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Abstract
We present a pure data-driven method to estimate vehicle dynamics from the measurements of sideslip and yaw rate in the 
use of GPS and inertial navigation system. The GPS and INS configuration provides vehicle position, velocity vector, vehicle 
orientation, and yaw rate observations. A new dynamic mode decomposition with control (DMDc) method denoises the 
state observations by adopting the total least-squares algorithm. The total least-squares DMD with control (tlsDMDc) helps 
discover the underlying dynamics with the time-dependent observations of states and external control. The experiments of 
a simulated linear dynamic model with synthetic Gaussian noise illustrate that the solutions of tlsDMDc are more accurate 
than the standard DMDc to characterize underlying dynamics with imperfect measurements. We additionally investigate 
how the algorithm performs on vehicle motion deduction and sensor bias correction. It has been shown that the tlsDMDc-
based state estimator with the couple of GPS and inertial sensor measurements provides accurate and robust observation in 
the presence of model error and measurement noise.
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Introduction

The automation of agricultural machinery is considered to 
be one of the most efficient ways of improving productiv-
ity and quality of farming. Research and development are 
focused on developing full autonomy, with the ultimate goal 
of designing unmanned vehicles or field robots for farming 
work (Han et al. 2018). To keep an accurate and stable path 
tracking performance, significant research progress has been 
made in vehicle control techniques, including navigation 
sensors, vehicle models, and steering controllers.

There is abundant work on designing path tracking con-
trollers, such as the geometric approach, the kinematic con-
trol laws, the optimal control, robust control and model pre-
dictive control (MPC), and so on (Backman et al. 2012; Li 
et al. 2016). Most controller designs often begin with vehicle 

modeling. The pure pursuit and its extension velocity inde-
pendent controllers with a simple kinematic model, under 
nonholonomic constraints, control the motion of a vehicle 
reasonably well at low speed (< 4.5 m/s) (Wang and Nogu-
chi 2016; Han et al. 2018). Sliding mode control (SMC) 
approaches with the kinematic models have been studied 
to overcome the lateral and/or longitudinal slippery (Eaton 
et al. 2009; Tu et al. 2019). With a two-dimensional dynam-
ics model of a farm tractor, the linear quadratic regulator 
(LQR) controller provides 4 cm accuracy lateral control to 
a tractor at speeds up to 8 m/s (Bevly et al. 2002).

The identification of a vehicle model that accurately and 
efficiently characterize the vehicle dynamics, also known 
as system identification, is crucial to controller design. The 
vehicle model requires accurate knowledge of motion state 
parameters, such as velocity, heading, steering angle from 
the global positioning system (GPS), an inertial navigation 
system (INS), or both. However, some parameters, such as 
vehicle mass and center of gravity (COG), are challenging to 
measure, especially during the loading or unloading. Also, 
accurate vehicle state is not readily obtained from simple 
kinematic or dynamic models based on the Newtonian or 
Lagrangian. Machine learning is complementary, as it uti-
lizes the measurements of the system to generate models, 
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which can be improved with more data. These models ide-
ally generalize to situations beyond the observed in the train-
ing dataset (Kaiser et al. 2018). There are many techniques 
to obtain data-driven models, including the eigensystem 
realization algorithm (ERA) and the observer–Kalman filter 
identification (OKID) for low dimension and linear system, 
and artificial neural networks (ANNs) for the complex and 
nonlinear system (Juang et al. 1993; Ma et al. 2011; Wang 
et al. 2016). Well-trained neuro-controller yields impres-
sive results in vehicle control (Ishii et al. 1994). Regression 
methods are simple and easy to implement by character-
izing the yaw dynamics from steer angle to yaw rate for the 
tractor at different velocities (Bevly et al. 2002; Wang and 
Noguchi 2018). However, many leading machine learning 
methods are limited in real-time modeling nonlinear and 
high-dimensional systems with disturbance. The dynamic 
mode decomposition (DMD) is a promising data-driven 
and equation-free method for identifying a linear or nonlin-
ear dynamical system by time-dependent observations (Tu 
et al. 2014; Brunton and Kutz 2019). The DMD computes 
a temporal dynamics model using an Arnoldi-like method 
that estimates the infinite-dimensional Koopman operator 
(Dicle et al. 2016). It has been successfully applied to fluid 
dynamics, video processing, and robotics (Berger et al. 
2015; Dicle et al. 2016). Because the Arnoldi algorithm is 
sensitive to measurement noise, several methods, such as 
noise-corrected DMD (ncDMD), total least-squares DMD 
(tlsDMD/TDMD), and extended-Kalman-filter-based DMD 
(EKFDMD), have been applied to promote DMD’s noise 
resistibility (Dicle et al. 2016; Dawson et al. 2016; Non-
omura et al. 2019). DMD was extended as DMD with con-
trol (DMDc) to include actuation inputs and to disambiguate 
the effect of control and internal dynamics (Proctor et al. 
2016). More recently, DMDc has been applied to heavily 
subsampled measurements of a system (Bai et al. 2020). 
However, few methods of noise reduction have been pro-
posed for DMDc dealing with noisy measurements.

In this work, the DMD with control approach is applied to 
characterize the dynamics of a farm tractor. There has been 
other research on modeling off-road vehicles including the 
agricultural tractor, but this is the first effort in the context 
of DMDc. The configuration of measurement sensors is the 
integration of the real-time kinematic (RTK) carrier phase 
differential GPS, also termed RTK-GPS, and the inertial 
navigation system (INS), which is a common technology 
in an automatic guidance system. First, we present a tradi-
tional dynamic model of the tractor and the standard DMDc 
algorithm. Second, the total least-squares DMDc (tlsDMDc) 
has been proposed to improve the estimation accuracy of 
dynamics. The improvement of tlsDMDc is demonstrated in 
a dynamic corrupted by synthetic Gaussian noise. We addi-
tionally investigate how the proposed tlsDMDc performs 
on vehicle sates estimation and sensor noise correction. The 

identified vehicle model integrated with GPS measurements 
through sensor fusion methods, such as Kalman filter (FK) 
and extended Kalman filter (EKF) (Chindamo et al. 2018; 
Jin et al. 2019), can provide higher states estimate and also 
correct accumulative errors of INS in the long run.

A linear vehicle dynamic model

The tractor for analyzation is simplified as a bicycle model 
(also called the single-track model (Jin et al. 2019)) depicted 
in Fig. 1. The vehicle model used to describe lateral dynam-
ics is the two-dimensional bicycle model in Kise et al. (2002)

where � is the slip angle of the vehicle body, � is the yaw 
rate, and the system input u is the front wheel steering angle 
� . kf  , and kr are called the cornering stiffness of the front and 
rear tires, respectively. m is the mass of the vehicle body, v is 
the vehicle speed in the longitudinal direction. I is the vehi-
cle moment of the inertia around the z-axis. lf  is the distance 
of the front wheel from the COG of the vehicle, and lr is the 
distance of the rear wheel from the COG of the vehicle.
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Ẋ =

�
𝛽̇

𝜔̇

�
= Ac

�
𝛽

𝜔

�
+ Bcu

Ac =

⎡⎢⎢⎣

−2
�
kf + kr

��
mv

�
−2

�
kf lf − krlr

�
− mv2

��
mv2

−2
�
kf lf − krlr

��
I

−2
�
kf l

2
f
+ krl

2
r

��
Iv

⎤⎥⎥⎦2×2
Bc =

�
2kf∕mv

2kf lf∕I

�

2×1

Fig. 1   Dynamic model of a vehicle at low speed
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Parameters related to the position of COG are not con-
venient to measure directly as the vehicle size increasing or 
while loading or unloading. In addition, the lateral tire force 
is assumed to be proportional to the slip angle. However, if the 
tires–terrain interactions in the ground vehicles are involved. 
The assumption will not be valid at large slip angles. In the 
case of large slip angles, the lateral tire force depends on the 
tire load, slip angle, tire-road friction coefficient, and so on 
(Rajesh Rajamani 2006).

Total least‑squares dynamic mode 
decomposition with control

Identifying the dynamic model can be formulated in the 
discrete-time domain since the control input and state meas-
urement are often implemented at discrete instances in time. 
Assuming the vehicle state at time t + 1 depends only on the 
state and actions from the previous state at time t given by

The system is assumed to be fully observed, that is, both 
of the two state-variables are measurable. This section pre-
sents the mathematical description of the total least-squares 
dynamic mode decomposition with control. The DMDc 
method helps disambiguate the effect of control from inter-
nal dynamics and get the numerical solutions of system 
matrix A and actuation matrix B , instead of computing each 
variable in (1), such as cornering stiffness, inertia moment, 
and so on.

Dynamic mode decomposition with control

For the standard DMDc algorithm, the first step is to collect 
a number of pairs of the state and the system inputs as they 
evolve in time. The discrete-time system with the actuation 
input can be written in matrix form as

where xj ∈ ℝ
n, uj ∈ ℝ

l,A ∈ ℝ
n×n,B ∈ ℝ

n×l , n is 2, and l is 1 
for a two-dimensional vehicle model in (2). The time-series 
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set of vehicle state observation is referred to as a snapshot. 
The matrix X′ is one step forward-shifted from the snap-
shot matrix X . The total number is m . Data matrices include 
the snapshots of vehicle state measurements and control 
sequence, evenly spaced in the time domain. The time step 
should be sufficiently small to resolve the high frequencies 
in the dynamics. In most cases of the vehicle system, neither 
A nor B is unknown; the dynamics in (3) is recast as

whereG ∈ ℝ
n×(n+l) , and Ω ∈ ℝ

(n+l)×(m−1) contains both the 
state and control snapshots. For the case where the number 
of snapshots is greater than the size of each snapshot, the 
solution of matrix G can be obtained by using the least-
squares regression to the overdetermined system. The sin-
gular value decomposition (SVD) is performed on the aug-
mented data matrix giving Ω = UΣV∗ . Then, the estimation 
of matrices A and B can be given by the following

where Ω† is called the right Moore–Penrose generalized 
inverse or the pseudoinverse of matrix Ω . U1 is a 2 × 2 matrix 
from the beginning two rows of matrix U ∈ ℝ

n×(n+l) , and U2 
is the third row of matrix U . In this research, the number 
of snapshots is much larger than observable states, that is, 
(m − 1) > (n + l) . Therefore, only the first n + l columns of V  
are computed and Σ is (n + l)-by-(n + l) . The computational 
complexity is O

(
(n + l)2(m − 1)

)
 . For large-dimensional 

systems where n ≫ 1 , it has significant complexity because 
X′ will be a very big matrix. In this case, additional SVD is 
required to find the reduced-order subspace of the matrix X′ 
in the original DMDc algorithm (Proctor et al. 2016). This 
research focuses on the approximation of A and B , which 
have maximum two columns.

Correcting the measurement noise 
and bias of standard DMDc using the total 
least‑squares method

The above discussion on the vehicle dynamics identification 
using standard DMDc focuses on the ideal case with precise 
snapshots. For the over-constrained cases, in which the number 
of snapshot matrix is greater than that of observables, Eq. (4) 
gives the minimum Frobenius solution
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where Ex′ accounts for the noise estimation in the shifted 
snapshot data and || ⋅ ||F denotes the Frobenius norm. 
Indeed, both the snapshot data ( X and X′ ) and the control 
input U are measured with error. In such a case, adopting 
the classic total least square (TLS) algorithms (Markovsky 
and Van Huffel 2007), the approximation of (4) can be made 
equality by accounting for the noise in X , X′ , and U

where EΩ is an augmented error matrix of X and U . Note that 
the TLS is a simplification of the general approach called 
mixed adjustment model in geodesy (Leick et al. 2015). It 
is apparent that the DMDc implicitly neglects the error in 
Ω and introduces a bias dependent on EΩ , but not EX′ . In 
contrast, the bias is removed by incorporating the errors in 
both X′ and Ω as in (7). To solve this minimization problem, 
the equation can be rearranged as

where 
[
G̃ −I

]
∈ ℝ

n×(2n+l) and 
[
Ω + EΩ

x� + Ex�

]
∈ ℝ

(2n+l)×(m−1). For 

the solution G̃ to be unique, the matrix 
[
Ω + EΩ

X� + Ex�

]
 must have 

exactly n + l independent rows. Since this matrix has 2n + l 
rows in all, it must be rank deficient by n. Therefore, the 
optimal solution of (7) can be restated as the goal of estimat-

ing the optimal error matrix 
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matrices 
[
Ω
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]
 with full-rank 2n + l to a “noise-free” matrix [
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X� + Ex�

]
 with rank n + l. By the Eckart–Young Theorem, 

the best rank-(n + l) approximation to 
[
Ω

X�

]
 can be given by 

dropping the last n smallest singular value

The computational complexity of the truncated SVD 
is O

(
(n + l)2(m − 1)

)
 , which is the same as the original 

DMDc in (5). Combing (8) and (9), the total least-squares 
estimation of G̃ is given by

where U11 ∈ ℝ
(n+l)×(n+l) and U21 ∈ ℝ

n×(n+l) . If the U11 is 
invertible, the matrix A of a two-dimensional vehicle model 
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is the beginning two rows of the matrix G̃ and the matrix B 
is the third row.

Experiments and discussion

The following section describes a series of examples for 
the evaluation of the proposed tlsDMDc method. The 
input–output dynamics of the tractor are expected to be 
identified in real time since the vehicle states and dynam-
ics are time variant. Experiments start from simulated 
vehicle dynamics and additional noise with known char-
acteristics. We analyze how the number of snapshots, the 
strength of the input signal, and the noise level affect the 
performance of both tlsDMDc and the standard DMDc. 
Other experiments are to identify the dynamics of a farm-
ing tractor using the tlsDMDc and show its potential in 
applying vehicle navigation.

Vehicle dynamics simulation

The parameters for simulating the dynamics of a farming 
tractor are listed in Table 1. The definitions of the listed 
variables are illustrated in Fig. 1. The values indicating 
the characteristics of the vehicle are observed by other 
researchers (Bevly et al. 2002).

According to (1), the dynamic matrix A has discrete 
time eigenvalues � = e(−0.39±0.13i)Δt , with the time step 
Δt = 0.1 s. Note that the system is slightly damped. We 
stimulate the system with the input U = 3 × sin t , with 
t ∈ [0, 9.9] . A total of 100 snapshots of vehicle states are 
collected from the initial condition X0 =

[
0 0

]T  . The 
identified eigenvalues of the matrix A from both standard 
DMDc and the tlsDMDc are shown in Fig. 2, for 1000 
trials corrupted with 40 dB signal to noise ratio (SNR) 
white Gaussian noise. Note that only the positive complex 
eigenvalues with the 95% confidence ellipse are shown 
here. Results in Fig. 2 show that the distribution of esti-
mated eigenvalues from tlsDMDc is more concentrated 

Table 1   Approximate 
parameters for the vehicle 
model

Variable Value

lf 1.95 m
lr 1.0 m
m 9500 kg
I 18,500 kg-m2

kf 1200 N/Deg
kr 2500 N/Deg
v 2 m/s
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on the true eigenvalue, which means that tlsDMDc works 
better than DMDc in correcting the bias of the estimated 
eigenvalues.

The results for the noise-corrupted measurements when 
adjusting the SNR are discussed. The input is U = 3 × sin t . 
A total of 70 snapshots are collected from the initial condi-
tion X0 =

[
0 0

]T . As shown at the top panel of Fig. 3, rather 
than checking the error in eigenvalues, we instead consider 
the Frobenius norm of the difference between the true and 
the identified matrices, ||A − Ā||F and ||B − B̄||F (Dawson 
et al. 2016). For large values of SNR, both algorithms can 
identify vehicle dynamics precisely. The accuracy of the 
standard DMDc algorithm degrades with the increase in 
noise level. The mean and 95% confidence ellipse of 1000 
trails, instead of individual data points of identified eigen-
values of matrix A , are given for each dataset at the bottom 
panel in Fig. 3. For 60 dB SNR, DMDc and tlsDMDc give 
little difference in the mean and area of 95% confidence 
ellipse. As the noise level increases, the mean of eigenvalues 
identified from DMDc deviates from the true value. On the 
contrary, the tlsDMDc gives bias-free eigenvalues estimates, 
represented by the center of 95% confidence ellipse coincid-
ing with the true eigenvalue.

The effects of the number of snapshots and the ampli-
tude of control input are investigated. The control input 
is U = 5 × sin t . These errors are evaluated by 1000 trails 
with different random seeds. In Figs. 4 and 5, the errors 
in the estimated matrices A and B , and estimated eigen-
values of matrix A for DMDc and tlsDMDc are calculated 
by changing the number of snapshots and input ampli-
tude, respectively. The top panel in Fig. 4 shows the error 
decays, while the number of snapshots increases. The 
error of estimated matrices A and B decays faster with 
small numbers of snapshots. The reason is that the system 
has not yet completed a full period of oscillation. As the 

number of snapshots increases, internal dynamics are fully 
observed and so are the error of the estimate decays. How-
ever, the error saturation for the DMDc can be observed 
clearly in the bottom panel of Fig. 4. On the contrary, the 
tlsDMDc can prevent the error saturation present in DMDc 
for all trails. The bottom panel of Fig. 5 exhibits the same 
saturation phenomena as the increase in input signal mag-
nitude. Further to this, the top panel of Fig. 5 shows the 
error decays with the increase in amplitude of the input 
signal. For the small input signal, the system is not well 
excited, so the state is overwhelmed by the noise when 
the U = 2 × sin t as shown in the bottom panel of Fig. 5. 
In both Fig. 4 and Fig. 5, the distribution of estimated 
eigenvalues from tlsDMDc is more concentrated to the 
mean of the identified values that the results from stand-
ard DMDc. It indicates that the tlsDMDc is more likely to 

Fig. 2   Calculated eigenvalues of matrix A from 1000 trials. Only the 
positive complex eigenvalues with the 95% confidence ellipse are 
shown
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attain a closer approximation to the true eigenvalue than 
the DMDc method on the same dataset.

The above discussions on the noise-induced linear 
dynamic system reveal that both the DMDc and tlsDMDc 
can estimate the vehicle dynamics, especially in cases for 
which the number of snapshots is large enough and sensor 
noise is minimal. Also, tlsDMDc yields an unbiased charac-
terization of the vehicle system in the context of noisy meas-
urements, whereas the error saturates when DMDc is used.

To further assess the performance and capabilities of pre-
dictive modeling, tlsDMDc is compared with ANN, which 
is a sophisticated data-driven state estimation method (Jin 
et al. 2019). Three typical NN architectures are selected in 
this research, that is, the multilayer perceptron (MLP), long 
short-term memory (LSTM), and nonlinear autoregressive 
neural network with external input (NARXNET). Boussaada 
et al. (2018) explain the architecture of the NARXNET in 
detail and apply the model in solving prediction issues. The 
trained inputs are vehicle states xt and control signal ut . Out-
puts are the estimates of vehicle states at next time step, xt+1 . 

The MLP has 2 hidden layers of 5 neurons at each layer. The 
hidden layers use the log-sigmoid transfer function, while 
the output layer uses the linear transfer function. The LSTM 
model has 27 hidden units. The NARXNET has 10 hidden 
units, and its input and feedback delays are set as 2. The 
input is U = 5 × sin t . The number of collected snapshots 
ranges from 30 to 100 corrupted with 30 dB SNR Gaussian 
noise. The accuracy of estimated vehicle states is measured 
by mean square error (MSE). The MSE listed in Table 2 is 
scaled by 104 for comparison. NN models cannot perform as 
stable as tlsDMDc with limited training data. The reduction 
of MSE following the increasing snapshots reveals that a 
comprehensive training dataset is necessary for the NNs to 
obtain a good estimation. Kaiser et al. (2018) have proven 
that the training time required by a DMDc model is two 
orders of magnitude less time than that of NN models. But 
the training time of a DMDc model increases slightly with 
the amount of training data. This means that tlsDMDc is 
more suitable for identifying a vehicle’s internal dynamics 
with limited state measurement.
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Application of tlsDMDc for real‑time vehicle 
state estimation

In this section, tlsDMDc is applied to estimate the dynam-
ics of a real farming tractor based on the measurements 
from an RTK-GPS and an inertial measurement unit 
(IMU). The RTK–GPS receiver (Trimble SPS855, Trimble 
Navigation, California, USA) is used to measure vehicle 
position to centimeter accuracy. The IMU (VN100, Vec-
torNav Technologies, USA) is used to measure the head-
ing angle ( � ) and yaw rate ( ω ) of the tractor. The heading 
accuracy of the IMU is 2.0 deg. root mean square (RMS) 
with 5–7 deg/hr. bias instability. Integrating the vehicle 
model and GPS/INS, we intend to improve the heading 
measurement accuracy and limit the drift error of the head-
ing angle. The following experiments are conducted at a 
farm at Hokkaido University using a wheel-type tractor 
with a rotary. The performance of tlsDMDc is evaluated 
by the error of reconstructed and predicted states. Another 
experiment is to further explore its potential usage in navi-
gation by integrating the identified vehicle model and sen-
sor measurement.

Vehicle states reconstruction and prediction 
using an identified vehicle model 
from tlsDMDC

Figure 6 shows the time histories of steering angle and vehi-
cle speed during the experiment. The limitation of the steer-
ing angle is ±30 deg. (negative sign implies turning left). 
Anderson and Bevly (2010) estimate the vehicle sideslip β 
from the difference between the speed direction from GPS 
( �GPS ) and the heading of the vehicle from IMU ( �IMU)

Calculated slip angles and measured yaw rates from 
the IMU are shown in Fig. 7. The time interval of each 
measurement is Δt = 0.2 s. The number of snapshots is 80, 
that is, we collect the previous 16 s data, i.e., the duration 
of 31–47 s before the red vertical line in Fig. 7, for iden-
tifying the vehicle dynamics. Using the identified vehicle 

(11)β = �GPS − �IMU

model, we reconstruct the vehicle states and predict the 
states from 47 s to the end of the experiment, as shown 
in Fig. 7. The results from an MLP with 2 hidden layers 
of 5 neurons, an LSTM network with 27 hidden neurons, 
and a NARXNET with 10 hidden neurons are also figured 
as comparisons. All the methods can reconstruct vehicle 
states. Among them, NARXNET, LSTM, DMDc, and tls-
DMDc fit the measurements of yaw rate and slip angle 
well. For all the methods, except for DMDc, the slip angle 
error becomes significant at the prediction period. One 
reason is that the magnitude of the slip angle is so small as 
to be easily overwhelmed by the measurement noise. The 
other reason is that the vehicle dynamics in (1) is related 
to the vehicle speed. However, speed and vehicle dynam-
ics are simply assumed to be constant during prediction. 
The accuracy of estimated vehicle states listed in Table 3 
is all measured by MSE for comparison. Using the limited 
training data, which is 80 in this experiment, NN models 
cannot get stable state estimation like tlsDMDc or DMDc. 
Note that the performance of the NN is highly affected by 
the initial network weights.

Precise vehicle state estimations can be used to update 
position and orientation estimates between GPS measure-
ment updates for vehicle navigation. Especially during the 
short GPS outages periods, the dead reckoning method is 
widely used to deduce the vehicle position and heading 
following (Schubert et al. 2011)

Table 2   Comparison of NNs 
and tlsDMDc with different 
training datasets

Snapshot 30 40 50 60 70 80 90 100

MLP 11.93 3.53 3.95 4.91 4.38 3.10 4.49 3.84
LSTM 2.55 1.73 1.97 3.62 4.17 3.89 2.03 2.34
NARXNET 17.30 9.90 3.47 10.82 5.71 4.15 4.27 3.49
DMDc 0.59 0.03 0.90 0.08 0.03 0.02 0.02 0.03
tlsDMDc 0.26 0.01 0.03 0.03 0.004 0.008 0.007 0.003

Fig. 6   Time series steering angle and vehicle speed
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when the instant yaw rate ω = 0 , Eq. (12) can be simplified 
as

(12)

⎡⎢⎢⎣

x

y

�

⎤⎥⎥⎦
=

⎡⎢⎢⎣

x0 +
∑ v

ω
[cos (� + �) − cos (� + � + ωΔt)]

y0 +
∑ v

ω
[sin (� + � + ωΔt) − sin (� + �)]

�0 +
∑

ωΔt

⎤⎥⎥⎦

The estimated trajectory and vehicle heading using the 
dead reckoning method are depicted in Fig. 8. Ground 
truth of the vehicle position and orientation is measured by 
an RTK-GPS. The estimated vehicle trajectories and head-
ing angles deviate from the ground truth because of accu-
mulated errors derived from the dead reckoning method. 
The lateral deviation of each method is summarized in 
Table 4. The positioning accuracy is consistent with the 
accuracy of estimated states in Fig. 7. The tlsDMDc gets 
better position estimation than the DMDc because its yaw 
rate estimate is more accurate than the DMDc’s. Moreo-
ver, position accuracy is highly affected by the yaw rate as 
shown in (12). Therefore, we can partially conclude that 

(13)
⎡
⎢⎢⎣

x

y

�

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

x0 +
∑

v sin (� + �)Δt

y0 +
∑

v cos (� + �)Δt

�0 +
∑

ωΔt

⎤
⎥⎥⎦

Fig. 7   Time histories of measured and estimated vehicle states, slip 
angles in the top panel, and yaw rates in the bottom panel. The meas-
urements before the red vertical line are for training, which means the 
number of snapshots for system identification is 80

Table 3   Error analysis of state estimation using different methods

Reconstruction Prediction

tlsDMDc 0.49 3.17
MLP 2.03 86.56
LSTM 0.52 204.83
NARXNET 0.05 92.14
DMDc 0.39 2.66
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in the top panel and orientation in the bottom panel
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DMD-based system identification methods, DMDc and 
tlsDMDc, surpass NN models in this situation, which is 
with low-speed movement and limited system observation.

Integration of GPS/INS and vehicle model 
with sensor fusion methods

This section presents the integration of the GPS and INS 
measurements with state estimate from the tlsDMDc-based 
vehicle model to eliminate accumulative errors in vehicle 
position and orientation deduction. The scheme of the sensor 
fusion method is shown in Fig. 9. The system input includes 
the steering angle and speed. Measurements include vehicle 
speed, yaw angle and yaw rate from the INS, and position 
and yaw angle from GPS. Because of the low update rate 
and high measurement noise, the yaw angle from GPS is 
only used for calculating the slip angle. KF and EKF are 

two simple and typical sensor fusion methods that integrate 
the vehicle model with GPS and INS measurement. A KF 
built on the identified vehicle model can process significant 
estimation errors. The standard KF combines measurements 
and estimations of parameters with Bayesian inference and 
iterates over the two probabilistic process steps, which are 
the prior prediction step and the posterior update step (Thrun 
et al. 2006; Anderson and Bevly 2010). Further, to elimi-
nate the cumulative errors in the standard dead reckoning 
method, an EKF is adopted to improve the position and ori-
entation estimation based on the position measurement from 
GPS and heading angle from IMU. In EKF, we approximate 
the nonlinear dead reckoning transformation function (13) 
by a Jacobian matrix J

The measurement update step in EKF is the same as the 
KF. The posterior update step gives a better estimation of 
the position and orientation, Ẑk.

When GPS and INS are available, we can identify and 
update the vehicle model based on the real-time measure-
ments. Note that the vehicle speed is not constant and the 
vehicle dynamics are time variant. Therefore, the identified 
model update rate should be adjusted to get a better vehi-
cle state estimation. The number of snapshots is set as 30 
for real-time system identification, and the vehicle model 
updates every sampling time interval. The overall proce-
dure is termed “EKF + tlsDMDc” in this research. When the 
GPS or INS measurements are not available, the observation 
matrices of EKF and KF are then set to zero, and integration 
of the inertial sensors and the experimental vehicle model is 
performed to update the state estimation.

The results of Fig. 8 are repeated with the integration of 
GPS and INS measurement and vehicle model with the sen-
sor fusion method. The MSE of state estimation in Table 5 
is as small as 0.05. We use the filtered states and estimate 
vehicle position using (12) and (13). The average position-
ing error is 0.35 m, which is caused by accumulated state 
estimation and speed measurement errors.

The field experiment is conducted once again using 
the same platform and sensors as the previous section to 

(14)Jk =

⎡
⎢⎢⎣

1 0 v cos
�
�k + �k

�
Δt

0 1 −v sin
�
�k + �k

�
Δt

0 0 1

⎤
⎥⎥⎦

Table 4   Average positioning error of each method at reconstruction 
and prediction period

Reconstruction Prediction

(m) (m)
tlsDMDc 0.18 1.78
MLP 0.83 13.25
LSTM 0.47 18.38
NARXNET 0.12 15.12
DMDc 0.36 2.48

Fig. 9   Implement of tlsDMDc for online vehicle state estimate

Table 5   Accuracy of positioning and state estimation with and with-
out sensor fusion

tlsDMDc EKF + tlsDMDc

States estimation error 2.12 0.05
Positioning error (m) 1.16 0.35
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evaluate the accuracy improvement of applying senor fusion 
methods to the tlsDMDc-based vehicle model. The steering 
angle and vehicle speed are shown in Fig. 10. Note that the 
vehicle speed is not constant. In the top panel of Fig. 11, 
the heading angles depicted in the blue and orange lines are 
measurements from GPS and IMU, respectively. The update 
rate of GPS is not high enough to measure the yaw angle 

during 90˚ turns. Also, the estimated position deriving from 
the IMU measurement deviates from the reference trajec-
tory shown in the bottom panel of Fig. 11. On the contrary, 
the EKF + tlsDMDc eliminates IMU measurement bias and 
gives a smooth heading estimate during turning, such as the 
dashed line in time interval for 144–150 s and from 206 to 
209 s in the top panel of Fig. 11. In addition, accumulative 
positioning errors are neglectable during the 230 s term of 
experiment with continuous curves. Accurate positioning 
results in the bottom panel of Fig. 11 proves that integrating 
the tlsDMDc with GPS and INS measurement can correct 
the measurement noise and improve the positioning accu-
racy, even during the turning or continuous curve path. The 
previous two experiments show the effectiveness of the sen-
sor fusion method in correcting the yaw measurement drift 
and vehicle state estimation.

Conclusions

In this work, the DMDc approach is applied to character-
ize the input–output model of an agricultural tractor and 
to estimate vehicle states of slip angle and yaw rate in real 
time. The DMDc requires less amount of data for the train-
ing, compared with other machine learning methods, such as 
neural networks. It is essential to perform system identifica-
tion online with noisy or imprecise snapshot measurements, 
which is often important for state prediction and control 
purposes.

We analyze that DMDc is biased to sensor noise and pre-
sent a total least-squares-inspired algorithm to remove the 
bias of DMDc. The solution of the total least-squares method 
minimizes errors in both the dependent and independent var-
iables. A simulated linear vehicle dynamic system with addi-
tional noise demonstrates how the bias of DMDc depends 
on the size of snapshots, strength of the input signal, and the 
noise level. Also, future system behavior forecasts based on 
the identified model from tlsDMDc are more representative 
than those based on standard DMDc models. Experiments 
on the noise-induced linear dynamic system reveal that both 
the DMDc and tlsDMDc can estimate the vehicle dynamics, 
especially in situations for which the number of snapshots 
is large enough and sensor noise is minimal. In addition, 
tlsDMDc yields an unbiased characterization of the vehicle 
system in the context of noisy measurements, whereas the 
error saturates when using DMDc.

While the demonstration of tlsDMDc on a linear system 
showcases the advantages of the unbiased formulation over 
standard DMDc, the tlsDMDc shows its potential in the 
application of vehicle navigation. Moreover, it outperforms 
NNs, such as MLP, LSTM, and NARXNET, in prediction 
accuracy and robustness at the limited measurement con-
ditions. It has been proved that the tlsDMDc-based state 

Fig. 10   Time series steering angle and speed of the tractor
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estimator with GPS and INS measurements provides accu-
rate observation in the presence of model error and noise.

The standard DMDc and proposed tlsDMDc both become 
ill-conditioned in the case of identifying dynamics with 
feedback control. If the actuation corresponds to feedback 
states, it is impossible to decouple the effect of actuation 
from internal dynamics. Therefore, the identification of 
actuation as a function of the system state will be explored 
in further research. Further exploration also includes enforc-
ing known physics in the tlsDMDc method to improve the 
robustness of the model. Based on the estimate of vehicle 
states as well as the vehicle dynamics, diagnosing unpre-
dicted disturbance and forecasting harmful conditions of a 
vehicle are also meaningful applications related to vehicle 
safety.
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