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Abstract
A new integer-estimable GLONASS FDMA model is studied and analysed. The model is generally applicable, and it shows 
a close resemblance with the well-known CDMA models. The analyses provide insights into the performance characteristics 
of the model and concern a variety of different ambiguity-resolution critical applications. This will be done for geometry-
free, geometry-fixed and several geometry-based formulations. Next to the analyses of the model’s instantaneous ambiguity-
resolved positioning and attitude determination capabilities, we show the ease with which the model can be combined with 
existing CDMA models. We thereby present the instantaneous ambiguity-resolution performances of integrated L1 GPS + 
GLONASS, both for high-grade geodetic and mass-market receivers. We also consider the potential of the single-frequency 
combined model for mixed-receiver processing, particularly for the case the between-receiver GLONASS pseudorange data 
are biased. In all cases, the speed of successful ambiguity resolution is studied as well as the precision with which positioning 
is determined. Software routines for constructing the model are also provided.

Keywords  GLONASS · Global navigation satellite system (GNSS) · Integer-estimability · Integer ambiguity resolution · 
Instantaneous positioning · Attitude determination · Ambiguity success rate · Ambiguity Dilution of Precision (ADOP)

Introduction

In Teunissen (2019), a new formulation of the double-dif-
ferenced (DD) GLONASS FDMA model was introduced. 
It closely resembles the CDMA-based systems, and it guar-
antees the estimability of the newly defined GLONASS 
ambiguities. This formulation was made possible because 
of a newly defined concept of integer-estimability, combined 
with an analytical construction of a special integer matrix 
canonical decomposition.

The close resemblance between the new GLONASS 
FDMA model and the standard CDMA models implies that 
available CDMA-based GNSS software is easily modified 
and that existing methods of integer ambiguity resolution 
can be directly applied. Due to its general applicability, 

we believe that the new model opens up a whole variety of 
carrier-phase-based GNSS applications that have hitherto 
been a challenge for GLONASS ambiguity resolution. We 
provide insight into the ambiguity resolution capabilities 
of the model and demonstrate for the first time its perfor-
mance for a variety of different ambiguity-resolution critical 
applications.

After a brief review of the new integer-estimable GLO-
NASS FDMA model, including the provision of the nec-
essary software routines, we compare the strengths of the 
GLONASS geometry-free and geometry-fixed model and 
show how the geometry-fixed model provides a natural basis 
for undertaking data quality analyses. Then, the model’s 
performance for instantaneous ambiguity-resolved posi-
tioning and attitude determination is studied. It is thereby, 
for instance, shown that single-frequency GLONASS-only 
successful ambiguity-resolved direction finding is instanta-
neously possible. The ease with which the new GLONASS 
FDMA model can be integrated with CDMA models is then 
demonstrated afterwards. For three different data sets, col-
lected with both high-grade and mass-market receivers at 
three different locations (Perth, Australia; Delft, Nether-
lands; Dunedin, New Zealand), the strength of the combined 
L1 GLONASS + GPS model is analysed. This is done for 
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receiver combinations of the same make and type, as well 
as for mixed-receivers when between-receiver GLONASS 
code data may be biased. Two cases are hereby considered: 
L1 GLONASS phase with L1 GPS code + phase and L1 
GLONASS phase with L1 GPS phase, the latter being an 
option when one wants to avoid the code data altogether, due 
to, for instance, the impact of heavy multipath. For all cases, 
the speed of ambiguity resolution performance is studied as 
well as the precision with which positioning is determined.

Integer‑estimable GLONASS DD model

The new GLONASS FDMA DD model of (Teunissen 2019) 
is given as

in which p ∈ ℝ
2(m−1) and � ∈ ℝ

2(m−1) denote the DD pseu-
dorange (code) and phase observables, m is the number of 
tracked satellites, e = (1, 1)T , ⊗ denotes the Kronecker prod-
uct, G ∈ ℝ

(m−1)×� is the relative receiver-satellite geometry 
matrix, � = diag(�1, �2) is the diagonal matrix of wave-
lengths; L ∈ ℝ

(m−1)×(m−1) is a full-rank, easy-to-compute 
lower-triangular matrix, b ∈ ℝ

� is the baseline vector ( � = 3 
in the absence of a Zenith Tropospheric Delay, otherwise 
� = 4 ) and a ∈ ℤ

2(m−1) is the newly defined GLONASS 
integer ambiguity vector. For background information on 

(1)�

[
p

𝜙

]
=

[
e⊗ G 0

e⊗ G 𝛬⊗ L

][
b

a

]

GLONASS, we refer to ICD (2008), Leick et al. (2015) and 
Revnivykh et al. (2017).

Note that the above model’s only difference with its 
CDMA counterpart is the presence of the lower-triangular 
matrix L (i.e. by setting L = Im−1 one obtains the correspond-
ing CDMA model). This close resemblance implies that 
available CDMA software is easily modified and that exist-
ing methods of integer ambiguity resolution can be directly 
applied. The entries of the lower-triangular matrix L are 
given as (Teunissen 2019)

where a1(i+1) = ai+1 − a1 . The integers �i and �i are given by

in which ai = 2848 + � i , � i ∈ [−7,+6] are the channel 
numbers, g1 = a1 and gi = GCD(a1,… , ai) (1 < i ≤ m) , 
with GCD denoting the Greatest Common Divisor. Soft-
ware pseudo-code for computing the entries of matrix L is 
given in Fig. 1. We have also provided a MATLAB routine 
’GLONASS_L.m’ for the L-matrix computation. The rou-
tine can be accessed and downloaded via the GPS Toolbox 
website at http://www.ngs.noaa.gov/gps-toolb​ox.

We note that the double-differences in (1) have 
been defined by using the first satellite as reference 
satellite. However, if so desired one can choose any 

(2)

Lii =2848 ×
gi+1

ai+1gi
for i = 1,… ,m − 1

Lij = − 2848 ×
�ja1(i+1)

ai+1gj
for i = j + 1,… ,m − 1

(3)− �iai+1 + �igi = gi+1

Algorithm 1: L-matrix

1: input: vector of channel numbers κ ∈ Zm

2: output: Lower-triangular matrix L ∈ Z(m−1)×(m−1)

3: function L ← comptL(κ)
4: zε ← 2848;
5: m ← length(κ);
6: for i ← 1 to m do
7: a[i] ← zε + κ[i];
8: end for
9: L ← zeros(m− 1); � a matrix of zeros
10: g[1] ← a[1];
11: for i ← 1 to m− 1 do
12: [g[i+ 1], α, β] ← ExEuclid(a[i+ 1], g[i]);
13: α ← −α;
14: L[i, i] ← (zε g[i+ 1])/(g[i] a[i+ 1]);
15: for j ← i+ 1 to m− 1 do
16: L[j, i] ← −(zε α) (a[j + 1]− a[1])/(g[i] a[j + 1]);
17: end for
18: end for
19: end function

Algorithm 2: Extended Euclidean

1: input: Two integers a ∈ Z and b ∈ Z
2: output: GCD g and coefficients α ∈ Z and β ∈ Z
3: function [g, α, β] ← ExEuclid(a, b)
4: α ← 0, β ← 1;
5: αo ← 1, βo ← 0;
6: while a �= 0 do
7: q ← floor( b

a
);

8: r ← (b− q a);
9: rα ← (α− q αo);
10: rβ ← (β − q βo);
11: b ← a, a ← r;
12: α ← αo, β ← βo;
13: αo ← rα, βo ← rβ ;
14: end while
15: g ← b;
16: if g < 0 then � negate the coefficients when g < 0
17: g ← −g, α ← −α, β ← −β;
18: end if
19: end function

Fig. 1   Pseudo-code for computing the lower-triangular L-matrix of 
the integer-estimable GLONASS FDMA model (1): (Left) The algo-
rithm for computing the GLONASS L-matrix (2) for a given set of 

channel numbers; (Right) The Extended Euclidean algorithm, which 
is called by the L-algorithm to solve (3)

http://www.ngs.noaa.gov/gps-toolbox
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satellite as reference. In that case, one will have to 
pre-multiply the DD phase-equation of (1) with the 
2(m − 1) × 2(m − 1) matr ix I2 ⊗ DT

new
D1(D

T
1
D1)

−1 ,  in 
which DT

1
= [−em−1, Im−1] ∈ ℝ

(m−1)×m is the between-
satellite differencing matrix that takes the first satellite as 
reference, DT

new
∈ ℝ

(m−1)×m the user’s new choice of differ-
encing matrix, and the needed inverse is simply given by 
(DT

1
D1)

−1 = Im−1 −
1

m
em−1e

T
m−1

 , with em−1 being the (m − 1)

-vector of ones. In Teunissen (2019), it is shown that the 
performance of the model is invariant for the choice of dif-
ferencing matrix.

Although the above model (1) is given for a single epoch 
and a short baseline, it is easily extended to multiple epochs 
and long baselines. In some of these extensions, for instance, 
in the long-baseline phase-only case, the integer-estimability 
of the ambiguities will change. In Teunissen (2019), it is 
shown how to recover in such cases the integer-estimability 
again. Also note that, although (1) is formulated for the 
dual-frequency case, its single-frequency variants are easily 
obtained by replacing e = (1, 1)T by 1 and � = diag(�1, �2) 
by �1 or �2 , respectively.

As model (1) is generally applicable and guarantees, inde-
pendent of the actual channel-number entries, the integer-
estimability of the GLONASS ambiguities, we believe that 
the new model opens up a whole variety of carrier-phase-
based GNSS applications that have hitherto been a challenge 
for GLONASS ambiguity resolution. We will demonstrate 
for the first time some of those applications.

GLONASS geometry‑fixed model for data 
analysis

In this section, we determine the characteristics of the GLO-
NASS geometry-free and geometry-fixed models and show 
how the latter can be used for GLONASS ambiguity resolu-
tion-based data analyses.

Geometry‑free versus geometry‑fixed model

The geometry-free and geometry-fixed models are known 
to be the weakest and strongest DD models, respectively. 
The geometry-free (GF) model is the weakest as it dispenses 
with the relative receiver-satellite geometry. It follows when 
matrix G in (1) is replaced by an identity matrix, G = Im−1 . 
As a result, the pseudorange and carrier-phase data become 
parametrized in the m − 1 DD ranges instead of in the base-
line vector. The geometry-fixed (GFi) model on the other 
hand is the strongest as it assumes the relative receiver-sat-
ellite geometry known. It follows from (1) by considering 
b known, thus leaving the integer ambiguity vector a as the 
only unknown in the model.

To get insights into the relative strength of the two mod-
els for ambiguity resolution, we consider their spectrum of 
ambiguity conditional standard deviations for which the cor-
responding ambiguity variance matrices are needed. Due to 
the close resemblance of (1) with its CDMA counterpart, the 
GLONASS GF ambiguity variance matrix can be directly 
obtained from the CDMA-results (Teunissen 1997). To do 
so, we assume here and in the following that the stochastic 
model of (1) is given as

in which Qpp = 2diag(�2
p1
, �2

p2
) , Q�� = 2diag(�2

�1
, �2

�2
) , and 

R = DT
1
W−1D1 , with the differencing matrix DT

1
= [−e

m−1,

I
m−1] and the diagonal satellite elevation weighting matrix 
W. The single-epoch GLONASS GF ambiguity variance 
matrix follows then as

It is formed as a Kronecker product, with its first, 2 × 2 , 
matrix driven by the measurement precision and wave-
lengths, and its second, (m − 1) × (m − 1) , matrix driven by 
the GLONASS-specific lower-triangular L-matrix.

As the receiver-satellite geometry is assumed known 
under the geometry-fixed model, the GLONASS GFi ambi-
guity variance matrix follows then when the limit Qpp → 0 
is taken of (5),

The single-frequency and dual-frequency spectra of the 
LAMBDA-transformed (Teunissen 1995) ambiguity condi-
tional standard deviations of (5) and (6) are given in Fig. 2. 
There are two important aspects that we learn from the 
shown spectra. The first, which is GNSS-specific, concerns 
the difference in the level of the geometry-free and geome-
try-fixed conditional standard deviations. The second, which 
is GLONASS specific, concerns the signature of the spectra.

As to the first aspect, if we consider the values of the 
conditional standard deviations, we note that there is an 
approximate scale factor between those of the geometry-
free model and those of the geometry-fixed model. In the 
single-frequency case (Fig. 2, left), this factor is about 100, 
while in the dual-frequency case (Fig. 2, right) it is about 10. 
This same scaling we also recognize in the ADOP (Ambigu-
ity Dilution Of Precision), which equals the geometric mean 
of the conditional standard deviations. To understand this 
property, we recall that the ADOP is defined as

(4)�

[
p

𝜙

]
=

[
Qpp ⊗ R 0

0 Q𝜙𝜙 ⊗ R

]

(5)QGF
ââ

= 𝛬−1

(
Q𝜙𝜙 +

eeT

eTQ−1
pp
e

)
𝛬−1 ⊗ L−1RL−T

(6)QGFi
ââ

= lim
Qpp→0

QGF
ââ

= 𝛬−1Q𝜙𝜙𝛬
−1 ⊗ L−1RL−T

(7)ADOP =
√�Qââ�

1

f (m−1) (cycles)
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with Qââ being the f (m − 1) × f (m − 1) ambiguity variance 
matrix and f the number of frequencies. If we now apply (7) 
to (5) and (6), we obtain the ratio

where use has been made of the phase-code variance ratio 
being 10−4 . This result shows that a switch from the geom-
etry-free model to the geometry-fixed model is driven by 
the very small phase-code variance ratio and that the fac-
tor between the conditional standard deviations of the two 
models must indeed be about 100 for f = 1 and 10 for f = 2.

The second aspect that we learn from the spectra of Fig. 2 
concerns their signature. We note that all spectra are flat in 
the beginning and remain so except for their last value (in 
single-frequency case) or last two values (in dual-frequency 
case). This property is GLONASS specific and driven by the 
presence of the L-matrix in (5) and (6). A closer look at the 
entries of L (see 2) shows a large discontinuity in the greatest 
common divisors: g1 = a1 >> gi = GCD(a1,… , ai) for 
i > 1 , since the latter are never larger than the difference in 
channel numbers by virtue of the GCD-property 
GCD(a1, a2) = GCD(a1, a2 − a1) . As the LAMBDA decor-
relating transformation aims to flatten the spectrum thereby 
pushing the less precise ambiguity combinations towards the 
end, the persistence of the discontinuity results in large val-
ues of 𝜎ẑi|I for i = m − 2 , in the single-frequency case, or for 
i = 2m − 3 and i = 2m − 4 , in the dual-frequency case. These 
are, therefore, ambiguities that we rather like to avoid 
including in the ambiguity resolution process.

From the above, we draw the conclusion that although 
GF ambiguity resolution is not possible in a single epoch, 
instantaneous GFi ambiguity resolution is possible, in par-
ticular if we apply partial ambiguity resolution by keeping 
the least-precise transformed ambiguities float. This is there-
fore the approach that will be taken. Thus, if in the following 

(8)ADOPGF

ADOPGFi
=

(
1 +

eTQ−1
��
e

eTQ−1
pp
e

) 1

2f

≈ (100)
1

f

we speak of the to-be-resolved ambiguities, we refer to the 
LAMBDA-decorrelated ambiguities without the least-pre-
cise ones, this being one in the case of single frequency and 
two in the case of dual-frequency ambiguity resolution. We 
also note that in the following sections, to show the truly 
bare experimental outcomes of the integer ambiguity estima-
tions, we have explicitly refrained from including ambiguity 
validation (Verhagen and Teunissen 2013). With ambiguity 
validation included, the incorrectly fixed solutions would 
have been identified and discarded.

GLONASS data analysis

We make use of data sets acquired by receivers of different 
make and type at three different locations (Perth—AU, Dun-
edin—NZ and Delft—NL). In this section, we use the Perth 
data set to illustrate how the GFi model can be used for 
GLONASS data analysis. The goal is to form a maximum 
number of linearly independent functions of the observables 
p and � which are (1) zero-mean and (2) their variances take 
one of the ‘zenith-referenced’ values �2

pj
 and �2

�j
 ( j = 1, 2 ) 

given in (4). We refer to such functions as zenith-referenced 
residuals, since the solutions for �2

pj
 and �2

�j
—as the below 

will show—can be directly inferred from their samples.
In this respect, we put the known baseline vector b 

in the left-hand side of (1). For the code-equation, this 
yields the zero-mean functions p − [e⊗ G] b . For the 
phase-equation however, the expectation of the func-
tions 𝜙 − [e⊗ G] b is still driven by the ambiguities of 
which 2(m − 2) are successfully fixed to their integers 
(see Fig. 2). These resolved ambiguities, say z1 , can thus 
also be put in the left-hand side of (1). To see how the 
final structure of the ‘zenith-referenced’ residuals looks 
like, let the decorrelated ambiguity vector be partitioned 
as z = [zT

1
, zT

2
]T  ( z1 ∈ ℤ

2(m−2) and z1 ∈ ℤ
2 ) with the cor-

responding design matrix 𝛬⊗ [L1, l2] ( L1 ∈ ℝ
(m−1)×(m−2) 
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Fig. 2   Single-epoch ( k = 1 ), geometry-free (GF) and geometry-
fixed (GFi) spectra of the LAMBDA-transformed ambiguity con-
ditional standard deviations 𝜎ẑi|I , I = {1,… , (i − 1)} for m = 6 and 
�p1 = �p2 = 30 cm, ��1

= ��2
= 3 mm: (Left) Single-frequency ( �1 ) 

GF and GFi spectra ( i = 1,… , 5 ); (Right) Dual-frequency GF and 
GFi spectra ( i = 1,… , 10 ). The ADOP for each model are given for 
full and partial ambiguity resolution (between brackets)
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and l2 ∈ ℝ
(m−1) ). Then, the ‘zenith-referenced’ residuals 

associated with model (1) can be shown to read

with the least-squares inverse L̄+
1
= (L̄T

1
R−1L̄1)

−1L̄T
1
R−1 , 

where L̄1 = L1 − l2(l
T
2
R−1l2)

−1lT
2
R−1L1 (Teunissen 2000). 

Matrices Rp and R� are the Cholesky factors of R−1 and 
(L̄+

1
RL̄+T

1
)−1 ,  respectively. Thus, RpRR

T
p
= Im−1 and 

R𝜙(L̄
+
1
RL̄+T

1
)RT

𝜙
= Im−2.

Figure 3 shows samples of such zenith-referenced resid-
uals on GLONASS code and phase L1 observables. As 
shown, they fluctuate randomly around zero (grey lines) 
and their histograms (green bars) are well approximated 
by a zero-centred normal distribution, showing that they 
are indeed zero-mean. Moreover, their empirical standard 
deviations represent solutions for �p1 and ��1

 . According to 
the results of Fig. 3, the code zenith-referenced standard-
deviation on L1 is estimated as 𝜎̂p1 = 41 cm, whereas its 
phase counterpart is estimated as 𝜎̂𝜙1

= 1.5 mm.

(9)

p̃ =[I2 ⊗ Rp](p − [e⊗ G] b),

�(p̃) = Qpp ⊗ Im−1

𝜙̃ =[I2 ⊗ R𝜙L̄
+
1
](𝜙 − [e⊗ G] b − [𝛬⊗ L1] z1),

�(𝜙̃) = Q𝜙𝜙 ⊗ Im−2

GLONASS‑only positioning and attitude

In this section, we first show the model’s positioning capa-
bility and then its capability for instantaneous direction find-
ing using a single frequency.

Dual‑frequency positioning

First, we will consider the epoch-by-epoch ambiguity-
resolved positioning capability of model (1). As is well 
known, the success of GNSS ambiguity resolution depends 
on various factors of which the number of visible satellites 
is an important one (Leick et al. 2015; Teunissen and Mon-
tenbruck 2017). This dependence is also clearly visible in 
Fig. 4 (left). It shows periods for which instantaneous ambi-
guity resolution is successfully possible, but also periods for 
which it is impaired, i.e. when the ADOPs are too large due 
to a too-large drop in the number of visible satellites. For 
the periods with small-enough ADOPs, we computed the 
instantaneous ambiguity-resolved positions. Their horizontal 
scatterplot and vertical time series, together with their 95% 
confidence ellipse, are shown in Fig. 4 (right). It demon-
strates the epoch-by-epoch high-precision position capabili-
ties of the GLONASS-only model (1). For the periods for 
which instantaneous ambiguity resolution is not possible, 
multiple epochs will be needed to compensate for the lack 

Fig. 3   Samples of the zenith-
referenced residuals (grey lines) 
given in (9), their 100-moving 
averages (blue lines), their 
99.9%-confidence interval 
(black dashed lines) and their 
histograms (green bars) com-
pared to their theoretical normal 
distribution (red line)
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of satellites, which as a result may sometimes culminate into 
two minutes of time-to-first-fix.

Single‑frequency direction finding

Once a baseline vector is determined, directional information 
can be derived from it. If the baseline vector b = (b1, b2, b3)

T 
is parametrized in the local North-East-Up frame, heading 
H and elevation E can be computed as

For a precise directional determination, we need integer 
ambiguity resolution so as to be able to exploit the very 
precise carrier-phase data. It is well known however that 
GNSS single-frequency ambiguity resolution is not instan-
taneous possible without an additional strengthening of the 
model. A customary strengthening for direction finding is to 
assume the baseline length between the two antennas known. 
This implies solving the single-frequency version of the 
GLONASS model (1) with the additional nonlinear con-
straint ||b|| = l , in which length l is known. Although differ-
ent methods for dealing with this constraint have been pro-
posed in the literature, see, e.g. Gong et al. (2015) and 
Giorgi (2017), the method that achieves the highest success 
rate is the one that incorporates the constraint integrally into 
the ambiguity objective function. As a result, the integer 
ambiguity solution is now not computed by minimizing a 
quadratic form over the space of integers, i.e. as the uncon-
strained (UC) integer estimator žUC = argmin

z∈ℤn

{||ẑ − z||2
Q

ẑẑ

} , but instead as the baseline-length-constrained 
(BC) integer estimator (Teunissen 2010),

(10)H = arctan
b2

b1
, E = arctan

b3√
b2
1
+ b2

2

in which b̂(z) = b̂ − Qb̂ẑQ
−1
ẑẑ
(ẑ − z) is the conditional baseline 

estimator, b̌(z) = argmin||b||=l ||b̂(z) − b||2
Qb̂(z)b̂(z)

 the corre-
sponding length-constrained baseline solution, and ẑ the 
decorrelated float solution of the GLONASS integer ambi-
guities. Note that with the objective function of (11), poten-
tial integer candidates z ∈ ℤ

n are now not only down-
weighted if they are further away from the float solution 
ẑ ∈ ℝ

n , but also if their corresponding conditional baseline 
b̂(z) is further apart from the origin-centred sphere of radius 
l. It is this additional penalty in the ambiguity objective 
function that allows for significantly higher success rates, 
see, e.g. Giorgi et al. (2010) and Teunissen et al. (2011). 
Once žBC of (11) has been computed, the corresponding 
ambiguity-fixed, length-constrained baseline is computed as 
b̌(žBC) . It is then from this solution that the precise direc-
tional information can be obtained.

To show the capabilities of GLONASS model (1) for sin-
gle-epoch, single-frequency direction finding, as well as the 
importance of incorporating the baseline-length constraint, 
we compare the directional accuracy of four different single-
frequency, instantaneous baseline estimators:

1.	 unconstrained, ambiguity-float baseline b̂;
2.	 length-constrained, ambiguity-float baseline b̂BC =

argmin||b||=l ||b̂ − b||2
Q

b̂b̂

;
3.	 unconstrained, ambiguity-fixed baseline b̂(žUC);
4.	 length-constrained, ambiguity-fixed baseline b̌(žBC).

The unconstrained solution žUC is computed with the 
LAMBDA method (Teunissen 1995), while the con-
strained ambiguity solution (11) is computed with the 

(11)žBC = argmin
z∈ℤn

{
||ẑ − z||2

Qẑẑ
+ ||b̂(z) − b̌(z)||2

Qb̂(z)b̂(z)

}
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Fig. 4   GLONASS Positioning (single-epoch, dual-frequency): (left) 
Single-epoch ADOP time series with number of visible satellites in 
green and red (green for successful instantaneous ambiguity resolu-

tion); (right) Epoch-by-epoch, ambiguity-resolved horizontal scat-
terplot and vertical time series, with their 95% confidence ellipse, for 
when ADOP ≤ 0.12 cycle
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C-LAMBDA method, thereby using the numerically 
efficient bounding-function formulation of Lemma 3 in 
Teunissen (2010).

The results are shown in Fig. 5. The unit-sphere scat-
terplot of b̂BC∕l is shown in Fig. 5 on the left, while those 
of b̂(žUC)∕||b̂(žUC)|| and b̌(žBC)∕l are shown on the middle 
and right, respectively. The ambiguity-float scatterplots 
are shown in grey, while the ambiguity-fixed scatter-
plots in green and red, depending on whether the fix-
ing was done correctly or not. Note that elevation is less 
precise than heading (this is particularly pronounced in 
the ambiguity-float solutions), which is due to the height 
being poorer determined than the horizontal positions. 
Also note that the precision of the length-constrained 
ambiguity-float solution does not differ too much from 
that of the unconstrained ambiguity-float solution. Hence, 
the importance of the length constraint is not so much to 
improve the precision of the code-driven solution, but 
rather to improve the ambiguity resolution performance 
by means of which the solutions become driven by the 
very precise carrier-phase data.

From the above, we can now conclude the following 
with regard to the capability of GLONASS model (1) for 
direction finding: (a) without ambiguity resolution, the 
length-constrained baseline solutions b̂BC will not be pre-
cise enough for direction finding; (b) without the length 
constraint, the ambiguity-fixed baseline solutions b̂(žUC) 
will not be reliable enough for direction finding; (c) pre-
cise and reliable GLONASS single-frequency direction 
finding is instantaneously possible with b̌(žBC) , i.e. when 
model (1) is integer ambiguity resolved under the baseline 
constraint ||b|| = l using (11).

Single‑frequency GLONASS + GPS

In this section, we show the ease with which the new GLO-
NASS FDMA model can be combined with existing CDMA 
models. We analyse and demonstrate the instantaneous 
ambiguity-resolved positioning capabilities of single-fre-
quency GLONASS + GPS for both homogeneous-receiver 
and mixed-receiver processing.

Instantaneous positioning

We know that single-frequency, single-system, instantane-
ous CDMA-based integer ambiguity resolution is not reli-
ably possible (Odolinski and Teunissen 2016, 2017). Since 
this is also true for GLONASS FDMA, we now investigate 
the instantaneous, single-frequency ambiguity resolution 
capability of combined GLONASS and GPS. With mG GPS 
satellites and mR GLONASS satellites, the combined, single-
frequency, single-epoch model follows from (1) as

with the single-frequency pseudorange and carrier-
phase data of GPS (G) and GLONASS (R) contained in 
yG = (pT

G
,�T

G
)T and yR = (pT

R
,�T

R
)T , respectively, matrices 

GG ∈ ℝ
(mG−1)×3 and GR ∈ ℝ

(mR−1)×3 capturing their relative 
receiver-satellite geometries, �1,G and �1,R being the used 
L1 wavelengths, and a = (aT

G
, aT

R
)T ∈ ℤ

mG+mR−2 being the 
combined integer ambiguity vector.

To show the strength of model (12), we compare it with 
single-frequency GPS-only results. We do this for two loca-
tions (Perth, Australia, and Dunedin, New Zealand), with 
a high-grade geodetic receiver pair (JAVAD TRE-G3T 

(12)�

[
yG
yR

]
=

[
e⊗ GG diag(0, 𝜆1,G)⊗ ImG−1

e⊗ GR diag(0, 𝜆1,R)⊗ L

][
b

a

]

Fig. 5   GLONASS Direction Finding (single-epoch, single-fre-
quency): (Left) unit-sphere scatterplot of the length-constrained, 
ambiguity-float direction vector b̂BC∕l ; (Middle) unit-sphere 
scatterplot of unconstrained ambiguity-fixed direction vector 
b̂(žUC)∕||b̂(žUC)|| , computed with LAMBDA; (Right) unit-sphere 
scatterplot of length-constrained, ambiguity-fixed direction vec-

tor b̌(žBC)∕l , computed with C-LAMBDA. The red/green dots 
indicate incorrectly/correctly fixed solutions. The instantaneous 
unconstrained/constrained success rates are 77.2%∕99.9%.The grey 
scatterplots on the latter two spheres are the direction vectors com-
puted from the ambiguity-float estimators b̂ and b̂BC , respectively
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DELTA) for Perth and a mass-market receiver pair (U-blox 
M8T) for Dunedin. The results, consisting of ambiguity-float 
and ambiguity-fixed horizontal scatterplots and Up-time 

series, are shown in Figs. 6 and 7, together with their ADOP 
time series and their formal and empirical 95% confidence 
ellipses, depicted in black and blue, respectively.
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Fig. 6   Single-frequency, single-epoch GLONASS+GPS (Perth, Aus-
tralia, with pair of JAVAD TRE-G3T DELTA receivers and Trimble 
TRM59800.00 antennae on CUBB-CUCC baseline, 4 March 2019, 
with 30-s sampling rate): (Left) L1 GPS-only East-North scatterplots 
and Up-time series; (Right) Combined L1 GPS + L1 GLONASS 
East-North scatterplots and Up-time series; The ambiguity-float solu-

tions are shown in grey, and the ambiguity-fixed solutions in green 
(correctly fixed) and red (incorrectly fixed). At the bottom are shown 
the two ADOP time series in cycles and colour magenta. The formal 
and empirical 95% confidence ellipses are shown in black and blue, 
respectively. The instantaneous, empirical success rates of L1 GPS-
only and L1 GLONASS + GPS are 92.6% and 99.9% , respectively

Fig. 7   Single-frequency, single-epoch GLONASS + GPS (Dunedin, 
New Zealand, with pair of U-blox ZED F9P receivers and Trimble 
Zephyr 2 antennae, 18 April 2019, with 1-second sampling rate): 
(Left) L1 GPS-only East-North scatterplots and Up-time series; 
(Right) Combined L1 GPS + L1 GLONASS East-North scatterplots 
and Up-time series; The ambiguity-float solutions are shown in grey, 

and the ambiguity-fixed solutions in green (correctly fixed) and red 
(incorrectly fixed). At the bottom are shown the two ADOP time 
series in cycles and colour magenta. The formal and empirical 95% 
confidence ellipses are shown in black and blue, respectively. The 
instantaneous, empirical success rates of L1 GPS-only and L1 GLO-
NASS + GPS are 96.0% and 100% , respectively
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We first discuss the results of Perth. The GPS-only results 
of Fig. 6 confirm that instantaneous, single-frequency sin-
gle-system ambiguity resolution is not reliably possible. The 
empirical success rate, being 92.6% , is far too low. Note 
that the time series of the incorrectly fixed solutions show a 
clustering over time and that this is very well predicted by 
the ADOP time series in cycles, i.e. too-large ADOP-values 
correspond with epochs of the incorrect ambiguity resolu-
tion. These are therefore the periods when the GPS-only 
model is too weak to enable successful ambiguity resolution.

When we compare the results of the combined model (12) 
in Fig. 6 with those of GPS-only, we note an improvement in 
both the float solutions and fixed solutions. However, while 
the improvements in the float solutions are marginal, those 
for the fixed solutions are impressive. With the empirical 
success rate now being 99.9% , one can conclude that instan-
taneous single-frequency ambiguity resolution is indeed suc-
cessfully possible with the GLONASS + GPS combined 
model (12).

These conclusions are confirmed by the results of Fig. 7. 
Remarkably, the mass-market receiver demonstrates a simi-
lar performance as that shown in Fig. 6. In fact, the empirical 
success rates are now even higher, namely 96% for L1 GPS-
only and 100% for L1 GLONASS + L1 GPS. This is due to 
the fact that over Dunedin, more satellites were tracked than 
over Perth. Also note that the ADOPs again nicely reflect the 
ambiguity resolution behaviour, both for GPS-only and for 
GLONASS + GPS.

Mixed‑receiver GLONASS phase‑only positioning

So far, we have been working with baseline data sets of which 
both receivers were of the same make and type. We will now 
consider a data set with a mixed-receiver set-up, namely a 

Trimble NetR9 receiver and a single-frequency U-blox M8T 
receiver with patch antenna. First, as before, the data were 
analysed using the geometry-fixed model. From this, it fol-
lowed that the between-receiver differential GLONASS code 
data were shown to be biased. An example time series of the 
L1 GLONASS DD code-residuals of 1-second sampling rate 
is shown in Fig. 8 (left). It clearly shows the bias as an almost 
constant, in this case negative, offset. The occurrence of such 
bias in mixed-receiver set-ups is consistent with previous 
GLONASS studies (Yamada et al. 2010; Chuang et al. 2013; 
Hakansson et al. 2017). Although these and other studies also 
concluded that these biases can be calibrated because of their 
stability over time, we were interested to find out whether that 
would be really needed in the single-frequency case when 
GLONASS is combined with GPS. We therefore consider the 
following two single-frequency cases:

1.	 L1 GLONASS phase with L1 GPS code + phase
2.	 L1 GLONASS phase with L1 GPS phase

Thus, in both cases the biased GLONASS code data were 
dispensed with. Data for the first case were processed on an 
epoch-by-epoch basis using the combined model (12). Data for 
the second case, however, cannot be processed on an epoch-
by-epoch basis, because if only phase data are available, then 
instantaneous positioning becomes impossible. More than one 
epoch of phase data is namely needed to ensure that a suf-
ficient change in receiver-satellite geometry is achieved. The 
L1 GLONASS + GPS phase-only data set was therefore pro-
cessed with the multi-epoch model

(13)�
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Fig. 8   Mixed-receiver, single-frequency GLONASS phase-only posi-
tioning using a Trimble NetR9 (Leica antenna: LEIAR25.R3) and a 
single-frequency U-blox M8T (U-blox patch antenna). The 3-hour 
data set was collected in Delft, the Netherlands, at 1-second sampling 
rate on 12 August 2016, 14:00 - 17:00 GPS Time: (left) Sample of 
L1 GLONASS DD code zenith-referenced residuals with bias pre-

sent; (middle) Instantaneous ambiguity-fixed positioning, combining 
L1 GLONASS phase-only with L1 GPS code + phase, having 99.9% 
success rate; (right) 10-epoch ambiguity-fixed positioning, combin-
ing L1 GLONASS phase-only with L1 GPS phase-only, having 99.9% 
success rate
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with y(i) = [�R(i)
T ,�G(i)

T ]T , G(i) = [GR(i)
T ,GG(i)

T ]T , and 
F = blockdiag(�1,RL, �1,GImG−1

) for i = 1,… , k , where k 
denotes the number of epochs.

The results for the two cases, as shown in Fig. 8 (middle 
and right), provide for some important conclusions. In the 
previous section, it was shown that ambiguity-resolved L1 
positioning is instantaneously possible when the standard 
GPS DD model is combined with our GLONASS model 
(1). Such would then be the approach to follow when one is 
confident that the GLONASS DD code data are free from 
interchannel biases. However, as the above mixed-receiver 
results show, instantaneous ambiguity-resolved L1 position-
ing remains possible even if one dispenses with the GLO-
NASS code data. That is, the underlying model is then still 
strong enough to resolve the GLONASS and GPS ambigui-
ties successfully, while the reduction in positioning precision 
due to the absence of GLONASS code data is negligible in 
the final ambiguity-resolved solution.

The second important conclusion concerns the phase-only 
results. If one would be forced to also do away with the GPS 
code data, for instance, to avoid the impact of heavy code 
multipath, then the results show for the mixed-receiver case 
of Fig. 8-(right) that the single-frequency time-to-first-fix is 
only ten seconds. Thus, although instantaneous positioning 
is now not possible, fast L1 ambiguity-resolved phase-only 
positioning still is.

Summary and conclusions

We studied and numerically demonstrated for the first time 
the capabilities of the new GLONASS FDMA model (1). 
As the model guarantees, independent of the actual channel-
number entries, the integer-estimability of its ambiguities, 
we studied the model’s performance for several different 
ambiguity-resolution critical applications.

We started of with the geometry-fixed formulation and 
showed that its excellent instantaneous ambiguity resolution 
capability provides a natural approach for testing and vali-
dating the stochastic model of the GLONASS carrier-phase 
data. We then studied the positioning and attitude determina-
tion capabilities of the model, first for GLONASS-only and 
then for single-frequency GLONASS + GPS. Instantaneous 
GLONASS-only ambiguity-resolved positioning was shown 
possible, but as expected becomes problematic if the ADOP 
is too large.

We also demonstrated that GLONASS-only single-fre-
quency direction finding is instantaneously possible, pro-
vided model (1) is integer ambiguity resolved using the 
ambiguity objective function (11), in which the baseline-
length constraint is integrally incorporated. This there-
fore also holds great potential for array-based attitude 

determination and array-based precise point positioning 
(Teunissen 2012).

The ease with which the GLONASS FDMA model (1) 
can be integrated with CDMA models was shown by analys-
ing the potential of L1 GLONASS + GPS. The strength of 
the combined model (12) was analysed at two locations using 
a high-grade geodetic receiver pair as well as a mass-market 
receiver pair. For both cases, it was shown that instantane-
ous single-frequency ambiguity resolution is successfully 
possible with the combined model (12). We also consid-
ered the potential of the single-frequency combined model 
for mixed-receiver processing, particularly for the case the 
between-receiver GLONASS pseudorange data are biased. 
Two cases, which dispense with the biased GLONASS code 
data, were considered: L1 GLONASS phase with L1 GPS 
code + phase and L1 GLONASS phase with L1 GPS phase, 
the latter being an option when one wants to avoid the code 
data altogether, for instance, due to the impact of heavy 
multipath. For the first case, it was shown that despite the 
absence of the GLONASS code data, the underlying model 
is still strong enough to successfully resolve the GLONASS 
and GPS ambiguities instantaneously. For the second case, 
which requires changes in receiver-satellite geometry, it was 
shown that fast and precise L1 ambiguity-resolved position-
ing is still possible.

With the above performance studies, we have only pre-
sented a few of the many possible applications of the GLO-
NASS FDMA model (1). Many more can be considered, 
such as those for long baselines, network-RTK, PPP-RTK 
and even for the direct combination of current GLONASS 
FDMA with its near-future GLONASS CDMA that is cur-
rently under development (Urlichich et al. 2011; Langley 
2017). We therefore believe that the flexibility of the model 
and its close resemblance to CDMA models open up a 
whole variety of carrier-phase-based GNSS applications 
that have hitherto been a challenge for GLONASS ambigu-
ity resolution.
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