
Vol.:(0123456789)1 3

GPS Solutions (2022) 26:83 
https://doi.org/10.1007/s10291-022-01266-8

ORIGINAL ARTICLE

A new parallel algorithm for improving the computational efficiency 
of multi‑GNSS precise orbit determination

Xinghan Chen1,2   · Maorong Ge1,2 · Urs Hugentobler3 · Harald Schuh1,2

Received: 8 December 2021 / Accepted: 21 April 2022 / Published online: 27 May 2022 
© The Author(s) 2022

Abstract
The computational efficiency is critical with the increasing number of GNSS satellites and ground stations since many 
unknown parameters must be estimated. Although only active parameters are kept in the normal equation in sequential least 
square estimation, the computational cost for parameter elimination is still a heavy burden. Therefore, it is necessary to 
optimize the procedure of parameter elimination to enhance the computational efficiency of GNSS network solutions. An 
efficient parallel algorithm is developed for accelerating parameter estimation based on modern multi-core processors. In the 
parallel algorithm, a multi-thread guided scheduling scheme, and cache memory traffic optimizations are implemented in 
parallelized sub-blocks for normal-equation-level operations. Compared with the traditional serial scheme, the computational 
time of parameter estimations can be reduced by a factor of three due to the new parallel algorithm using a six-core processor. 
Our results also confirm that the architecture of computers entirely limits the performance of the parallel algorithm. All the 
parallel optimizations are also investigated in detail according to the characteristics of CPU architecture. This gives a good 
reference to architecture-oriented parallel programming in the future development of GNSS software. The performance of 
the multi-thread parallel algorithm is expected to improve further with the upgrade of new multi-core coprocessors.s

Keywords  Parallel algorithm · GNSS network · Parameter elimination · OpenMP

Introduction

Over the last few decades, the processing strategies for large 
GNSS networks have been an issue of concern in the GNSS 
community. With the extension of satellite constellations and 
the increasing number of ground stations, a dense network of 
GNSS data with long orbit arcs is usually used to guarantee 
orbital accuracy in multi-GNSS precise orbit determination 
(POD). In real-time applications, a fast update of the POD 
processing is also needed to reduce orbit prediction errors. 
Therefore, fast, dense, and large multi-GNSS POD solu-
tions challenge computational efficiency in multi-GNSS data 
processing. In such a high-volume data processing, a huge 

number of parameters should be inevitable for achieving a 
more accurate and reliable parameter estimation (Steigen-
berger et al. 2006; Chen et al. 2014).

Eliminating parameters in the normal equation (NEQ) 
system has been widely recommended in GNSS data pro-
cessing (Boomkamp and König 2004) to reduce the require-
ment on memory. Ge et al. (2006) accordingly proposed a 
new algorithm by only keeping the active parameters in the 
NEQ system, which indeed releases the computation bur-
den for solving the NEQ. Since the advent of cached-based 
processors with a multi-layer memory, the matrix–matrix 
operations are provided by the basic linear algebra sub-
programs (BLAS) to amortize the cost of data movement 
between memory layers (Low and van de Geijn 2004). 
Using this tool, the block-partitioned algorithms, including 
the Cholesky and QR factorizations, are implemented in the 
linear algebra package (LAPACK) for solving NEQ (Gunter 
and van de Geijn 2005; Demmel et al. 2012; Gong et al. 
2018). The computational cost of solving NEQ is negligi-
ble for parameter estimation through a combination of the 
blocked algorithm and the strategy of parameter elimina-
tion. However, the whole procedure of parameter estimation 

 *	 Xinghan Chen 
	 xchen.gfz@gmail.com

1	 German Research Centre for Geosciences (GFZ), 
Telegrafenberg Potsdam, Germany

2	 Technische Universität Berlin, 10623 Berlin, Germany
3	 Technische Universität München (TUM), Arcisstraße 21, 

80333 Munich, Germany

http://orcid.org/0000-0002-7013-3920
http://crossmark.crossref.org/dialog/?doi=10.1007/s10291-022-01266-8&domain=pdf


	 GPS Solutions (2022) 26:83

1 3

83  Page 2 of 13

is still time-consuming at each epoch with the increasing 
number of satellites and ground stations even though the 
parameter elimination strategy is applied (Schönemann et al. 
2011). The major reason for this turns out to be the huge 
computational burden for parameter elimination.

Higher computational power has already been exploited 
in many application areas with a continuous upgrade of com-
puting systems. For the modern GNSS software, the coding 
of algorithms and processing procedures should be directed 
toward enhanced computing resources. In need for more 
computational power, developers of computing systems tried 
to use several existing computing machines joined, which is 
the origin of parallel machines (Gottlieb and Almasi 1989). 
As well-known in high-performance computing (HPC), par-
allel computing has become the dominant paradigm in com-
puter architectures mainly in multi-core processors (Asa-
novic et al. 2006). In parallel computing, the most common 
forms of process interaction are message passing and shared 
memory, except for implicit interactions that are difficult to 
manage (Kessler and Keller 2007). In order to fully exploit 
the capabilities of multi-core shared-memory machines (El-
Rewini and Abd-El-Barr 2005), individual hardware vendors 
developed their own standards of compiler directives and 
libraries. For a large agreement between compiler devel-
opers and hardware vendors, an important tool, i.e., Open 
Multiprocessing (OpenMP), has emerged to support the 
multi-platform shared memory multiprocessing program-
ming (Costa et al. 2004; Mironov et al. 2017). The OpenMP 
and message passing interface (MPI) techniques have been 
applied in GNSS receiver software for accelerating GNSS 
signal acquisition and tracking (Sun and Jan 2008). The 
OpenMP-based parallelism has been introduced into the 
extended Kalman filter for real-time GPS network solutions 
(Kuang et al. 2019). In the message passing mode, a com-
munication network is required to connect inter-processor 
memory. The memory address in one processor cannot be 
mapped to another processor. Therefore, unlike shared mem-
ory, there is no concept of global address across all the pro-
cessors for distributed memory (i.e., message passing). The 
distributed memory computing techniques have been used 
for processing massive GPS network datasets (Serpelloni 
et al. 2006; Boomkamp 2010). For instance, one procedure, 
e.g., preprocessing, can be further separated into several 
independent subtasks, which are operated in parallel by all 
processors over a distributed communication network. Based 
on this distributed environment, some parallel processing 
strategies have been developed to speed up epoch-wise PPP 
or baseline solutions (Li et al. 2019; Cui et al. 2021).

From the perspective of the parameter elimination princi-
ple, it is possible to parallelize this operation highly. Using 
the OpenMP parallel tool, an efficient parallel algorithm 
is therefore developed based on the multi-core proces-
sors to improve the computational efficiency of parameter 

estimation for GNSS network solutions. First, the principle 
of sequential least square (LSQ) estimation with parameter 
elimination is introduced. Then, the OpenMP-based paral-
lelization and the parallel optimization are described for 
parallel programming, respectively. In the OpenMP-based 
parallel algorithm, the cache memory traffic optimizations 
and an optimized multi-thread scheduling scheme are devel-
oped to improve the computational performance of param-
eter elimination. Experiments are carried out to demonstrate 
the feasibility of the cache memory traffic optimization and 
the multi-thread scheduling scheme, respectively. Afterward, 
the multi-GNSS POD is taken as a typical case to further 
confirm the improvements in computational efficiency due 
to the proposed parallel algorithm. Finally, the contributions 
and several outlooks are summarized for GNSS software 
development.

Parallel processing algorithm for sequential 
LSQ

As mentioned above, most of the computational burden is 
from parameter elimination for sequential LSQ estimation. 
First, we provide the principle of sequential LSQ estima-
tion with parameter elimination. Then, the feasibility of 
parallelizing the parameter elimination is confirmed from 
the perspective of principle. For the major time-consuming 
operations in the parameter elimination, parallel optimiza-
tions, including the cache memory traffic optimization and 
the multi-thread scheduling scheme, are finally introduced 
and implemented in the parallel processing algorithm.

Sequential LSQ estimation with parameter 
elimination

In the LSQ estimation, the number of parameters often accu-
mulates with the observation time period. A great number 
of parameters would bring a huge computational burden for 
the estimation. However, many of the parameters are valid 
just over a specific time interval, such as parameters for 
only a single epoch, piece-wise constant, or piece-wise lin-
ear parameters. For saving computer memory and reducing 
the computational burden, these parameters could be only 
kept while they are active over a specific time period; oth-
erwise, they are considered as inactive and will be removed 
immediately from the normal equations before and after the 
active status, respectively (Ge et al. 2006). For the time-
dependent parameters such as the tropospheric zenith wet 
delays (ZWDs), additional state equations of the adjacent 
parameters will be introduced as pseudo observations for 
the LSQ estimation. The observation equations for the LSQ 
adjustment with the time-dependent state parameter x can 
be written as follows,



GPS Solutions (2022) 26:83	

1 3

Page 3 of 13  83

where the design matrices A and B are combined with the 
measurement l in the observation equation. y and x(i) repre-
sent the global parameters and the epoch-related parameters 
at the epoch i, respectively. x(0) stands for the parameter 
at the initial epoch. Absolute constraints are applied to the 
correction of y and x(0). In the state equation, Φ(i) is the 
state transition matrix of x from epoch i − 1 to epoch i. Rela-
tive constraints are introduced between x(i − 1) and x(i). In 
some cases, absolute constraints can also be given on x(i), 
for instance, coa zero mean condition. After this transition, 
the active parameters x(i) and y are still kept for the current 
epoch i, while the adjacent parameter x(i − 1) at the previ-
ous epoch i − 1 becomes inactive. At the starting epoch, the 
initial values y0 and x0 are introduced with a priori weighting 
matrices Py0 and Px0, respectively.

After the new state parameter x(i) are introduced at epoch 
i, the contribution of new observational and state equations to 
the normal equation can be expressed as follows,

(1)

⎧
⎪⎨⎪⎩

vy0 = y − y0, Py0

vx0 = x(0) − x0, Px0

vx(i) = Φ(i)x(i − 1) − x(i), Px(i)

v(i) = A(i)y + B(i)x(i) − l(i), Pl(i)

(2)

⎡⎢⎢⎣

AT (i)Pl(i)A(i) 0 AT (i)Pl(i)B(i)

0 ΦT (i)Px(i)Φ(i) −ΦT (i)Px(i)

BT (i)Pl(i)A(i) −Px(i)Φ(i) BT (i)Pl(i)B(i) + Px(i)

⎤
⎥⎥⎦
⋅

⎡
⎢⎢⎣

y

x(i − 1)

x(i)

⎤⎥⎥⎦

=

⎡⎢⎢⎣

AT (i)Pl(i)l(i)

0

BT (i)Pl(i)l(i)

⎤
⎥⎥⎦

(3)ΔN(i)X(i) = Δw(i)

where the initialization condition of x0 and Px0, y0 and Py0 
should also be introduced for the initial epoch. To simplify 
the notation, the above contribution to the normal equation 
is denoted by (3).

The accumulated normal equation at epoch i is written 
as follows before new observational and state equations are 
introduced,

where (4) can be simplified and expressed as (5).
Considering the contribution of the new observational 

equations, the normal equation at epoch i becomes,

where (6) is denoted as (7). To be more specific, Eq. (7) is 
rewritten as,

where the parameter x(i − 1) that is to be eliminated can be 
derived as (9). Substituting (9) into (8), the normal equation 
is converted into,

(4)
⎡
⎢⎢⎣

N11(i − 1) N12(i − 1) 0

N21(i − 1) N22(i − 1) 0

0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y

x(i − 1)

x(i)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

w1(i − 1)

w2(i − 1)

0

⎤
⎥⎥⎦

(5)N(i)X(i) = w(i)

(6)
[
N(i) + ΔN(i)

]
X(i) = w(i) + Δw(i)

(7)N̂(i)X(i) = ŵ(i)

(8)
⎡⎢⎢⎣

N̂11(i) N̂12(i) N̂13(i)

N̂21(i) N̂22(i) N̂23(i)

N̂31(i) N̂32(i) N̂33(i)

⎤⎥⎥⎦

⎡⎢⎢⎣

y

x(i − 1)

x(i)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

ŵ1(i)

ŵ2(i)

ŵ3(i)

⎤⎥⎥⎦

(9)x(i − 1) = −
[
N̂22(i)

]−1[
N̂21(i)y + N̂23(i)x(i) − ŵ2(i)

]

(10)

⎡⎢⎢⎣

N̂11(i) − N̂12(i)[N̂22(i)]
−1N̂21(i) 0 N̂13(i) − N̂12(i)[N̂22(i)]

−1N̂23(i)

N̂21(i) N̂22(i) N̂23(i)

N̂31(i) − N̂32(i)[N̂22(i)]
−1N̂21(i) 0 N̂33(i) − N̂32(i)[N̂22(i)]

−1N̂23(i)

⎤⎥⎥⎦

⋅

⎡
⎢⎢⎣

y

x(i − 1)

x(i)

⎤
⎥⎥⎦
=

⎡⎢⎢⎣

ŵ1(i) − N̂12(i)[N̂22(i)]
−1ŵ2(i)

ŵ2(i)

ŵ3(i) − N̂32(i)[N̂22(i)]
−1ŵ2(i)

⎤
⎥⎥⎦



	 GPS Solutions (2022) 26:83

1 3

83  Page 4 of 13

where the matrix at the left side of the NEQ is positive defi-
nite. Only the upper triangular part of the NEQ matrix is 
stored and available for parameter elimination. The parallel 
speedup for these large triangular matrices will be intro-
duced in detail in the following sections.

Equation (10) is written as (11),

where after x(i − 1) is removed, the normal equations of y 
and x(i) are taken as a priori condition at epoch i + 1 for new 
parameters x(i + 1), and the procedure starts again with (4) 
for the next epoch i + 1, as shown in (12).

Following the same pattern of (2–11), the recursion 
mentioned above is repeated until the last active parameter 
x(n) is introduced at epoch n. Finally, the following normal 
equation is solved for achieving the optimal estimate of x(n),

where the performance metric VTPV needs to be computed 
for obtaining a posteriori error of unit weight. According to 
(1) and (3), it can be expressed at epoch n by (14).

As a consequence of (1, 6, 7, and 10), the following 
recurrence relations are achieved after x(n − 1) has been 
eliminated,

(11)
⎡
⎢⎢⎣

N11(i) 0 N12(i)

N̂21(i) N̂22(i) N̂23(i)

N21(i) 0 N22(i)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y

x(i − 1)

x(i)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

w1(i)

ŵ2(i)

w2(i)

⎤
⎥⎥⎦

(12)
⎡
⎢⎢⎣

N11(i) N12(i) 0

N21(i) N22(i) 0

0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y

x(i)

x(i + 1)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

w1(i)

w2(i)

0

⎤
⎥⎥⎦

(13)
[
N11(n) N12(n)

N21(n) N22(n)

][
y

x(n)

]
=

[
w1(n)

w2(n)

]

(14)

VTPV =lTPll + yT
0
Py0

y0 + xT
0
Px0

x0 − yTPy0
y0 − x(0)TPx0

x0

− yT
n∑
i=1

Δw1(i) −

n∑
i=1

x(i)TΔw3(i)

(15)

− yTw1(n) − x(n)Tw2(n)

= −yT [ŵ1(n) − N̂12(n)[N̂22(n)]
−1ŵ2(n)]

− x(n)T [ŵ3(n) − N̂32(n)[N̂22(n)]
−1ŵ2(n)]

= [−yTΔw1(n) − x(n)TΔw3(n)]

+ ŵ2(n)
T [N̂22(n)]

−1ŵ2(n)

+ [−yTw1(n − 1) − x(n − 1)Tw2(n − 1)]

where the recurrence relation in (15) yields as results of (16) 
and (17) over a range from i = 0 to i = n.

Therefore, the alternative performance index at epoch n 
could be computed by substituting (17) into (14),

where the last term stands for the contribution of eliminating 
parameters n times.

The observational and state equations of eliminated 
parameters and their NEQs are saved to recover the obser-
vational residuals and estimates at every epoch. Based on 
(1) and (9), the related estimates and residuals could be 
computed backward for numerical analysis and quality 
control.

OpenMP‑based parallelization

As an Application Program Interface (API), OpenMP has 
been widely used on multiple platforms, instruction set 
architectures, and operating systems for shared memory 
multiprocessing. OpenMP consists of a set of compiler 
directives, library routines, and environment variables. 
These instructions can be employed to build a portable, scal-
able model, which can provide developers with a simple, 
flexible interface for parallel processing based on multiple 
platforms. For implementing the parallel algorithm, the first 
step is to confirm the possibility of parallelizing the target 
operation and accordingly transform the source code into 
the form that can be identified by OpenMP. In parameter 
elimination, the major cost is caused by the computation in 
the NEQ system, and the NEQ should be defined as a shared 
memory accessed by multiple threads in parallel. Before the 
parameter elimination is performed, as shown in (10), the 

(16)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−yTw1(n) − x(n)Tw2(n) = ŵ2(n)
T [N̂22(n)]

−1ŵ2(n)

+[−yTΔw1(n) − x(n)TΔw3(n)]

+[−yTw1(n − 1) − x(n − 1)Tw2(n − 1)]

⋮

−yTw1(1) − x(1)Tw2(1) = ŵ2(1)
T [N̂22(1)]

−1ŵ2(1)

+[−yTΔw1(1) − x(1)TΔw3(1)]

+[−yTw1(0) − x(0)Tw2(0)]

−yTw1(0) − x(0)Tw2(0) = −yTPy0
y0 − x(0)TPx0

x0

(17)

− yTw1(n) − x(n)Tw2(n)

=

n∑
i=1

ŵ2(i)
T [N̂22(i)]

−1ŵ2(i) − yTPy0
y0 − x(0)TPx0

x0

− yT
n∑
i=1

Δw1(i) −

n∑
i=1

x(i)TΔw3(i)

(18)

VTPV =lTPll + yT
0
Py0

y0 + xT
0
Px0

x0 − yTw1(n)

− x(n)Tw2(n) −

n∑
i=1

[ŵ2(i)]
T [N̂22(i)]

−1ŵ2(i)



GPS Solutions (2022) 26:83	

1 3

Page 5 of 13  83

nonzero elements of the row or column vector associated 
with the eliminated parameter are stored in advance. In the 
NEQ system, access to these nonzero elements is read-only, 
and their impacts are removed from each row vector with-
out any intervention from other elements. As shown in the 
NEQ transformation from (8 to 10), the second row vec-
tor for the eliminated parameter x(i − 1) is multiplied by 
N̂12(i)[N̂22(i)]

−1 and subtracted from the first row vector. A 
similar computing pattern is adopted for each row vector. 
This indicates that the entire NEQ-level computation can 
be separated into sub-blocks row by row and the sub-blocks 
are distributed among the threads without data dependence. 
From the perspective of principle, it is possible to parallelize 
the parameter elimination in a row-wise manner.

OpenMP‑based parallel optimization

In sequential least square estimation, epoch-related param-
eters are eliminated per epoch. The parameter elimination 
could effectively avoid the extension of NEQs due to the 
accumulation of epoch-related parameters and thus release 
the computational burden when computing the final inverse 
of the NEQs. However, a large number of non-epoch-related 
parameters and active epoch-related parameters are still 
valid for each epoch even after the parameter elimination. 
As a consequence, the computational costs of the matrix 
computation and the shifts of elements in the NEQ matrix 
are not negligible at all. The two major time-consuming 
parts for parameter elimination are the matrix computation, 
as shown in (10), for removing the contribution of the elimi-
nated parameters and the shift of elements associated with 
eliminated parameters for compacting the NEQs. In what 
follows, the multi-core parallel optimizations are mainly 
implemented in the two parts for achieving the parallel 
speedup in the parameter elimination.

From (8 to 10), it can be seen that the NEQ-level matrix 
computations for eliminating parameters account for most 
of the computation time for LSQ estimation. OpenMP is 
employed to create work-sharing spaces where multiple 
threads run in parallel on the available cores for realizing the 
parallelization. A large problem can be divided into several 
work-sharing subtasks in the NEQ system. For each subtask, 
the whole process of matrix calculations is further divided 
into multiple smaller sub-blocks. Because of the symmetric 
property for the positive definite NEQ matrix, only its upper 
triangular part is saved in the program so as to reduce NEQ 
memory. Thus, the whole process of NEQ-level matrix cal-
culations during parameter elimination can be considered as 
a manipulation of a large triangular matrix. Figure 1 shows 
the parallel optimization for the large subtask of triangular 
matrix computation. Taking the row and column associated 
with the parameter to be removed as boundaries, a large 

triangular work-sharing space is divided into three parts: one 
rectangular sub-block and two smaller triangular sub-blocks. 
The dimension of the matrix in each sub-block will vary due 
to the change in position of the parameter to be removed. 
In the work-sharing space, triangular and rectangular par-
allelized sub-blocks are executed one by one. There is no 
interaction between these parallelized sub-blocks. The cache 
memory traffic optimization and the optimized multi-thread 
scheduling scheme are implemented within the parallelized 
sub-blocks. Padding and loop tiling techniques are applied in 
the shift of elements for optimizing the cache memory traf-
fic. On the other hand, an optimized multi-thread scheduling 
scheme is mainly employed in the operations of (10) during 
the parameter elimination.

To improve the memory traffic and avoid such cache 
misses as far as possible, this study uses a loop tiling tech-
nique to optimize the temporal locality of data accesses in 
nested loops (Wolfe 1989). Figure 2 shows a typical example 
for this cache memory traffic optimization for easy under-
standing. As shown in Fig. 2, the hypothetical algorithm has 
two nested loops j and i to perform a specific calculation on 
all pairs of the element of arrays a and b. Both arrays a and 
b have a length of six elements residing on the main mem-
ory and also have caches for this memory. A cache is large 
enough to fit five elements of either array a or array b. For 
intel Xeon or Xeon Phi caches, the least recently used (LRU) 
eviction policy is applied. This means that the cache stores 
every element fetched from the memory, and then a list of 
the recently used elements will be evicted from the cache to 
make room for new incoming elements if the cache is filled 

Fig. 1   Parallel optimization for a large triangular work-sharing space. 
Each sub-block is an independent parallelized space where available 
threads run in parallel



	 GPS Solutions (2022) 26:83

1 3

83  Page 6 of 13

up. The algorithm without tiling has a cache hit ratio of 10 to 
24. It is possible to improve the cache hit ratio if the memory 
accesses are reordered. As shown in Fig. 2, the optimization 
is implemented by strip mining the i-loop and permuting the 
outer two loops. This algorithm hits the cache 17 out of 24 
times. In the optimized algorithm, the element of array b is 
revisited sooner while it is still in the cache, which improves 
the memory traffic and its performance. The operation that 
we performed is called loop tiling, and its strategy applied 
here is cache blocking.

For the parallelized standard square or rectangular matri-
ces, all the i-loops are first padded by modifying an offset 
of their addresses in order to map them to different cache 

lines. In Fig. 3, the padding offset is indicated by ‘PADS’. 
In this study, only one thread is allocated per core for paral-
lel computing. For each core, the loop tiling technique is 
employed to improve temporal locality and reuse cache more 
efficiently for every i-loop or j-loop iteration, as shown in 
Fig. 3. From the figure, it can be seen that the i-loop and 
j-loop are tiled with tile sizes denoted as TILE_i and TILE_j, 
respectively. The elements in the i-tile will be reused across 
the elements of the j-loop without being evicted from cache 
and vice versa. After the tile size is specified, a block of 
TILE_i × TILE_j is formed to fit the cache line in memory. 
For a specific cache architecture, different tile sizes can lead 
to significant variations in the performance of loop tiling. 

Fig. 2   Loop tiling based cache memory traffic optimization. Cache memory performance is measured in terms of cache hit ratio, i.e., a ratio of 
the number of cache hits to the number of total accesses



GPS Solutions (2022) 26:83	

1 3

Page 7 of 13  83

The optimal tile sizes need to be confirmed through actual 
experiments about the computational cost of nested loops.

Figure 4 shows the parallel algorithm for triangular 
matrices within the OpenMP parallelized space. Before the 
vectorization is enforced in the inner loop, it is mandatory 
to ensure that there is no carried-loop dependence for avail-
able shared arrays in the parallelized space. For the paral-
lelized triangular matrix, the j-loop iterations are distrib-
uted over the different threads, and the computational cost 
of these iterations for one thread is different from that for 
another one. Figure 5 shows the graphical representations 

of the working principle of scheduling methods includ-
ing ‘static’, ‘dynamic’, and ‘guided’ clauses, respectively. 
As mentioned before, the pieces of work created from the 
iteration space are evenly distributed over the threads in 
the work following the ‘static’ scheduling law. The best 
computing performance is achievable with this simple 

Fig. 3   Multi-thread parallel optimization for square or rectangular 
matrices. nthread denotes the number of available cores

Fig. 4   Multi-thread parallel optimization for triangular matrices. The 
option of distributing the non-homogeneous iterations is expressed as 
selected_mode

Fig. 5   Options of Scheduling for a multi-thread parallel algorithm 
based on OpenMP



	 GPS Solutions (2022) 26:83

1 3

83  Page 8 of 13

scheduling option if all the pieces require the same com-
putational time for all of the available threads. However, 
it turns out to be difficult to provide an optimal distribu-
tion of non-homogeneous iterations among the threads, 
for instance, in the triangular matrix. A possible solution 
would be to assign different pieces of work to the threads 
in a dynamic manner. In the ‘dynamic’ scheduling mode, 
each thread bears one piece of work at first. After they 

complete their previous subtask, another piece will be 
assigned to them until the last piece of work is finished. In 
general, the ‘dynamic’ scheduling method could efficiently 
enhance the capability of solving the problem of non-
homogenous iterations compared to the previous ‘static’ 
method, whereas it adds overhead in computational cost 
due to the handling and distributing of the different itera-
tion packages (Hermanns 2002). With the increase in the 
size of pieces of work (i.e., chunk size), this overhead can 
be reduced, but a larger non-equilibrium between different 
threads is, after that, possible. To achieve a better balance 
of workload among the threads, the ‘guided’ scheduling 
scheme begins with a big chunk size and then has pieces 
of work with decreasing size. The decreasing law is of 
exponential nature, which means the number of iterations 
for the following piece of work is halved after the previous 
one is finished. These scheduling types will be compared 
with each other for achieving an optimized solution.

Hardware and software

To develop the multi-thread parallel algorithm, the server 
‘srtg4’ is exclusively taken from the real-time GNSS group 
at German Research Centre for Geosciences (GFZ) as a hard-
ware device. The information about the hardware resources 
is listed in Table 1 for this server. The PANDA (Positioning 
And Navigation Data Analyst) software package has been 

Table 1   CPU architecture information of the dedicated server

Item Info

Architecture X86-64
Number of CPU 6
Thread(s) per core 1
Socket number 1°
Core(s) per socket 6
NUMA node number 1
Model name Intel (R) Xeon(R) 

CPU E5-1650 v4 @ 
3.60 GHz

CPU max clock speed 4000.0 MHz
CPU min clock speed 1200.0 MHz
L1d cache size 32 K
L1i cache size 32 K
L2 cache size 256 K
L3 cache size 15,360 K

Table 2   Processing strategy for multi-GNSS POD

Item Info

Arc length of estimated orbits 48 h
Processing interval 600 s
Signal selection GPS: L1/L2; BDS: B1/B3; Galileo: E1/E5a
Elevation cutoff 7°

Earth gravity EIGEN_GL04C model (Förste et al. 2008)
Gravitational forces Sun, Moon and all planets, solid Earth, pole, and ocean tides (Petit and Luzum 2010)
Solar radiation pressure (SRP) GPS/BDS: ECOM1 (5 parameter)

Galileo: ECOM1 (5 parameter) + a priori box-wing model (Montenbruck et al. 2015)
Earth rotation parameters International earth rotation and reference system service (IERS) products as the priori, x-pole, y-pole and their 

rates estimated with constraints of 3 mas and 0.3 mas/day, respectively. Universal Time (UT1) and its rates 
estimated with constraints of 1 us and 1 ms/day, respectively

Inter-system bias (ISB) Estimated as constant parameters with a zero-mean condition
Tropospheric delay VMF3/GPT3 model for estimation of zenith tropospheric delays (ZTDs) and tropospheric corrections (Landsk-

ron and Böhm 2018). Piece-wise estimation: 2-houly ZTD, 24-hourly gradient (Chen and Herring 1997)
Ionospheric delay First-order: removed by ionosphere-free observations

Second-order/Third-order: Corrected (Chen et al. 2019)
Clock errors Estimated epoch by epoch as white noise
Station coordinates Estimated as constant parameters with a constraint of about 0.2 mm to the reference frame IGS-14
Initial satellite orbit states Estimated as constant parameters including the positions or velocities of one satellite, and its SRP parameters
Ambiguity parameters Undifferenced ambiguities estimated as constants. Newly added ambiguity parameters introduced once a cycle 

slip or the starting of a new observed arc occurs



GPS Solutions (2022) 26:83	

1 3

Page 9 of 13  83

steadily improved over decades since it was developed at 
Wuhan University (Liu and Ge 2003). Currently, the soft-
ware can support data processing for various purposes, for 
example GNSS or low earth orbit satellites POD, precise 
clock estimation, precise point positioning, and very-long-
baseline interferometry (VLBI) with comparable accuracy 
as most of the IGS ACs software packages. In this study, the 
multi-GNSS experiment (MGEX) data (Montenbruck et al. 
2017; Johnston et al. 2017) are processed by the PANDA 
software package. The POD is taken as a typical example 
for testing the computational efficiency of GNSS network 
solutions in this study. To be more precise, its processing 
strategy is listed in Table 2.

Validation

For the multi-thread parallel algorithm, the cache memory 
traffic optimization and the multi-thread scheduling scheme 
are implemented in rectangular and triangular parallelized 
sub-blocks. First, the advantages of these optimizations in 
parallelized sub-blocks are verified to justify the developed 
parallel algorithm. Afterward, the new parallel algorithm 
is implemented in the PANDA software and validated by 
processing MGEX data to demonstrate its improvements 
in the computational efficiency of parameter estimation.

Cache memory traffic optimization

For comparison, Fig. 6 shows the computational perfor-
mances for the movements of elements relevant to the 
parameter to be eliminated in the rectangular matrix with 
different padding sizes. It is assumed that 2000 param-
eters are involved for this movement with different pad-
ding sizes. Padding of an array is an optimization of spa-
tial locality for accessing memory. The optimal solution 
is to make sure that the offset between addresses of data 
accessed by multiple threads is as large as possible. Then, 
different threads do not use the same cache line to avoid 
false sharing. In this study, the cache line size is 64 bytes, 
which is equivalent to eight double-precision floating-
point numbers. As shown in Fig. 6, the computational cost 
is relatively high if the padding size is less than eight. 
Under this circumstance, the same cache line is written by 
different threads. Consequently, the data will be fetched by 
individual threads from the main memory, which causes 
a lower speed of data access. Except for the false sharing, 
the overheads of the nested loop are increased when the 
padding size is smaller than (m − 1)∕nthread . The work-
loads distributed among threads will be unbalanced if the 
padding size is larger than (m − 1)∕nthread . The optimal 
padding size is, therefore, (m − 1)∕nthread for ‘nthread’ 

threads. The padding size of (m − 1)∕nthread is also much 
larger than the cache line size.

Figure 7 shows the computational cost of the matrix 
operations with different TILE_i and TILE_j sizes for the 
innermost i-loop and j-loop in Fig. 3, respectively. The 
shift of elements is repeated 20 times for each tile size. 
The tile size in the innermost j-loop fits the correspond-
ing cache line when the tile size in the innermost i-loop 
is tested. For the innermost i-loop, the optimal tile size 
is eight since the cache line size equals an array of eight 
double-precision floating-point numbers. For the inner-
most j-loop, the optimal is fifteen, as shown in Fig. 7. 
This is because the cache line size is equivalent to sixteen 
integer numbers, and the addresses of two adjacent col-
umns are accessed inside the innermost i-loop. In Fig. 8, 
the improvements of the cache-aware scheme are also 

Fig. 6   Computational performance of the multi-thread schemes with 
different padding sizes for movements of elements in a 1999 × 3000 
rectangular matrix. Each item in legend denotes a multi-thread 
scheme with a different number of threads in parallel. The cases of 
padding sizes less than the cache line size are shown in the bottom 
panel



	 GPS Solutions (2022) 26:83

1 3

83  Page 10 of 13

confirmed for the computations of matrices with differ-
ent sizes. The padding strategy has been adopted for the 
matric computation without false sharing between threads. 

Therefore, the computational performance is improved by 
introducing more threads in multi-thread applications.

Scheduling scheme

Figure 9 shows the variation in computational performance of 
the triangular matrix operation with the increasing minimum 
chunk size for the ‘static’, ‘dynamic’, and ‘guided’ scheduling 
schemes, respectively. It is assumed that fifty parameters to be 
eliminated are involved in the matrix computation of (10) to 
test the computational cost of these schemes. In this experi-
ment, six threads are employed to parallelize the triangular 
block. For ‘static’ scheduling type, the computational cost is 
nearly linearly reduced to the minimum value of 489 ms as the 
minimum chunk size is increased to 60 loop iterations. The 
‘dynamic’ scheduling type dynamically distributes chunks 
to the threads during the runtime so that its overhead may 
be higher than the ‘static’ scheduling type. The cost of the 
‘dynamic’ scheme accordingly rises above that of the ‘static’ 
scheme and then gradually approaches the same level of the 
‘static’ scheme with the increasing minimum chunk size. The 
‘guided’ scheduling type provides a suitable approach to solv-
ing the unbalance existing in iterations. The initial chunk size 
is large enough to reduce the overhead due to the distribution 
of iterations. Small chunks are assigned among the threads 
toward the end of the computation in order to improve the load 
balancing. The best computational performance is achieved 
by using the ‘guided’ scheduling scheme when the minimum 
chunk size defaults to one. Although the default ‘dynamic’ 
scheduling scheme completes the computation at a small 
cost, its overall computational performance is worse than 
the ‘guided’ scheme when the chunk size is within 60 loop 
iterations. The computational burden grows with the increas-
ing minimum chunk size for all the scheduling schemes if 
the minimum chunk size exceeds 60 loop iterations. The 

Fig. 7   Computational performance of movements of elements in a 
5000 × 8000 rectangular matrix with different tiling sizes in the inner-
most j-loop (top) and the innermost i-loop (bottom), respectively

Fig. 8   Computational performance of movements of elements in rec-
tangular matrices with different sizes including: a 15,000 × 15,000, b 
15,000 × 8000, c 8000 × 8000, and d 5000 × 8000, respectively

Fig. 9   Computational performance of a 4000 × 4000 triangular matrix 
operation using the static, dynamic, and guided scheduling schemes 
with different minimum chunk sizes, respectively



GPS Solutions (2022) 26:83	

1 3

Page 11 of 13  83

workload of the last chunk assigned to one thread will be 
heavier with the increase of the minimum chunk size, while 
other threads that have finished their works are waiting for the 
running thread in the final synchronization. To avoid this load 
imbalance during the end of the computation, a big minimum 
chunk size may be simply prohibited in the scheduling clause 
for the parallelized triangular block.

Computation efficiency

The multi-GNSS POD is taken as a typical GNSS network 
solution in order to demonstrate the improvements in the com-
putational efficiency using the parallel algorithm. The total 
number of GPS, Galileo, and BDS satellites is about eighty in 
this GNSS network solution. Tracking networks containing dif-
ferent numbers of stations are used for the parameter estimation. 
In the POD processing, the percentage of the parameter elimi-
nation in the whole time consumption is at least 85% when the 
parallel algorithm is not used. For comparison, the parameter 
eliminations with and without the parallel algorithm are utilized 
in the parameter estimation, respectively.

Figure 10 shows the computation time of one iteration of the 
least square parameter estimation by using the serial scheme 
and the parallel scheme, respectively. The computational time 
increases gently and near-linearly with the number of stations 
for the multi-thread parallel strategy, whereas it exhibits quad-
ratic growth for the serial strategy. In the network solution of 60 
ground stations, the computation cost can be halved by applying 
the parallel algorithm in comparison with the serial scheme. 
With the increased number of stations, the improvement of the 
parallel algorithm compared to the serial scheme becomes more 
significant. Even for 200 ground stations, the computation of 
one iteration of the least square parameter estimation can be 

completed within 25 min with the parallel strategy. The time 
consumed for this estimation is three times higher if the serial 
scheme is used. This gives a promising potential for enhancing 
the efficiency of huge GNSS network solutions.

Figure 11 shows the comparison of the parallel strategies 
with different numbers of threads. In this experiment, the six-
core hardware cannot allow more than one thread to run on 
each core since the processor is without hyper threading. Con-
sidering the limitation of architecture, the maximum speedup 
of parallel computing can be achieved only by allocating one 
thread per core and fully distributing subtasks among the six 
threads. For each case, about 100 ground stations and 80 satel-
lites are involved in the parameter estimation. With the increase 
in the number of threads, the parallel algorithm reduces the 
computation time rapidly and linearly at first. After more than 
three threads are employed, the consumed cost gently reduces 
with the increase of threads. The percentage of the runtime 
for the parallelizable part exceeds 95% of the whole parameter 
estimation before parallelization. This implies that the cur-
rent level of parallel speedup is far below the theoretical upper 
limit even if all the six threads are fully exploited (Amdahl 
1967). Nowadays, Intel has released a series of the Intel Many 
Integrated Core (MIC) architecture-based Xeon Phi coproces-
sors to give a low-cost solution to parallel computing. As the 
instruments become commonplace in the HPC field, a more 
significant improvement in the performance is expected for the 
presented parallel algorithm.

Conclusions and remarks

In this contribution, an effective multi-thread parallel algo-
rithm is developed based on OpenMP and introduced into 
eliminating inactive parameters to accelerate the sequential 

Fig. 10   Comparison of computation times of serial and parallel strat-
egies for one iteration of parameter estimation with different numbers 
of ground stations

Fig. 11   Comparison of computation times of one iteration of parame-
ter estimation for parallel strategies with different numbers of threads



	 GPS Solutions (2022) 26:83

1 3

83  Page 12 of 13

LSQ parameter estimation highly. Concerning the multi-
thread algorithm, we create two types of parallelized spaces, 
including the square or rectangular parallelized block and 
the triangular parallelized block, according to the feature 
of CPU architecture. The loop tiling technique is applied in 
the rectangular parallelized block to improve memory local-
ity and fully reuse cache. In the multi-thread schemes, it 
has been demonstrated that the maximum parallel speedup 
can be achieved when tiles are evenly distributed among 
the threads. For a triangular parallelized block, a ‘guided’ 
scheduling scheme with the enforced vectorization is used 
to distribute chunks across the threads appropriately. Results 
confirm that the ‘guided’ scheduling strategy significantly 
reduces the overhead existing in the ‘dynamic’ scheduling 
type and avoids the final load imbalance occurring toward 
the ‘static’ distribution. Using six threads in parallel for the 
developed parallel algorithm, the computational perfor-
mance in parameter estimation can be improved by a factor 
of about three compared to the traditional serial strategy. The 
performance of this architecture-oriented algorithm depends 
on the multi-core features of available processors. To ensure 
more efficient use of the high-performance instruments, Intel 
company recently has been developing various new series of 
multi-core Xeon Phi coprocessors with a well-documented 
set of new configurations and technical experiences. This 
also gives a low-cost solution for enhancing the efficiency of 
scientific computing. In the future, it is very likely to further 
improve the parallel computing algorithm by applying the 
MIC-architecture-based coprocessor.

Acknowledgements  The study has been supported by the GFZ. Many 
thanks to our colleagues Sylvia Magnussen and Thomas Nischan for 
their support in the computing environment.

Funding  Open Access funding enabled and organized by Projekt 
DEAL.

Data availability  The multi-GNSS experiment (MGEX) data are pub-
licly available online (https://​igs.​org/​mgex/​data-​produ​cts/).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Amdahl GM (1967) Validity of the single processor approach to 
achieving large scale computing capabilities. In: Proceedings of 
the spring joint computer conference, April 18–20, pp 483–485, 
https://​doi.​org/​10.​1145/​14654​82.​14655​60

Asanovic K, et al (2006) The landscape of parallel computing research: 
a view from berkeley. EECS Department, University of California, 
Berkeley, Technical Report No. UCB/EECS-2006-183, December 
18, 2006, https://​www2.​eecs.​berke​ley.​edu/​Pubs/​TechR​pts/​2006/​
EECS-​2006-​183.​pdf

Boomkamp H (2010) Global GPS reference frame solutions of unlim-
ited size. Adv Space Res 46(2):136–143. https://​doi.​org/​10.​1016/j.​
asr.​2010.​02.​015

Boomkamp H, König R (2004) Bigger, better, faster POD. In: Proceed-
ings of IGS Workshop and symposium, 1–6 March 2004, Berne, 
Switzerland, 10(3): 3, ftp://​192.​134.​134.6/​pub/​igs/​igscb/​resou​rce/​
pubs/​04_​rtber​ne/​cdrom/​Sessi​on9/9_​0_​Boomk​amp.​pdf

Chen G, Herring TA (1997) Effects of atmospheric azimuthal asym-
metry on the analysis of space geodetic data. J Geophys Res Solid 
Earth 102(B9):20489–20502. https://​doi.​org/​10.​1029/​97JB0​1739

Chen H, Jiang W, Ge M, Wickert J, Schuh H (2014) An enhanced 
strategy for GNSS data processing of massive networks. J Geod-
esy 88(9):857–867. https://​doi.​org/​10.​1007/​s00190-​014-​0727-7

Chen X, Ge M, Marques HA, Schuh H (2019) Evaluating the impact of 
higher-order ionospheric corrections on multi-GNSS ultra-rapid 
orbit determination. J Geodesy 93(9):1347–1365. https://​doi.​org/​
10.​1007/​s00190-​019-​01249-7

Costa JJ, Cortes T, Martorell X, Ayguadé E, Labarta J (2004) Run-
ning OpenMP applications efficiently on an everything-shared 
SDSM. In: The 18th international parallel and distributed 
processing symposium, 2004, pp. 35. https://​doi.​org/​10.​1109/​
IPDPS.​2004.​13029​50

Cui Y, Chen Z, Li L, Zhang Q, Luo S, Lu Z (2021) An efficient 
parallel computing strategy for the processing of large GNSS 
network datasets. GPS Solut 25(2):1–11. https://​doi.​org/​10.​
1007/​s10291-​020-​01069-9

Demmel J, Grigori L, Hoemmen M, Langou J (2012) Communica-
tion-optimal parallel and sequential QR and LU factorizations. 
SIAM J Sci Comput 34(1):A206–A239. https://​doi.​org/​10.​1137/​
08073​1992

El-Rewini H, Abd-El-Barr M (2005) Advanced computer architec-
ture and parallel processing. Wiley, Hoboken. https://​doi.​org/​
10.​1002/​04714​78385

Förste C et al (2008) The GeoForschungsZentrum Potsdam/Groupe 
de Recherche de Gèodésie Spatiale satellite-only and com-
bined gravity field models: EIGEN-GL04S1 and EIGEN-
GL04C. J Geodesy 82(6):331–346. https://​doi.​org/​10.​1007/​
s00190-​007-​0183-8

Ge M, Gendt G, Dick G, Zhang FP, Rothacher M (2006) A new data 
processing strategy for huge GNSS global networks. J Geodesy 
80:199–203. https://​doi.​org/​10.​1007/​s00190-​006-​0044-x

Gong X, Gu S, Lou Y, Zheng F, Ge M, Liu J (2018) An efficient solu-
tion of real-time data processing for multi-GNSS network. J Geod-
esy 92(7):797–809. https://​doi.​org/​10.​1007/​s00190-​017-​1095-x

Gottlieb A, Almasi G (1989) Highly parallel computing. Benjamin/
Cummings, Redwood City

Gunter BC, van de Geijn RA (2005) Parallel out-of-core computation 
and updating of the QR factorization. ACM Trans Math Softw 
31(1):60–78. https://​doi.​org/​10.​1145/​10555​31.​10555​34

Hermanns M (2002) Parallel programming in Fortran 95 using 
OpenMP. Technique Report, Universidad Politecnica De Madrid, 
https://​www.​openmp.​org/​wp-​conte​nt/​uploa​ds/​F95_​OpenM​Pv1_​
v2.​pdf

https://igs.org/mgex/data-products/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1465482.1465560
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
https://doi.org/10.1016/j.asr.2010.02.015
https://doi.org/10.1016/j.asr.2010.02.015
ftp://192.134.134.6/pub/igs/igscb/resource/pubs/04_rtberne/cdrom/Session9/9_0_Boomkamp.pdf
ftp://192.134.134.6/pub/igs/igscb/resource/pubs/04_rtberne/cdrom/Session9/9_0_Boomkamp.pdf
https://doi.org/10.1029/97JB01739
https://doi.org/10.1007/s00190-014-0727-7
https://doi.org/10.1007/s00190-019-01249-7
https://doi.org/10.1007/s00190-019-01249-7
https://doi.org/10.1109/IPDPS.2004.1302950
https://doi.org/10.1109/IPDPS.2004.1302950
https://doi.org/10.1007/s10291-020-01069-9
https://doi.org/10.1007/s10291-020-01069-9
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992
https://doi.org/10.1002/0471478385
https://doi.org/10.1002/0471478385
https://doi.org/10.1007/s00190-007-0183-8
https://doi.org/10.1007/s00190-007-0183-8
https://doi.org/10.1007/s00190-006-0044-x
https://doi.org/10.1007/s00190-017-1095-x
https://doi.org/10.1145/1055531.1055534
https://www.openmp.org/wp-content/uploads/F95_OpenMPv1_v2.pdf
https://www.openmp.org/wp-content/uploads/F95_OpenMPv1_v2.pdf


GPS Solutions (2022) 26:83	

1 3

Page 13 of 13  83

Johnston G, Riddell A, Hausler G (2017) The international GNSS ser-
vice. Springer handbook of global navigation satellite systems. 
Springer, Cham, pp 967–982. https://​doi.​org/​10.​1007/​978-3-​319-​
42928-1_​33

Kessler C, Keller J (2007). Models for parallel computing: Review 
and perspectives. Mitteilungen-Gesellschaft für Informatik eV, 
Parallel-Algorithmen und Rechnerstrukturen. 24, 13–29. https://​
www.​ida.​liu.​se/​~chrke​55/​papers/​model​survey.​pdf

Kuang K, Zhang S, Li J (2019) Real-time GPS satellite orbit and clock 
estimation based on OpenMP. Adv Space Res 63(8):2378–2386. 
https://​doi.​org/​10.​1016/j.​asr.​2019.​01.​009

Landskron D, Böhm J (2018) VMF3/GPT3: refined discrete and empir-
ical troposphere mapping functions. J Geodesy 92(4):349–360. 
https://​doi.​org/​10.​1007/​s00190-​017-​1066-2

Li L, Lu Z, Chen Z, Cui Y, Kuang Y, Wang F (2019) Parallel com-
putation of regional CORS network corrections based on iono-
spheric-free PPP. GPS Solut 23(3):1–12. https://​doi.​org/​10.​1007/​
s10291-​019-​0864-9

Liu J, Ge M (2003) PANDA software and its preliminary result of posi-
tioning and orbit determination. Wuhan Univ J Nat Sci 8(2):603. 
https://​doi.​org/​10.​1007/​BF028​99825.​pdf

Low T. M., R. A. van de Geijn (2004). An API for manipulating matri-
ces stored by blocks. FLAME Working Note, Computer Science 
Department, University of Texas at Austin, May 11, 2004, https://​
www.​cs.​utexas.​edu/​users/​flame/​pubs/​flash.​pdf

Mironov V, Alexeev Y, Keipert K, D'mello M, Moskovsky A, Gor-
don MS (2017) An efficient MPI/OpenMP parallelization of the 
Hartree-Fock method for the second generation of Intel® Xeon 
Phi™ processor. In: Proceedings of the international conference 
for high performance computing, networking, storage and analy-
sis, November 2017, (39), pp. 1–12, https://​doi.​org/​10.​1145/​31269​
08.​31269​56

Montenbruck O, Steigenberger P, Hugentobler U (2015) Enhanced 
solar radiation pressure modeling for Galileo satellites. J Geod-
esy 89(3):283–297. https://​doi.​org/​10.​1007/​s00190-​014-​0774-0

Montenbruck O et al (2017) The Multi-GNSS Experiment (MGEX) of 
the International GNSS Service (IGS)–achievements, prospects 
and challenges. Adv Space Res 59(7):1671–1697. https://​doi.​org/​
10.​1016/j.​asr.​2017.​01.​011

Petit G, Luzum B (2010) IERS Conventions 2010. In: No. 36 in IERS 
Technical Note, Verlag des Bundesamts für Kartographie und 
Geodäsie: Frankfurt am Main, Germany, http://​www.​iers.​org/​
TN36/

Schönemann E, Becker M, Springer T (2011) A new approach for 
GNSS analysis in a multi-GNSS and multi-signal environ-
ment. J Geod Sci 1(3):204–214. https://​doi.​org/​10.​2478/​
v10156-​010-​0023-2

Serpelloni E, Casula G, Galvani A, Anzidei M, Baldi P (2006) Data 
analysis of permanent GPS networks in Italy and surrounding 
region: application of a distributed processing approach. Ann 
Geophys. https://​doi.​org/​10.​4401/​ag-​4410

Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey 
S (2006) Reprocessing of a global GPS network. J Geophys Res 
Solid Earth. https://​doi.​org/​10.​1029/​2005J​B0037​47

Sun CC, Jan SS (2008) GNSS signal acquisition and tracking using a 
parallel approach. In: Proceedings of IEEE/ION PLANS 2008, 
Monterey, CA, May 2008, pp. 1332–1340, https://​doi.​org/​10.​
1109/​PLANS.​2008.​45701​21

Wolfe M (1989) More iteration space tiling. In: Proceedings of the 
1989 ACM/IEEE conference on supercomputing, Reno Nevada, 
USA, August, 1989, pp. 655–664. https://​doi.​org/​10.​1145/​76263.​
76337

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Xinghan Chen  is a research sci-
entist at the German Research 
Centre for Geosciences (GFZ), 
Germany. He obtained his Ph.D. 
degree in 2021 from Technische 
Universität Berlin, Germany. His 
current research focuses mainly 
on GNSS precise orbit determi-
nation and precise positioning.

Maorong Ge  received his Ph.D. 
at the Wuhan University, Wuhan, 
China. He is now a senior scien-
tist at GFZ, Potsdam, Germany. 
He has been in charge of the IGS 
Analysis Center at GFZ and is 
now leading the real-time soft-
ware group. His research inter-
ests are GNSS data processing 
and related algorithms and soft-
ware development.

Urs Hugentobler  received his 
Ph.D. from the University of 
Bern, Switzerland. Since 2006 
he has been the head of the 
Department of Space Geodesy 
and the Space Geodesy Research 
Unit at TUM. He is Secretary 
General of the Project Geodesy 
(DGK) of the Bavarian Academy 
of Science. His research interests 
are precision geodetic applica-
tions for global satellite naviga-
tion systems such as GPS and 
Galileo.

Harald Schuh  obtained his Ph.D. 
from the University of Bonn, 
Germany, and is currently the 
Director of Department 1 “Geod-
esy”, at GFZ. He is also the 
President of the International 
Association of Geodesy (IAG) 
since 2015. His research inter-
ests are space geodetic tech-
niques, particularly Very Long 
Baseline Interferometry and 
GNSS, and their applications.

https://doi.org/10.1007/978-3-319-42928-1_33
https://doi.org/10.1007/978-3-319-42928-1_33
https://www.ida.liu.se/~chrke55/papers/modelsurvey.pdf
https://www.ida.liu.se/~chrke55/papers/modelsurvey.pdf
https://doi.org/10.1016/j.asr.2019.01.009
https://doi.org/10.1007/s00190-017-1066-2
https://doi.org/10.1007/s10291-019-0864-9
https://doi.org/10.1007/s10291-019-0864-9
https://doi.org/10.1007/BF02899825.pdf
https://www.cs.utexas.edu/users/flame/pubs/flash.pdf
https://www.cs.utexas.edu/users/flame/pubs/flash.pdf
https://doi.org/10.1145/3126908.3126956
https://doi.org/10.1145/3126908.3126956
https://doi.org/10.1007/s00190-014-0774-0
https://doi.org/10.1016/j.asr.2017.01.011
https://doi.org/10.1016/j.asr.2017.01.011
http://www.iers.org/TN36/
http://www.iers.org/TN36/
https://doi.org/10.2478/v10156-010-0023-2
https://doi.org/10.2478/v10156-010-0023-2
https://doi.org/10.4401/ag-4410
https://doi.org/10.1029/2005JB003747
https://doi.org/10.1109/PLANS.2008.4570121
https://doi.org/10.1109/PLANS.2008.4570121
https://doi.org/10.1145/76263.76337
https://doi.org/10.1145/76263.76337

	A new parallel algorithm for improving the computational efficiency of multi-GNSS precise orbit determination
	Abstract
	Introduction
	Parallel processing algorithm for sequential LSQ
	Sequential LSQ estimation with parameter elimination
	OpenMP-based parallelization
	OpenMP-based parallel optimization

	Hardware and software
	Validation
	Cache memory traffic optimization
	Scheduling scheme
	Computation efficiency

	Conclusions and remarks
	Acknowledgements 
	References




