constrained optimization 
(Figueiredo et al. 2007) and approximate operator-based 
strategies (Parikh and Boyd 2014). The second one is the 
greedy algorithms, including matching pursuit (Bergeaud 
and Mallat 1998), orthogonal matching pursuit (Tropp 
2004), the iterative hard threshold method (Blumensath 
and Davies 2009), and the compressive sampling match-
ing pursuit (CoSaMP) (Needell and Tropp 2009). The third 
category includes focal underdetermined system solver (Rao 
and Kreutz-Delgado 1999) and iteratively reweighted least 
squares (Chartrand and Yin 2008).

In the present study, three-dimensional ionospheric 
tomography based on CS is proposed. The electron density 
obtained from IRI empirical model is used to construct a 
dictionary, and then, the observation matrix is optimized 
based on weights. Lastly, unlike the previous studies (Panic-
ciari et al. 2015; Sui et al. 2021), the CoSaMP reconstruction 
method is used to invert the electron density based on STEC 
data in China and Europe region. The inversion results are 
compared with ionosonde measurements.
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Method

CS is a new signal sampling and reconstruction framework 
that can achieve the high-precision reconstruction of the 
original signal with very few samples. The observation 
matrix, sparse representation and reconstruction algorithm 

are the three key components of CS. When the observation 
matrix satisfies certain conditions, the signal can be accu-
rately reconstructed with a very high probability. Sparseness 
means that only a few elements in the signal are non-zero or 
a few elements have large values. Although natural signals 
are generally non-sparse, most of them can be converted 
into a sparse signal through a dictionary. In addition, there 
are many reconstruction algorithms in CS theory, and the 
CoSaMP was used in this study.

Model

A pixel-based model was used in this study. The inver-
sion area was divided into N grids, and it is assumed that 

Fig. 1   Grids in Region I (China)

Table 1   Grid height information in different altitude ranges (unit: 
km)

Altitude range 95–495 495–525 525–775 775–900 910–2100
Grid height 10 30 50 125 200

Fig. 2   Elements in the first 50 rows and first 100 columns of �
���

 , �
���

 
represents the conversion result of the ionospheric electron density 
by the dictionary, there are 13,568 rows and 17,520 columns in �

���
 , 

large elements in �
���

 are concentrated in the front rows Fig. 3   Dst index (https://​wdc.​kugi.​kyoto-u.​ac.​jp/​dst_​final)

https://wdc.kugi.kyoto-u.ac.jp/dst_final
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the electron density in each grid was the same. Figure 1 
shows the grid division in Region I (China). The longi-
tude range of the inversion area was 104.5°–120.5° E, 
the latitude range was 24.5°–40.5° N, and the altitude 
range was 95–2100 km. The inversion area was divided 

into non-uniform grids, and there were five types of grids 
of different sizes. The five types of grids differed only in 
the altitude resolution, whereas the latitude and longitude 
resolution was always 1° × 1°. Table 1 shows the height 
information of the grids.

Fig. 4   Inversion map of Region 
II. The blue box denotes the 
inversion area, and the black 
box indicates the projection 
of the inversion area on the 
ground, the small circles stand 
for GPS stations, the triangle is 
the ionosonde station, and the 
dusty blue lines are ray paths in 
the inversion area

Fig. 5   GPS stations (red dots), inversion area (black box), and iono-
sonde station (black triangle) used for verification in Region I

Fig. 6   GPS stations (red dots), inversion area (black box), and iono-
sonde station (black triangle) used for verification in Region II

Table 2   Kp index (https://​www-​app3.​gfz-​potsd​am.​de/​kp_​index/​Kp_​ap_​since_​1932.​txt)

2014.7.5 0.000 0.000 0.333 0.333 0.333 0.667 2.000 1.333
2015.3.10 1.333 1.333 1.667 1.333 0.667 0.333 1.000 0.333

https://www-app3.gfz-potsdam.de/kp_index/Kp_ap_since_1932.txt
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For a GPS ray passing through the inversion area, the 
TEC can be expressed as:

(1)STECg =

N∑

i=1

liNei − �d

where STECg is the TEC in the inversion area, i is the grid 
number, li is the intercept of the ray in the grid, Nei is the 
electron density at the center of the grid, and �d and �s rep-
resent the discretization error and the observation error, 
respectively. Based on the NeQuick model, the proportion 
rg of STECg in the inversion area to the total STEC can be 
obtained by following the method proposed by Yao et al. 
(2018):

where �r and �s are the errors of rg and STEC, respectively. 
By substituting (2) into (1), we arrive at:

The matrix form of (3) is as follows:

(2)STECg =
(
rg − �r

)
⋅
(
STEC − �s

)

(3)rg ⋅ STEC =

N∑

i=1

liNei − �d +
(
STEC − �s

)
⋅ �r + rg ⋅ �s

Fig. 7   Inversion results for Region I. Peak height of the ionospheric 
electron density at the ionosonde station

Fig. 8   Inversion results for Region II. Peak height of the ionospheric 
electron density at the ionosonde station

Fig. 10   Inversion results for Region II. Peak electron density at the 
ionosonde station

Fig. 9   Inversion results for Region I. Peak electron density at the ion-
osonde station

Table 3   Peak height error (unit: km) and the relative error, CS is our 
method

Region I Region II

CS IRI CS IRI

Mean 41.3 22.3 33.1 − 0.3
15.8% 8.7% 11.1% 0.1%

SD 21.7 17.0 19.3 14.5
8.9% 6.8% 6.9% 5.1%
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where each item corresponds to the vector or matrix form of 
each item in (3). For example, �

�
 is the column vector form 

of rg ⋅ STEC . From (4), it can be seen that the observation 
equation contains many error terms, including the discretiza-
tion error caused by gridding �

�
 , the scale factor error ��

�
 , 

and the observation error of STEC ��
�
.

Sparse representation

A prerequisite for signal reconstruction using CS is a sparse 
representation of the signal. Although the regional electron 
density column vector is usually not sparse, it can be rep-
resented sparsely after dictionary conversion. To verify the 
sparsity of ionospheric electron density, an experiment was 
carried out based on the IRI model. The IRI model was used 
to obtain the long-term electron density ��

���
 in the inver-

sion area, and then, the singular value decomposition was 
used to construct a long-term dictionary:

where �
���

 is the conversion result of ��
���

 using dictionary 
� . The electron density at the center of the grid in the inver-
sion area is expressed as:

where ��
�
 is a column vector composed of the electron den-

sity at the center of the grid in the inversion area. Due to the 
lack of real electron density data in the entire region, the 
sparse representation of the ionosphere in this region was 
evaluated based on �

���
.

Figure 2 shows the elements in the first 50 rows and first 
100 columns of �

���
 , where �

���
 is the normalized �

���
 , i.e., 

�
���

(i, j)=
abs(�

���
(i,j))

max(abs(�
���

(∶,j)))
 . It can be seen that a few elements 

in the front rows have large absolute values, indicating that 

(4)�
�
= � ⋅ ��

�
− �

�
+ ��

�
+ ��

�

(5)� ⋅ � ⋅ �
� = ��

���

(6)�
���

= � ⋅ �
�

(7)��
�
= � ⋅ �

�

�
���

 has a good sparsity and the ionospheric electron density 
can be sparsely represented by a, which only contains k large 
elements, and the other elements are set to zero. Specifically, 
the sparsity of a is k, and the location of all non-zero ele-
ments in a (i.e., the row number) is called the support set. 
Equation (7) is converted to:

where �
�
 is the error of a. By combining (4) and (8), we 

obtain:

where � is the observation matrix, � is sparse, which makes 
it possible to reconstruct ��

�
 using CS.

Observation matrix weight

The weighting of the observation matrix is complex and is 
restricted by two factors: the error term and the reconstruc-
tion performance of the observation matrix. In the algorithm, 
the inner product and the method of the least squares were 
used. An appropriate weight of the observation equation can 
help to obtain good results. However, the weight can change 
the reconstruction performance of the observation matrix 
positively or negatively. Therefore, both factors should be 
considered when determining the weight.

In the CS theory, the observation matrix should satisfy 
certain conditions in order to reconstruct the signal with 
high probability and accuracy. Candès and Tao (2005) pro-
posed that the observation matrix needed to satisfy RIP. Spe-
cifically, for k = 1, 2, 3,… ,K , the isometric constant �k of 
the matrix � is defined as the minimum value that satisfies:

where || ||2 is the �2 norm and x is a k column sparse vector. 
If 0 < 𝛿k < 1 , then � satisfies k-order RIP.

Traditionally, the weight is generally determined based on 
the covariance matrix. As can be seen from the supplementary 
material, the error terms include the discretization error �

�
 , the 

scale factor error ��
�
 , the observation error term ��

�
 , and the 

sparse representation error term � ⋅ �
�
 . The discretization error 

can be neglected because it is on the order of 0.01 TECU. See 
supplementary material for detailed error analysis. In one cal-
culation, S�r ∼ N(mSr, �

2

Sr
) , 𝛿Sr ≪ ||mSr

|| . r�s ∼ N(0, ...) , and 
may not be true in one calculation. Ignore the scale factor error 

(8)��
�
= � ⋅ (� − �

�
)

(9)�
�
= � ⋅ � − � ⋅ �

�
− �

�
+ ��

�
+ ��

�

(10)� = � ⋅ �

(11)(1 − �k)||�||22 ≤ ||��||2
2
≤ (1 + �k)||�||22

Table 4   Peak electron density error (unit: 1010  m−3) and the relative 
error, CS is our method

Region I Region II

CS IRI CS IRI

Mean 10.6 75.4 1.9 1.2
18.8% 111.2% 3.2% 2.8%

SD 14.1 31.0 8.1 8.6
27.2% 67.4% 12.7% 13.2%
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for its small standard deviation and the uncertainty r�s , only 
consider the sparse representation er ror term 

A�a ∼ N(0,
∑N

i=1
l2
i
⋅ �

2
a
) , setting the weight to 1

��∑N

i=1
l2
i
 

is appropriate. However, in CS, the performance of the 

observation matrix directly affects the reconstruction result or 
even leads to an incorrect result. The performance of the 
observation matrix is affected by the weight. Therefore, when 
determining the weight, we focused on the performance of the 

Fig. 11   Inversion results for 
Region I. Ionospheric electron 
density profile at the ionosonde 
station (00:00–23:00), the blue 
line denotes CS result, the red 
line is ionosonde result, the 
black line denotes IRI result
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observation matrix. According to our experience, the perfor-
mance weight of the observation equation is as follows: (12)w = 1

/
N∑

i=1

li

Fig. 12   Inversion results for 
Region II. Ionospheric electron 
density profile at the ionosonde 
station (00:00–23:00), the blue 
line denotes the CS result, the 
red line is the ionosonde result, 
and the black line denotes the 
IRI result
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where w is the weight, i.e., the weight of the observation is 
the reciprocal of the total intercept of the observation. By 
combining (9) with the above equation, we obtain:

where � is the weight matrix of w , and the off-diagonal ele-
ments in the matrix were 0.

Reconstruction algorithm

The CoSaMP algorithm was used to reconstruct the electron 
density. The CoSaMP algorithm was a special greedy algo-
rithm. Theoretical performance analysis was difficult for the 
greedy algorithm (Blumensath et al. 2012). Davenport and 
Wakin (2010) reported that the theoretical conditions of the 
greedy algorithm were stricter than RIP, while other research-
ers showed that the theoretical performance of some greedy 
algorithms was close to and even better than that of the convex 
relaxation method in some specific situations (Tropp 2004; 
Needell and Vershynin 2010; Blumensath and Davies 2008).

CoSaMP is different from classical matching pursuit algo-
rithms. In each iteration, the CoSaMP algorithm chooses mul-
tiple atoms in the support set based on the correlation. Then, 

(13)��
�
= �� ⋅ � − �� ⋅ �

�
− ��

�
+ ���

�
+ ���

�

the support set was cropped using the method of least squares. 
The specific steps are as follows:

1.	 Initialization. For � = � ⋅ � , where � and � correspond 
to ��

�
 and �� in (13), respectively. Let � = � , � = � , 

the sparseness is k, and the support set is empty � = � . 
The columns of A are normalized to obtain B.

2.	 The residual error is updated, and the normalized 
sensing matrix is correlated with the residual error. 
�� = � − � ⋅ � , � = �

�
⋅ ��.

3.	 The set R of the 2k row numbers that are most correlated 
with the residual error is obtained, namely, the row R 
corresponding to the 2k elements with the largest abso-
lute value in p, � = � ∪ �.

4.	 b is updated using the least squares, and the support 
set is cropped. �(�) = �(�)−1 ⋅ �� + �(�) . The row �

�
 

corresponding to the k elements with the largest absolute 
value was obtained from b, � = �

�
.

5.	 Update b. �(�) remains constant, and the other rows of 
b are set to 0.

6.	 Steps 2–5 are repeated until ry no longer changes, or the 
1-norm of ry is less than the threshold, which is set to 
5% of the 1-norm of y.

Fig. 13   Electron density sec-
tions along the latitude direction 
in Region I at 00:00 UTC time

Fig. 14   Electron density 
sections along the longitude 
direction in Region I at 00:00 
UTC time
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7.	 The results are calculated. Using the final support set, 
the sparseness representation of the electron density a 
is calculated using the least squares method. Then, the 
electron density ��

�
 is obtained using (8).

Dataset

GPS observations on March 10, 2015, in China region (Region 
I) and on July 5, 2014, in the Europe region (Region II) are 
used to reconstruct the ionospheric electron based on CS. 
The Kp and Dst index is presented in Table 2 and Fig. 3. The 
STEC data of the Region I were derived from the terrestrial 
network by code-phase leveling, and DCBs were estimated 
by the spherical harmonic model (Jin et al. 2012). The STEC 
data of Region II can be downloaded from http://​www.​gage.​
upc.​edu/​produ​cts (Rovira-Garcia et al. 2016a, 2016b). Iono-
sonde observations at Wuhan (30.50°, 114.40°) and Dourbes 
(50.10°, 4.60°) are also used to compare with the reconstructed 
results. Ionosonde data can be downloaded from https://​lgdc.​
uml.​edu/​common/​DIDBF​astSt​ation​List. Figure 4 shows the 
three-dimensional map of Region II, and Figs. 5 and 6 show 
GPS stations, inversion area, and ionosonde stations used in 
Region I and Region II, respectively.

Results and discussion

Figures 7 and 8 compare the variation of the electron 
density peak height reconstructed by CS (blue circles), 
generated from IRI (black line) and measured by Wuhan 
and Dourbes ionosondes (red dots) in Regions I and II, 
respectively. We can see from Fig. 7 that in Region I the 
peak height reconstructed by CS shows a similar trend to 
that generated from the IRI model and measured by Wuhan 
ionosonde, and the peak height reconstructed by CS is 
higher than that obtained from the other two ways, this 
may be caused by the insufficient applicability of the dic-
tionary. As shown in Fig. 8, the peak height reconstructed 
by CS was higher than that calculated by IRI model and 
observed by Dourbes ionosonde in Region II. Besides, the 
trend of the peak height reconstructed by CS is consist-
ent with that obtained from the IRI model and Dourbes 
ionosonde.

Fig. 15   Electron density sections along the height direction in Region 
I at 00:00 UTC time

Fig. 16   Electron density sec-
tions along the 32° latitude line 
at different times in Region I

http://www.gage.upc.edu/products
http://www.gage.upc.edu/products
https://lgdc.uml.edu/common/DIDBFastStationList
https://lgdc.uml.edu/common/DIDBFastStationList
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Then, we take the Wuhan and Dourbes ionosonde 
measurements as the reference and calculate the error 
and SD of the peak height of the IRI model and CS, as 
shown in Table 3. In Region I and Region II, the mean 
error and SD of CS are larger than those of IRI model, 
which means the IRI model can predict the peak height 
more accurately.

Figures 9 and 10 compare the peak electron density 
reconstructed by CS (blue circles), predicted by IRI model 
(black line) and observed by ionosonde (red dots) in Region 
I and Region II. As shown in Fig. 7, in Region I, the peak 
electron density reconstructed by CS was very close to 

that observed by the ionosonde, while IRI model predicted 
result is much larger than that of CS and Wuhan ionosonde 
observation. In Region II, the CS result shows a similar 
trend to the ionosonde observation. Table 4 shows the mean 
error and SD for the peak electron density in Region I and 
Region II, and the ionosonde observations at Wuhan and 
Dourbes were taken as the reference. Obviously, in Region 
I, the mean error and SD of the peak electron density recon-
structed by CS are smaller than those predicted by the IRI 
model, which indicates that CS can reconstruct the peak 
electron density more accurately. However, in Region II, the 

Fig. 17   Electron density sec-
tions along the 112° longitude 
line at different times in Region 
I

Fig. 18   Electron density sec-
tions along the 300 km height 
line at different times in Region 
I

Fig. 19   Electron density sec-
tions along the latitude direction 
in Region II at 00:00 UTC time
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Fig. 21   Electron density sections along the height direction in Region 
II at 00:00 UTC time

Fig. 20   Electron density 
sections along the longitude 
direction in Region II at 00:00 
UTC time

difference in the mean error and SD between CS and IRI 
models is not obvious.

Figure 11 shows the comparison of the electron density 
profiles reconstructed by CS (blue lines), predicted by IRI 
model (black lines) and inversed by the SAO Explorer soft-
ware based on the ionosonde observations at Wuhan (red 
lines) during the period from 00:00 to 23:00 UTC on March 
10, 2015, in the Region I. It needs to be noted that the profile 

above the peak height of the ionosonde was extrapolated. 
As shown in Fig. 11, the electron density profiles recon-
structed by CS are in good agreement with that observed 
by the Wuhan ionosonde, although the peak height of the 
electron density reconstructed by CS is generally higher than 
that observed by an ionosonde. IRI model predicted electron 
density profiles are twice the ionosonde observations.

Figure 12 compares the electron density profiles recon-
structed by CS (blue lines), predicted by IRI model (black 
lines) and inversed by the SAO Explorer software based on 
the ionosonde observations at Dourbes (red lines) during 
the period from 00:00 to 23:00 UTC on July 5, 2014, in the 
Region II. These three profiles are very similar. In addition, 
compared with Fig. 11, the reconstruction result of CS in 
Region II was superior to that in Region I, especially before 
11:00 UTC.

Figure 13 shows the electron density slices at different 
latitudes at 00:00 UTC on March 10, 2015, in Region I by 
CS. All slices show enhanced electron density in the region 
between 200 and 400 km, and the electron density of this 
area decreases with the increase of the latitude. In addition, 
the electron density also enhances with the increase of the 
longitude. This is because Region I is in the morning, and 
the solar radiation was stronger in large-longitude and low-
latitude areas.

Figure 14 shows the electron density slices at different 
longitudes at 00:00 UTC in Region I by CS. Similar to 
Fig. 13, enhanced electron density was observed between 
200 and 400 km. Also, the electron density in this region 
decreased with the increase of the latitude and enhanced 
with the increase of the longitude.

Figure 15 shows the electron density slices at different 
altitudes in Region I at 00:00 UTC by CS. We can see from 
Fig. 14 that the maximum electron density in the slice at 
300 km appears at 25° latitude and 120° longitude, which 
was consistent with the findings of Figs. 12 and 13.

Figures 16, 17 and 18 present the time variation of the 
electron density slices at 32° latitude, 112° longitude, and 
300 km altitude in Region I by CS, respectively. All these 
three figures show that the electron density increases with 
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time and peaks at 08 UTC; after that, it decreases rapidly. 
It can be seen from Fig. 16 that the enhanced electron den-
sity area from 200 to 400 km moved from a high-longitude 
area to a low-longitude area with time and then disappeared 
at 16:00 UTC. As presented in Fig. 17, the enhanced elec-
tron density area expanded from low-latitude areas to high-
latitude areas and then vanished at 16:00. The same phe-
nomenon is shown in Fig. 18 as well. It can be seen from 
Figs. 16 and 17 that the changes in electron density along 
the longitude direction were smaller than that along the 
latitude direction. In addition, the enhanced electron den-
sity area between 200 and 400 km, which appeared at 0:00 
UTC, and the center of the spheroid moved to 112°longitude 
and below 25° latitude at around 8:00 UTC, disappeared at 
16:00, which was consistent with the time of solar radiation.

Figures 19, 20 and 21 present the electron density slices 
at different latitudes, longitudes, and altitudes in Region II 
at 00:00 UTC by CS. Enhanced electron density between 
300 and 500 km can be seen in these three figures, and the 
electron density peaked at 45° latitude and at 380 km alti-
tude. As shown in Fig. 21, two high-electron density bands 
in the slice at 400 km and 45° latitude were distributed on 
each side of the 5° longitude line.

Figures 22, 23 and 24 show the time variation of the elec-
tron density slices at the 47° latitude line, the 2° longitude 

line, and 300 km altitude in Region II by CS, respectively. 
The electron density reached the minimum between 2:00 and 
4:00 UTC; then, it began to increase and reach its maximum 
at 18:00 UTC; after that, it decreased again. The peak height 
decreased to a minimum at 8:00 UTC and then increased 
with time. In addition, the graphs show that the horizontal 
gradient in the longitude direction was smaller than that in 
the latitude direction.

In addition, CT by CS shows high computational effi-
ciency. The computational efficiency is affected by the iter-
ations of the algorithm and the observed quantity. In our 
case, the number of iterations was mostly less than 10. The 
observed quantity used in one calculation was about 2000, 3 
epochs for Region I, 21 epochs for Region II. The algorithm 
ran on an ordinary desktop computer; Table 5 shows the 
runtime environment. Figure 25 presents the elapsed time 
of each reconstruction by CS; most of them were less than 
10 s, and the mean values for Regions I and II were 6.1 s and 
5.7 s, respectively. It should be noted that the STECg and 
the dictionary were prepared in advance. Saito et al. (2017) 
showed that their method can produce three-dimensional 
electron density distributions over Japan every 15 min with 
a latency of about 6 min, the cost of DCB estimation was 
within 1 s.

Fig. 22   Electron density sec-
tions along the 47° latitude line 
at different times in Region II

Fig. 23   Electron density sec-
tions along the 2° longitude line 
at different times in Region II
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Summary

Ionospheric tomography is an ill-posed problem. CS is 
able to reconstruct the signal through a small number of 
observations under certain conditions. In this study, CS 
was first used for ionospheric tomography. Specifically, a 
dictionary was constructed based on the IRI model, and 
the sparse representation of the ionospheric electron den-
sity was studied. Moreover, using weight matrix optimiza-
tion to improve the performance of the observation matrix 
and the scale factor obtained through the NeQuick 2 model 
to retain more observations ensured the performance of 
the observation matrix. GPS data in two regions (I: China, 

II: Europe) were used to reconstruct the electron density 
based on this proposed method, and the results were com-
pared with ionosonde observations. The main results of 
this study are summarized as follows:

1.	 In Region I, the peak electron density reconstructed by 
CS is in agreement with the ionosonde observation; the 
peak height is generally higher than the observation; the 
reason may be that the inaccuracy of IRI in Region I 
affects the suitability of the dictionary. In Region II, the 
peak electron density and height are consistent with the 
ionosonde observation.

2.	 Distribution and variation of the electron density reconstructed 
by CS in both regions were consistent with the actual situation. 
The results showed that the horizontal gradient of the electron 
density in the latitude direction was larger than that in the lon-
gitude direction. In addition, the electron density exhibited the 
local time dependence.

3.	 Ionospheric tomography based on CS greatly improved 
the resolution and computational efficiency. The average 
time for each reconstruction was about 6 s. For Region 
I, each reconstruction only uses data within 1 min. 
Although the calculation is conducted once every 5 min, 
to match the temporal resolution of the ionosonde data, 
it can be flexibly adjusted, such as one reconstruction 
once per epoch.
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Fig. 24   Electron density sec-
tions along the 300 km height 
line at different times in Region 
II

Table 5   Runtime environment

CPU Intel(R) Core(TM) i7-8700 
CPU (Base Frequency 
3.20 GHz)

RAM 16.0 GB
Operating system Windows 10 Pro
Software framework Matlab 2016a

Fig. 25   Elapsed time of each reconstruction
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and ionosonde data can be downloaded from https://​lgdc.​uml.​edu/​com-
mon/​DIDBF​astSt​ation​List.
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included in the article's Creative Commons licence, unless indicated 
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the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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