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Abstract
As parameter estimation and statistical testing are often intimately linked in the processing of observational data, the 
uncertainties involved in both estimation and testing need to be properly propagated into the final results produced. This 
necessitates the use of conditional distributions when evaluating the quality of the resulting estimator. As the conditioning 
should be on the identified hypothesis as well as on the corresponding testing outcome, omission of the latter will result in 
an incorrect description of the estimator’s distribution. In this contribution, we analyse the impact this omission or approxi-
mation has on the considered distribution of the estimator and its integrity risk. For a relatively simple observational model 
it is mathematically proven that the rigorous integrity risk exceeds the approximation for the contributions under the null 
hypothesis, which typically has a much larger probability of occurrence than an alternative. Actual GNSS-based position-
ing examples confirm this finding. Overall we observe a tendency of the approximate integrity risk being smaller than the 
rigorous one. The approximate approach may, therefore, provide a too optimistic description of the integrity risk and thereby 
not sufficiently safeguard against possibly hazardous situations. We, therefore, strongly recommend the use of the rigorous 
approach to evaluate the integrity risk, as underestimating the integrity risk in practice, and also the risk to do so, cannot be 
acceptable particularly in critical and safety-of-life applications.

Keywords  Detection, identification and adaptation (DIA) · DIA estimator · Integrity risk · Statistical testing · Conditional 
distribution

Introduction

The DIA method for the detection, identification and adap-
tation of model misspecifications combines estimation with 
testing. Parameter estimation is conducted to determine esti-
mates for the parameters of interest, and statistical testing is 
conducted to validate the results with the aim of removing 
any unwanted biases that may be present. To rigorously cap-
ture the estimation–testing combination, the DIA estimator 
has recently been introduced by Teunissen (2017) together 
with a unifying probabilistic framework. This allows one to 

take into account the intricacies of the combination when 
evaluating the contributions of the decisions and estimators 
involved. Procedures followed in practice are usually con-
ditional ones implying that the quality and the performance 
of the resulting estimator must be described based on its 
subsequent conditional distribution. Hence, employing the 
distribution of the estimator under an identified hypothesis 
without regard to the conditioning process that led to the 
decision of accepting this hypothesis may impact the quality 
description of the resulting estimator in terms of precision, 
unbiasedness, confidence region and integrity risk.

In this contribution, we turn our attention specifically 
to the integrity risk, which—in short—is the probability 
that, whatever hypothesis is true in reality, the estimator 
of unknown parameters, directed by the testing outcome, 
is outside an acceptable area or volume around its targeted 
value. The estimator’s integrity risk is thus one minus its 
confidence level. As integrity plays a crucial role in criti-
cal and safety-of-life applications, for instance in aviation, 
when GNSS positioning is used to fly an approach to an 
airport, stringent requirements on integrity obviously apply. 
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We compare, using a number of GNSS positioning exam-
ples, the integrity risk using unconditional distributions with 
the one obtained by rigorous evaluation of the correct con-
ditional ones. We demonstrate that with the approximate 
approach of using unconditional distributions to evaluate 
the integrity risk, for instance when accounting for the event 
of removing from the solution an observation identified as 
faulty, one may obtain too optimistic figures, and thereby 
compromise the whole concept of integrity. The actual integ-
rity risk, evaluated using the correct conditional distribu-
tions, may, in fact, be significantly larger.

This contribution is organized as follows. We start with a 
brief review of the detection, identification, and adaptation 
procedure, including the DIA estimator and its statistical dis-
tribution. Next, the integrity risk is defined, rigorous as well 
as approximate, with the latter following from neglecting the 
conditioning on the testing outcome. We then demonstrate 
in graphical form, using a simple observational model with 
just a single unknown parameter, both the unconditional 
and conditional distributions, so that the different contribu-
tions to the integrity risk, as well as the differences between 
the two approaches, are understood. We also prove in this 
section that, under the null hypothesis, the rigorous integ-
rity risk always exceeds the approximate one. The integrity 
risk comparison is then continued, but now for a number 
of actual satellite-based single-point positioning examples. 
These findings show that one indeed runs a serious risk of 
underestimating the actual integrity risk (or overestimating 
the confidence level) when using the unconditional distribu-
tions instead of the conditional ones. We hereby note that our 
findings, although demonstrated by means of an application 
of the DIA procedure, are equally valid for any other method 
of fault detection and exclusion, and, therefore, hold true 
for a wide variety of different applications, such as geodetic 
quality control (Kösters and van der Marel 1990; Amiri Sim-
kooei 2001; Perfetti 2006), navigational integrity (Teunissen 
1990b; Gillissen and Elema 1996; Yang et al. 2014), struc-
tural health integrity (Verhoef and de Heus 1995; Yavaşoğlu 
et al. 2017; Durdag et al. 2018), and integrity monitoring of 
GNSS (Jonkman and de Jong 2000; Kuusniemi et al. 2004; 
Hewitson and Wang 2006). Finally, a summary with conclu-
sions are presented.

Detection, identification and adaptation 
(DIA)

A brief recap of the DIA-datasnooping procedure is pro-
vided, and the DIA estimator introduced in Teunissen (2017) 
is presented. Then an inventory of all possible testing deci-
sions is compiled, and the distribution of the DIA estimator 
is decomposed into contributions, conditioned on the testing 
outcome and the hypothesis.

Statistical hypotheses

We first formulate the null- and alternative hypotheses, 
denoted by 0 and i, respectively. Throughout the paper, as 
alternative hypotheses, we consider those describing outliers 
in individual observations. Here we restrict ourselves to the 
case of one outlier at a time. In that case there are as many 
alternative hypotheses as there are observations. Therefore, 
the observational model under 0 and i is given as

with E(⋅) the expectation operator, D(⋅) the dispersion 
operator, y ∈ ℝm the normally distributed random vector 
of observables linked to the estimable unknown param-
eters through the design matrix A ∈ ℝm×n of rank(A) = n , 
and Qyy ∈ ℝm×m the positive-definite variance matrix of y . 
The redundancy of 0 is r = m − rank(A) = m − n . ci is the 
canonical unit vector having one as its ith entry and zeros 
elsewhere, and bi is the scalar bias. Note that [A ci] is a 
known matrix of full rank. As the number of observations is 
equal to m, there are also m alternative hypotheses i defined 
in (2); i = 1,… ,m.

The best linear unbiased estimator (BLUE) of the 
unknown parameters x is given by

with A+ = (ATQ−1
yy
A)−1ATQ−1

yy
 the BLUE-inverse of A, 

Ā+
i
= (ĀT

i
Q−1

yy
Āi)

−1ĀT
i
Q−1

yy
 the BLUE-inverse of Āi = P⊥

ci
A and 

P⊥
ci
= Im − ci(c

T
i
Q−1

yy
ci)

−1cT
i
Q−1

yy
 being an orthogonal projector 

that projects onto the orthogonal complement of the range 
space of ci.

DIA‑datasnooping procedure

The DIA method has been widely employed in a variety of 
applications, such as the quality control of geodetic networks 
and the integrity monitoring of GNSS models, see, e.g., 
Teunissen (1990a) and Amiri Simkooei (2001). The DIA 
steps are realized using the misclosure vector t ∈ ℝr given as

where the m × r matrix B is a full-rank matrix, with 
rank(B) = r, of which the range space is an orthogonal 
complement of that of A , i.e., [AB] ∈ ℝm×m is invert-
ible and ATB = 0. Assuming that the measurement errors 
are normally distributed, i.e., y

i
∼ (

Ax + cibi,Qyy

)
 for 

i = 0, 1,… ,m and c0b0 = 0 , the misclosure vector is then 
distributed as

(1)0 ∶ E(y) = Ax; D(y) = Qyy

(2)i ∶ E(y) = Ax + cibi; D(y) = Qyy

(3)0 ∶ x̂0 = A+y i≠0 ∶ x̂i = Ā+
i
y

(4)t = BTy; Qtt = BTQyyB



GPS Solutions (2019) 23:29	

1 3

Page 3 of 16  29

As t  is zero-mean under 0 and also independent of x̂0, it 
provides all the available information useful for validation of 
0 (Teunissen 2017). Thus, an unambiguous testing proce-
dure can be established through assigning the outcomes of t 
to the statistical hypotheses i for i = 0, 1,… ,m.

The DIA-datasnooping procedure is specified as follows.

Detection: Accept 0 if t ∈ 0 with

in which || ⋅ ||2
Qtt

= (⋅)TQ−1
tt
(⋅) and k�,r is the �-percentage of 

the central Chi-square distribution with r degrees of free-
dom. If 0 is accepted, then x̂0 is provided as the estimate of 
x . Otherwise, go to next step.

Identification: Compute Baarda’s test statistic for all alterna-
tive hypotheses as (Baarda 1967; Teunissen 2000)

in which cti = BTci is the ith column of matrix BT since ci is 
a canonical unit vector. Select i≠0 if t ∈ i≠0 with

Adaptation: When i is selected, then x̂i is provided as the 
estimate of x.

The partitioning i in terms of the (original) misclosure 
vector is introduced in Teunissen (2017), and an example 
is shown in Fig. 3 in [Ibid]. Note that the above datasnoop-
ing partitioning would need modification in case of ‘iterated 
datasnooping’ (Kok et al. 1984) for multiple outlier testing 
which involves consecutive rounds of detection and identi-
fication until no further outlier is detected.

DIA estimator

Given the above three steps, estimation and testing are com-
bined in DIA-datasnooping. Teunissen (2017) presents a 
unifying framework to rigorously capture the probabil-
istic properties of this combination, see also Teunissen 
et al. (2017). As such, the DIA estimator x̄ was introduced, 
which captures the whole estimation–testing scheme and 
it is given as

(5)t
i
∼ (

�ti
= BTcibi,Qtt

)
for i = 0, 1,… ,m

(6)0 =
{
t ∈ ℝ

r|||||t||
2
Qtt

⩽ k�,r

}

(7)wi =
cT
ti
Q−1

tt
t

√
cTti
Q−1

tt cti

(8)i≠0 =
{
t ∈ ℝ

r∕0

||||
|wi| = max

j∈{1,…,m}
|wj|

}

(9)x̄ =

m∑

j=0

x̂j pj(t)

with pj(t) being the indicator function of region j, i.e., 
pj(t) = 1 for t ∈ j and pj(t) = 0 elsewhere. Therefore, the 
DIA estimator x̄ is a combination of x̂j for j = 0, 1,… ,m 
and the misclosure vector t. The probability density function 
(PDF) of x̄ under i reads (Teunissen 2017)

where the second equality is a consequence of

with

Testing decisions

As was shown above, the decisions of the testing proce-
dure are driven by the outcome of the misclosure vector 
t. If i is true, then the decision is correct if t ∈ i, and 
wrong if t ∈ j≠i. We, therefore, discriminate between the 
following events

With ∗= {CA, FA,MDi, CDi,WIi, CIi}, we denote the prob-
ability of ∗ by P∗. satisfying

Computation of P∗ requires information about the mis-
closure PDF which is given in (5). Here, it is important 
to note the difference between the CD- and CI-probabil-
ity, i.e.PCDi

⩾ PCIi . They would be the same if there were 
only one single alternative hypothesis, say 1, since then 
1 = ℝr∕0.

(10)

fx̄(𝜃|i) =

m∑

j=0
�j

fx̂j,t(𝜃, 𝜏|i) d𝜏

=

m∑

j=0
�j

fx̂0 (𝜃 + Lj𝜏|i)ft(𝜏|i) d𝜏

(11)x̂j = x̂0 − Ljt

(12)Lj =
1

||ctj ||
2
Qtt

A+cjc
T
tj
Q−1

tt
.

(13)

CA = (t ∈ 0|0) = correct acceptance

FA = (t ∉ 0|0) = false alarm

MDi = (t ∈ 0|i) = missed detection

CDi = (t ∉ 0|i) = correct detection

WIi = (t ∈ ∪j≠0,ij|i) = wrong identification

CIi = (t ∈ i|i) = correct identification

(14)

PCA + PFA = 1,

PMDi
+ PCDi

= 1,

PWIi
+ PCIi = PCDi
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Decomposition of fx̄(𝜃|i)

Given the events in (13) and using the total probability rule, 
fx̄(𝜃|i) can be decomposed as follows:

where

Therefore, in case j = 0, due to x̂0 being independent of t, 
we have

The proof of (16) and (17) is given as follows. The condi-
tional PDF fx̄|t∈j

(
𝜃|t ∈ j,i

)
 is obtained through the fol-

lowing general expression

in which (Teunissen 2017)

 Substituting (19) into (18) gives

Comparing the structure of (20) with that of (18), we 
a c h i e v e  ( 1 6 ) .  F o r  j = 0,  w e  h a v e 
fx̂0,t

(
𝜃, 𝜏|i

)
= fx̂0(𝜃|i)ft

(
𝜏|i

)
 of which the substitution 

into (20) gives (17). Note that the conditional PDFs 
fx̂j|t∈j

(
𝜃|t ∈ j,i

)
 for j ≠ 0 are non-normal, which is fur-

ther discussed in the following sections.

Integrity risk

Being an estimator of x, the DIA estimator x̄ is likely to be 
considered a good estimator if it is close to x with a suffi-
ciently large probability. Defining ‘closeness’ as ‘lying in 
an x-centered region x ’, and ‘sufficiently large’ as ‘ 1 − � ’ 
for a very small � , then x̄ is an acceptable estimator of x if 
P(x̄ ∈ x) ⩾ 1 − 𝜀 or equivalently

(15)fx̄(𝜃|i) =

m∑

j=0

fx̄|t∈j

(
𝜃|t ∈ j,i

)
P
(
t ∈ j|i

)

(16)fx̄|t∈j

(
𝜃|t ∈ j,i

)
= fx̂j|t∈j

(
𝜃|t ∈ j,i

)

(17)fx̄|t∈0

(
𝜃|t ∈ 0,i

)
= fx̂0

(
𝜃|i

)

(18)fx̄|t∈j

(
𝜃|t ∈ j,i

)
= �j

fx̄,t(𝜃, 𝜏|i)

P(t ∈ j|i)
d𝜏

(19)fx̄,t
(
𝜃, 𝜏|i

)
=

m∑

j=0

fx̂j,t
(
𝜃, 𝜏|i

)
pj(𝜏)

(20)fx̄|t∈j

(
𝜃|t ∈ j,i

)
= �j

fx̂j,t
(
𝜃, 𝜏|i

)

P
(
t ∈ j|i

)d𝜏

(21)P(x̄ ∈ c
x
) < 𝜀

with c
x
= ℝn∕x. We refer to the above probability as integ-

rity risk, see also, e.g., Schuster et al. (2007) and Salós et al. 
(2010). The integrity risk (21) is thus one minus the prob-
ability of x̄ lying inside the confidence region x . In the 
sequel, we denote this probability by IR.

Assuming that 
∑m

j=0
P
�j

�
= 1, with P

(j

)
 being the 

probability of occurrence of j, describing a bias in the sin-
gle jth measurement, cf. (2), the integrity risk can be decom-
posed, using the total probability rule, as

Here it is important to realize that the above expression 
depends on the bias value bi under i for i = 1,… ,m. One 
may take a conservative route by computing each term in the 
summation for a bias value bi which maximizes the product 
P
(
x̄ ∈ c

x
|i

)
P
(i

)
. The probabilities P

(
x̄ ∈ c

x
|i

)
 in the 

summation (22), using (15) and (16), can be expressed as

The conditional probabilities in the above equation are com-
puted based on the PDFs fx̂j|t∈j

(
𝜃|t ∈ j,i

)
.

Would one neglect the correlation between x̂j and t, and 
use the unconditional PDFs fx̂j

(
𝜃|i

)
 instead, an approxima-

tion of the rigorous integrity risk IR|i is obtained as

In 
(
IR|i

)
, one conditions on both the hypothesis and the 

testing outcome, while in 
(
IRo|i

)
, one conditions only on 

the hypothesis and not on the testing outcome.
The difference between the rigorous and approximate 

integrity risks under i reads

Note, in the above summation, that j runs from 1 to m as 
P
(
x̂0 ∈ c

x
|t ∈ 0,i

)
= P

(
x̂0 ∈ c

x
|i

)
 , cf. (17). For a 

given region x, the difference within square brackets 
depends on the difference between fx̂j|t∈j

(
𝜃|t ∈ j,i

)
 and 

fx̂j

(
𝜃|i

)
. The conditional PDF fx̂j|t∈j

(
𝜃|t ∈ j,i

)
 would 

become equal to the PDF fx̂j
(
𝜃|i

)
, if the correlation 

between x̂j and t would be zero. With (11), however, there is 
a non-zero correlation between x̂j and t, driven by Qx̂0 x̂0

 , Qtt 

(22)IR =

m∑

j=0

P
(
x̄ ∈ c

x
|j

)
P
(j

)

(23)

IR|i = P
(
x̄ ∈ c

x
|i

)
=

m∑

j=0

P
(
x̂j ∈ c

x
|t ∈ j,i

)
P
(
t ∈ j|i

)

(24)IRo|i =

m∑

j=0

P
(
x̂j ∈ c

x
|i

)
P
(
t ∈ j|i

)

(25)

IR|i − IR
o|i =

m∑

j=0

[
P
(
x̂j ∈ c

x
|t ∈ j,i

)

−P
(
x̂j ∈ c

x
|i

)]
P
(
t ∈ j|i

)
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and Lj . In addition, the conditional PDF fx̂j|t∈j

(
𝜃|t ∈ j,i

)
, 

using the total probability rule, can be written as

which reveals that

If j = i and |bi| → ∞ then we have P
(
t ∈ i|i

)
→ 1. As a 

result, the difference 
(
IR|i − IRo|i

)
 is mainly driven by 

the term in the summation corresponding with j = i. This in 
tandem with (27) gives

saying that for a very large bias magnitude, the difference 
between rigorous and approximate integrity risk vanishes.

Finally, we note that the issue of correlation-neglect 
between x̂j and t  also comes up if one would use the out-
comes of testing in an a posteriori evaluation. In that case 
one would have to work with the PDF of 

(
x̄|t ∈ j

)
 which 

is different from that of x̂j, despite the fact that both random 
vectors, 

(
x̄|t ∈ j

)
 and x̂j, have the same sample outcome 

(Teunissen 2017). For instance, if j is the identified hypoth-
esis, confidence levels are typically evaluated in practice as 
P
(
x̂j ∈ x|i

)
 , see e.g. (Wieser 2004; Devoti et al. 2011; 

Dheenathayalan et al. 2016), while they should be evalu-
ated as P

(
x̂j ∈ x|t ∈ j,i

)
. The difference between their 

hypothesis averaged versions will then provide differences 
as those between (23) and (24).

Numerical analysis: single alternative 
hypothesis

In this section, we evaluate both the “rigorous” and “approx-
imate” integrity risks defined by (23) and (24). To get a 
better understanding of their characteristics, we consider a 
simple observational model with only a single alternative 

(26)

fx̂j|t∈j
(𝜃|t ∈ j,i) =

1

P(t ∈ j|i)

×

(
fx̂j (𝜃|i) −

m∑

k≠j
fx̂j|t∈k

(
𝜃|t ∈ k,i

)
P
(
t ∈ k|i

)
)

(27)
P
(
t ∈ j|i

)
→ 1 ⇒ fx̂j|t∈j

(
𝜃|t ∈ j,i

)
→ fx̂j

(
𝜃|i

)

(28)|bi| → ∞ ⇒ IR|i − IRo|i → 0

hypothesis. Suppose that in (1), there is only one unknown 
parameter (n = 1) and also the redundancy of the model is 

one (r = 1), i.e., x ∈ ℝ and t ∈ ℝ. The canonical form of 
such a model, applying the Tienstra-transformation   to 
the (assumed) normally distributed vector of observables y 
(Teunissen 2017), reads

which is specified for i ∈ {0, a} as

for some ba ∈ ℝ∕{0}, and also La ∈ ℝ which establishes 
the following link:

With the mean of x̂0 and t given by (29) and (30), we have 
E(x̂a|0) = E(x̂a|a) = x.

The corresponding DIA-datasnooping procedure is 
defined as

Detection: Accept 0 if t ∈ 0 with

Provide x̂0 as the estimate of x.
Identification: Select a if t ∈ c

0
 with c

0
= ℝ∕0.

Adaptation: When a is selected, x̂a is provided as the 
estimate of x.

With the above three steps, the DIA estimator and its PDF 
under i, i ∈ {0, a}, are given by

and

(29) y =

[
A+

BT

]
y =

[
x̂0

t

]
i
∼

([
x + bx̂0,i
bti

]
,

[
𝜎2
x̂0

0

0 𝜎2
t

])

(30)
0 ∶ bx̂0,0 = 0, bt0 = 0

a ∶ bx̂0,a = Laba, bta = ba

(31)x̂a = x̂0 − Lat

(32)0 =
[
−
√

k�,1,

√
k�,1

]

(33)x̄ = x̂0p0(t) + x̂a(1 − p0(t))

(34)
fx̄
(
𝜃|i

)
= fx̂0

(
𝜃|i

)
�0

ft
(
𝜏|i

)
d𝜏 + �c

0

fx̂0

(
𝜃 + La𝜏|i

)
ft
(
𝜏|i

)
d𝜏

= fx̂0

(
𝜃|i

)
+ �c

0

[
fx̂0

(
𝜃 + La𝜏|i

)
− fx̂0

(
𝜃|i

)]
ft
(
𝜏|i

)
d𝜏
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In (34), the second equality follows from c
0
= ℝ∕0.

Decomposition of fx̄
(
𝜃|

0

)
 and fx̄

(
𝜃|a

)

As there is only one alternative hypothesis a, the events in 
(13) are reduced to four events CA, FA, MD and CD, and 
the decomposition of fx̄

(
𝜃|i

)
 in (15) is then simplified to

Note that the subscripts of MD and CD as in (13) are 
dropped, as a is the only alternative. In Fig. 1, assuming 
(for example) that 𝜎2

x̂0
= 0.5m2, �2

t
= 2m2 and La = 0.5, we 

show how the PDFs fx̄
(
𝜃|0

)
 (top) and fx̄

(
𝜃|a

)
 (middle 

and bottom) are formed according to (35). The solid and 
d a s h e d  b l u e  c u r ve s ,  r e s p e c t i ve ly,  d e p i c t 
fx̂0

(
𝜃|0

)
= fx̄|CA(𝜃|CA) and fx̂a|FA(𝜃|FA) in the top panel, 

and fx̂0
(
𝜃|a

)
= fx̄|MD(𝜃|MD) and fx̂a|CD(𝜃|CD) in the mid-

dle and bottom panels. The black curve shows fx̂a
(
𝜃|0

)
, 

which is also equal to fx̂a
(
𝜃|a

)
. The probability of false 

alarm PFA is usually user defined by setting the appropriate 
size of 0 , hence an input to the DIA procedure both under 
null and alternative hypotheses. To assess the PDF of x̂0 and 
x̄ under the alternative Ha, one additionally needs to set the 
size of the bias ba, or alternatively, one may choose to set the 
correct detection probability PCD as we did here.

As was mentioned earlier, the conditional PDFs 
fx̂a|FA(𝜃|FA) and fx̂a|CD(𝜃|CD) are non-normal, which for the 
case of one single alternative can be expressed as

Substituting (36) and (37) into (35), given PFA = 1 − PCA 
and PCD = 1 − PMD, we have

In Fig. 1, in agreement with (38), as PFA decreases, in the 
graphs on top, the curve of fx̄

(
𝜃|0

)
 in red gets close to that 

of fx̂0
(
𝜃|0

)
 in blue. Also, when PCD increases from 0.40 

to 0.99, in the graphs in the middle and at the bottom, the 

(35)
fx̄
(
𝜃|0

)
= fx̂0

(
𝜃|0

)
PCA + fx̂a|FA(𝜃|FA)PFA

fx̄
(
𝜃|a

)
= fx̂0

(
𝜃|a

)
PMD + fx̂a|CD(𝜃|CD)PCD

(36)fx̂a|FA(𝜃|FA) =
1

PFA

[
fx̂a

(
𝜃|0

)
− fx̂a|CA(𝜃|CA)PCA

]

(37)fx̂a|CD(𝜃|CD) =
1

PCD

[
fx̂a

(
𝜃|a

)
− fx̂a|MD(𝜃|MD)PMD

]

(38)

PFA → 1 ⇒ fx̄
(
𝜃|0

)
→ fx̂a

(
𝜃|0

)

PFA → 0 ⇒ fx̄
(
𝜃|0

)
→ fx̂0

(
𝜃|0

)

PCD → 1 ⇒ fx̄
(
𝜃|a

)
→ fx̂a

(
𝜃|a

)

PCD → 0 ⇒ fx̄
(
𝜃|a

)
→ fx̂0

(
𝜃|a

) curve of fx̄
(
𝜃|a

)
 in red gets close to that of fx̂a

(
𝜃|a

)
 in 

black and to that of fx̄|CD(𝜃|CD) as well.

Non‑normality of fx̂a|FA(𝜃|FA) and fx̂a|CD(𝜃|CD)

To appreciate the non-normality of the two PDFs 
fx̂a|FA(𝜃|FA) and fx̂a|CD(𝜃|CD), we show them for dif-
ferent values of the contributing factors, namely PFA, 

Fig. 1   Illustration of the DIA estimator PDF [top] under null hypoth-
esis 0 and [middle and bottom] under alternative hypothesis a. 
The contributing parameters are set to be 𝜎2

x̂0
= 0.5m2, �2

t
= 2m2, 

and La = 0.5. Panels, from left to right, correspond to PFA = 10−3 and 
PFA = 10−1. Panels in the middle and at the bottom correspond to, 
resp., PCD = 0.4 and PCD = 0.99
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PMD

(
= 1 − PCD

)
, 𝜎x̂0 , �t and La, in Fig. 2. To highlight the 

non-normality of fx̂a|FA(𝜃|FA) and fx̂a|CD(𝜃|CD), we have 
also plotted (for reference) their normal counterparts having 
the same mean and variance in black. These normal PDFs, 
respectively, correspond with the random variables

Note that the above random variables are only introduced 
here to illustrate the departure from normality of 

(
x̂a|FA

)
 

and 
(
x̂a|CD

)
.

The panels to the left side of Fig. 2 demonstrate the 
behavior of fx̂a|FA(𝜃|FA) in blue, in comparison to fx̂fa(𝜃) in 
black. We note that the following situations 𝜎x̂0 ↑, �t ↓, La ↓ 
and PFA ↑ make the PDF fx̂a|FA(𝜃|FA) get closer to a normal 
one. This can be explained as follows. We first consider the 
impact of 𝜎x̂0 , �t and La which drive the correlation between 
x̂a and t as

If this correlation becomes zero, then the PDF fx̂a|FA(𝜃|FA) 
becomes identical to the unconditional normal PDF 
fx̂a

(
𝜃|0

)
. As (40) suggests, this would be realized if 

La → 0 and �t → 0 as well as 𝜎x̂0 → ∞. Now, we consider the 
impact of PFA, which can be explained through (36). Since 
PCA = 1 − PFA, increasing PFA (thus decreasing PCA ) leads 
to smaller differences between fx̂a|FA(𝜃|FA) and fx̂a

(
𝜃|0

)
. 

This can also be seen by comparing the dashed blue curves 
with the solid black ones in the first row of Fig. 1.

Shown to the right of Fig. 2 are the graphs of fx̂a|CD(𝜃|CD) 
together with those of fx̂cd(𝜃). The response of fx̂a|CD(𝜃|CD) 
to the changes in the parameters 𝜎x̂0 , �t and La is similar to 
that of fx̂a|FA(𝜃|FA). fx̂a|CD(𝜃|CD) in addition depends on 
PCD according to (37). Since PCD = 1 − PMD , increasing PCD 
(thus decreasing PMD ) leads to smaller differences between 
fx̂a|CD(𝜃|CD) and fx̂a

(
𝜃|a

)
. This can also be seen by com-

paring the dashed blue curves with the solid black ones in 
the second and third rows of Fig. 1.

Rigorous vs approximate integrity risk

The rigorous and approximate integrity risks for the case 
of working with a single alternative hypothesis a are for-
mulated in, respectively, the first and the second rows of 
Table 1. The difference between them reads

(39)
x̂fa ∼ (

E
(
x̂a|FA

)
, 𝜎2

x̂a|FA

)

x̂cd ∼ (
E
(
x̂a|CD

)
, 𝜎2

x̂a|CD

)

(40)|||𝜌x̂a,t
||| =

(
1 +

𝜎2
x̂0

L2
a
𝜎2
t

)−
1

2

Fig. 2   Illustration of the non-normal distribution of the components 
of the DIA estimator (left) fx̂a|FA(𝜃|FA) in blue and the normal dis-
tribution fx̂fa (𝜃), cf. (39), for reference, in black; (right) fx̂a|CD(𝜃|CD) 
in blue and the normal distribution fx̂cd (𝜃) , cf. (39), for reference, in 
black. Unless otherwise mentioned in each panel, the default set-
tings for the left panels are 𝜎2

x̂0
= 0.5m2, �2

t
= 2m2, La = 0.5 and 

PFA = 10−3, and for the right panels are 𝜎2

x̂0
= 0.5m2, �2

t
= 2m2, 

La = 1.5, PFA = 10−3 and PCD = 0.6
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where

and

The difference between IR and IRo lies in the difference 
between fx̂a|FA(𝜃|FA) and fx̂a

(
𝜃|0

)
 and the difference 

between fx̂a|CD(𝜃|CD) and fx̂a
(
𝜃|a

)
. These differences, as 

discussed previously, depend on 𝜌x̂a,t, PFA and, in case of the 
latter, on PCD. In case 𝜌x̂a,t = 0, then fx̂a|FA(𝜃|FA) = fx̂a

(
𝜃|0

)
 

and fx̂a|CD(𝜃|CD) = fx̂a

(
𝜃|a

)
, thereby IR = IRo. As nominal 

conditions are more likely than anomalies incurring meas-
urement biases, the probability of the occurrence of 0 is 
far larger than that of a , see e.g. Wu et al. (2013). Thus, the 
impact of (IR|a − IRo|a) is downweighted by the small 
value of P

(a

)
. Therefore, in the following, we first discuss 

the behavior of (IR|0 − IRo|0) and then the behavior of 
(IR − IRo).

Evaluation of 
(
IR|

0
− IR

o|
0

)

It can be shown that the difference (IR|0 − IRo|0) in (42) 
is always positive. For a proof, see the Appendix. Assuming 
𝜎2
x̂0
= 0.5m2 and �2

t
= 2m2, Fig.  3 illustrates graphs of 

(IR|0 − IRo|0) (solid lines) and those of (IR|0) (dashed 
lines) as a function of AL, for PFA = 10−1 (top) and 

(41)

IR − IR
o = P(0) ×

(
IR|0 − IR

o|0

)

+ P(
a
) ×

(
IR|

a
− IR

o|
a

)

(42)

IR|0 − IRo|0 = PFA �
c

x

[
fx̂a|FA(𝜃|FA) − fx̂a(𝜃|0)

]
d𝜃

(43)

IR|a − IRo|a = PCD �
c

x

[
fx̂a|CD(𝜃|CD) − fx̂a (𝜃|a)

]
d𝜃

PFA = 10−3 (bottom), and La = 0.5, 1.5 (in blue and red, 
resp.). Comparing the solid lines with their corresponding 
dashed lines, we note, depending on the values of La and 
PFA , that after a certain alert limit, the values of (IR|0) and 
(IR|0 − IRo|0) approach each other, implying that the 
approximate integrity risk 

(
IRo|0

)
 gets very small indeed. 

We explain this behavior for the blue curves at the bottom 
when AL = 4  m. The probability mass of the PDFs 
fx̂a|FA(𝜃|FA) and fx̂a

(
𝜃|0

)
, the dashed blue curve and the 

black curve in the upper left panel in Fig. 1, are at the level 
of  2 × 10−2  and 6 × 10−5, respect ively,  outs ide 
x = [x − 4, x + 4]. In addition, the probability mass of the 
PDF fx̂0

(
𝜃|0

)
 outside x = [x − 4, x + 4] is at the level of 

10−8. These values, given PFA = 10−3, will then result in a 
difference at the level of 8 × 10−8 between (IR|0) and 
(IR|0 − IRo|0). As a consequence of this case, the 

Table 1   Integrity risk based on the DIA estimator ( IR ) and its 
approximation by ignoring the correlation between x̂a and t  ( IRo ) for 
the case of a null- and a single alternative hypotheses. c

x
= ℝn∕x

IR = P(0) × �
c

x

[
fx̂0 (𝜃|0)PCA + fx̂a|FA(𝜃|FA)PFA

]
d𝜃

+ P(a) × �
c

x

[
fx̂0 (𝜃|a)PMD + fx̂a|CD(𝜃|CD)PCD

]
d𝜃

IR
o = P(0) × �

c
x

[
fx̂0 (𝜃|0)PCA + fx̂a (𝜃|0)PFA

]
d𝜃

+ P(a) × �
c

x

[
fx̂0 (𝜃|a)PMD + fx̂a (𝜃|a)PCD

]
d𝜃

Fig. 3   Illustration of the behavior of integrity risks correspond-
ing with x = [x − AL, x + AL] as a function of AL, assuming 
𝜎2

x̂0
= 0.5m2 and �2

t
= 2m2 , for the case of a null- and a single alter-

native hypotheses. The solid lines show (IR|0 − IR
o|0) , cf. (42), 

while the dashed lines show the corresponding (IR|0)
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approximate integrity risk under the null hypothesis is too 
optimistic by a factor of 300.

It can be seen that the graphs of (IR|0 − IRo|0) take 
only positive values. We note that all curves as a function of 
AL show almost the same signature. They first increase and 
then decrease to zero. Since this behavior depends on AL, 
it can be explained by looking at the integral part in (42), 
which is the difference between P

(
|x̂a − x| > AL|FA

)
 and 

P
(
|x̂a − x| > AL|0

)
. We have

As shown in the Appendix, P(|x̂a − x| ≤ AL|0) is 
always greater than P(|x̂a − x| ≤ AL|FA). Therefore, 
it can be concluded that the PDF fx̂a

(
𝜃|0

)
 is more 

peaked around x than fx̂a|FA(𝜃|FA). Therefore, when AL 
increases, P

(
|x̂a − x| > AL|0

)
 decreases more rapidly 

than P
(
|x̂a − x| > AL|FA

)
. This, together with (44) and 

the fact that the probabilities P
(
|x̂a − x| > AL|0

)
 and 

P
(
|x̂a − x| > AL|FA

)
 are continuous functions of AL, 

results in an increasing and then decreasing behavior for 
(IR|0 − IRo|0).

In Fig.   3,  when La increases,  the curve of 
(IR|0 − IRo|0) stretches over a larger range of values 
of AL. This is due to the fact that increasing La reduces the 
peakedness of the PDFs fx̂a

(
𝜃|0

)
 and fx̂a|FA(𝜃|FA) around 

x . The impact of changing La on fx̂a
(
𝜃|0

)
 and fx̂a|FA(𝜃|FA) 

is demonstrated in (31) and Fig. 2 (top-left), respectively. 
Therefore, both the probabilities P

(
|x̂a − x| > AL|0

)
 and 

P
(
|x̂a − x| > AL|FA

)
 behave more smoothly as function of 

AL, and so does their difference.
Decreasing � by a factor of 102, we note that the val-

ues of (IR|0 − IRo|0) in Fig.  3 also decrease by 
almost a factor of 102. Reducing � by a factor of 102 
will reduce (IR|0 − IRo|0) by the same amount if 
P
(
|x̂a − x| > AL|FA

)
 remains invariant. However, as Fig. 2 

(bottom-left) shows, reducing � by a factor of 102 increases 
P
(
|x̂a − x| > AL|FA

)
, which results in (IR|0 − IRo|0) 

decreasing by a factor slightly smaller than 102.

Evaluation of 
(
IR − IR

o

)

Here, we investigate the behavior of the integrity risks when 
both the null- and alternative hypotheses are taken into 
account. The difference (IR − IRo) in (41), due to the contri-
bution of a, depends on the bias value ba . Considering 
𝜎2
x̂0
= 0.5m2, �2

t
= 2m2 and P

(0

)
= 0.9 (thus P

(a

)
= 0.1; 

(44)

AL → 0 ⇒

{
P(|x̂a − x| > AL|FA) → 1

P(|x̂a − x| > AL|0) → 1

AL → ∞ ⇒

{
P(|x̂a − x| > AL|FA) → 0

P(|x̂a − x| > AL|0) → 0

the latter probability is usually much smaller in practice), 
Fig. 4 shows the curves of (IR − IRo) as a function of ba for 
two different values of AL in x = [x − AL, x + AL], La and 
PFA. Decreasing La, although the correlation 𝜌x̂a,t decreases, 
the difference (IR − IRo) may increase or decrease depend-
ing on AL and PFA. It can be seen that (IR − IRo) does not 
change too much as a function of ba. This is due to the fact 
that any change in ba will change (IR|a − IRo|a), of 
which the impact is downweighted by P

(a

)
= 0.1. Note 

that IR is larger than IRo in most cases, revealing that using 
the approximate integrity risk instead of the rigorous one 
generally will be hazardous. The IRo does not provide a safe 
bound to the actual IR.

Numerical analysis: multiple alternative 
hypotheses

So far, for simplicity, we have been working with an obser-
vational model with one unknown parameter and one 
redundancy. In this section, we work with a satellite-based 

Fig. 4   Illustration of the difference between rigorous and approximate 
integrity risks (IR − IR

o) in (41) as a function of bias value ba cor-
responding with x = [x − AL, x + AL] . The contributing parameters 
are set to be 𝜎2

x̂0
= 0.5m2, �2

t
= 2m2 and P

(0

)
= 0.9. The variation 

of PFA and La is highlighted through changing the style and color of 
the curve, respectively: PFA = 10−1 in solid line and PFA = 10−3 in 
dashed line, La = 0.5 in blue and La = 1.5 in red
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single-point positioning (SPP) model based on the observa-
tions of m satellites with four unknown parameters ( n = 4 ) and 
r = m − 4 redundancy. As alternative hypotheses, we consider 
those given in (2). In that case there are as many alternative 
hypotheses as there are observations.

We first present the observational model, and then we 
analyze, by means of three practical examples, the difference 
between the rigorous and approximate integrity risk for the 
contributions under the null hypothesis ( 0).

SPP observational model

Assuming there are m pseudorange observations, the obser-
vational model under i for i = 0, 1,… ,m is given as

where the m × 3 matrix G =
[
− uT

1
,… ,− uT

m

]T contains the 
receiver-satellite unit direction vectors ui as its rows, em is the 
m-vector of ones, and again c0b0 = 0. The unknown receiver 
coordinate components and clock error are, respectively, 
denoted by the 3-vector x and scalar dt. The dispersion of the 
observables is characterized through the standard deviation 
�p and the identity matrix Im . At this stage, to simplify our 
analysis, we do not consider a satellite-elevation-dependent 
variance matrix. In the following, we only concentrate on 
the 0-driven difference between IR and IRo, as the prob-
ability of the occurrence of 0 is by far larger than that of 
the alternative hypotheses.

Evaluation of 
(
IR|

0
− IR

o|
0

)

Setting i = 0 in (25), we have

which shows, for a given satellite geometry (design matrix), 
that the difference (IR|0 − IRo|0) depends on PFA = �, 
x and Qyy. In the following, for a few satellite geometries, 
we illustrate (IR|0 − IRo|0) as function of the contribut-
ing factors. Note, we will compute the integrity risk for the 
horizontal components and the vertical component sepa-
rately. As such, the integrity risk for the vertical component 
is computed for

(45)i ∶ E(y) = [G em]

[
x

dt

]
+ cibi, Qyy = �2

p
Im

(46)

IR|0 − IR
o|0 =

m∑

j=1

[
P(x̂j ∈ c

x
|t ∈ j,0)

−P(x̂j ∈ c
x
|0)

]
P
(
t ∈ j|0

)

(47)xV
=
{
�V ∈ ℝ|||�V − xV | ≤ AL

}

Fig. 5   Skyplot of the satellites (top), the difference (IR|0 − IR
o|0) 

for vertical component (second row) and horizontal components 
(third and fourth rows) in the model given in (45), as a function of 
alert limit AL, for different values of �p (cf. 45) and PFA = �
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and for the horizontal components for

where xH ∈ ℝ2 and xV ∈ ℝ are, respectively, the horizontal 
components and the vertical component of x. Region xH

 is 
a circle with radius AL, and ̃xH

 is an ellipse driven by cofac-
tor matrix Cx̂H0

x̂H0
. Without loss of generality, our illustra-

tions will be depicted for x = 0, thus xV = 0 and xH = 0.

Example 1: Fig. 5

The skyplot in Fig. 5 (top) shows a geometry of six satellites. 
The graphs of the difference (IR|0 − IRo|0) as a function 
of AL are shown for the vertical component [second row] and 
the horizontal components (third and fourth rows) for different 
values of �p (cf. 45) and PFA = �. The third row corresponds 
with xH

 , cf. (48), while the fourth row corresponds with 
̃xH

 , cf. (49). It is important to note that (IR|0 − IRo|0) 
has always ‘positive’ values for all components, meaning 
that employing the approximate integrity risk instead of the 
rigorous one could be dangerous, depending on the appli-
cation at hand. To get a better appreciation of such danger, 
the values of (IR|0 − IRo|0) together with (IR|0) are 
tabulated in Table 2 for some values of AL. For example, 
for the vertical component with the settings of PFA = 10−1, 
�p = 1m and AL = 15  m, we have (IR|0) = 0.0168 and 

(48)xH
=
{
�H ∈ ℝ

2|||||�H − xH||I2 ≤ AL
}

(49)̃xH
=

{
𝜃H ∈ ℝ2

||||
||𝜃H − xH||Cx̂H0

x̂H0

≤ AL

}

(IR|0 − IRo|0) = 0.0148, implying that the approximate 
integrity risk (IR|0) is too optimistic by a factor of 8.

We also note that all graphs as a function of AL show 
almost the same signature. They first increase and then 
decrease to zero at different slopes. Since this behavior 
depends on the AL values, it can be explained by looking at 
P(x̂∗j ∈ c

x∗
|t ∈ j,0) − P(x̂∗j ∈ c

x∗
|0) as a function of 

AL with ∗= {H,V}. We have

We now, as an example, take the vertical component integ-
rity risk. Assuming that xV = 0 and �p = 1m, Fig. 6 illus-
trates the PDFs fx̂Vj

(
𝜃V |0

)
 (dashed blue curves) and 

fx̂Vj |t∈j

(
𝜃V |t ∈ j,0

)
 for � = 10−1 (solid blue curves) and 

� = 10−2 (solid red curves), for all six alternative hypotheses 
j = 1,… , 6. It can be seen that the PDF fx̂Vj

(
𝜃V |0

)
 (dashed) 

is more peaked around zero than fx̂Vj |t∈j

(
𝜃V |t ∈ j,0

)
. 

Therefore, when the AL increases, then P(x̂Vj
∈ c

xV
|0) 

decreases more rapidly than P(x̂Vj
∈ c

xV
|t ∈ j,0). This, 

together with (50) and the fact that the probabilities 
P(x̂Vj

∈ c
xV
|0) and P(x̂Vj

∈ c
xV
|t ∈ j,0) are continuous 

functions of AL, results in increasing and then decreasing 

(50)

AL → 0 ⇒

{
P(x̂∗j ∈ c

x∗
|t ∈ j,0) → 1

P(x̂∗j ∈ c
x∗
|0) → 1

AL → ∞ ⇒

{
P(x̂∗j ∈ c

x∗
|t ∈ j,0) → 0

P(x̂∗j ∈ c
x∗
|0) → 0

Table 2   Values of the rigorous integrity risk (IR|0) and its difference with its approximation (IR|0 − IR
o|0), taken from the graphs in Fig. 5

AL (m) IR|0 IR|0 − IR
o|0

AL (m) IR|0 IR|0 − IR
o|0

PFA = 10−1, σp = 1 m
 xV

15 0.0168 0.0148 30 0.0015 0.0015
 xH

10 0.0112 0.0107 18 0.0001 0.0001
 ̃xH

5 0.0211 0.0180 10 0.0055 0.0054
PFA = 10−1, σp = 2 m

 xV
15 0.0260 0.0179 30 0.0168 0.0148

 xH
10 0.0213 0.0171 18 0.0137 0.0129

 ̃xH
5 0.1011 0.0440 10 0.0215 0.0184

PFA = 10−2, σp = 1 m
 xV

15 0.0017 0.0015 30 0.0011 0.0011
 xH

10 0.0015 0.0015 18 0.0001 0.0001
 ̃xH

5 0.0027 0.0024 10 0.0014 0.0014
PFA = 10−2, σp = 2 m

 xV
15 0.0041 0.0021 30 0.0017 0.0015

 xH
10 0.0025 0.0021 18 0.0015 0.0014

 ̃xH
5 0.0506 0.0055 10 0.0026 0.0023
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behavior for P(x̂Vj
∈ c

xV
|t ∈ j,0) − P(x̂Vj

∈ c
xV
|0) as 

function of AL.
In Fig.  5, when �p increases, the graph of 

(IR|0 − IRo|0) stretches over a larger range of AL. This 
is due to the fact that increasing �p reduces the peakedness 
of the PDFs fx̂∗j

(
𝜃∗|0

)
 and fx̂∗j |t∈j

(
𝜃∗|t ∈ j,0

)
 around 

zero. Therefore, both the probabilities P(x̂∗j ∈ c
x∗
|t ∈ j,0) 

and P(x̂∗j ∈ c
x∗
|0) behave more smoothly as function of 

AL, and so does their difference.
Decreasing � = PFA by a factor of 10, we note that 

the graphs of (IR|0 − IRo|0) for both the vertical and 

horizontal components also decrease by almost a factor of 
10. In (46), the dependence on the false alarm probability 
� is introduced by P(t ∈ j|0) and P(x̂j ∈ c

x
|t ∈ j,0).

With the definition of 0 in (6) and j≠0 in (8), for some 
scalar 0 < s < 1, we have

Therefore, if � reduces, for instance, by a factor of 10, then 
the probability P

(
t ∈ j≠0|0

)
 also decreases by a factor of 

10. For the vertical component, as Fig. 6 shows, changing � 
from 10−1 to 10−2 does not significantly affect the shape of 
fx̂Vj |t∈j

(
𝜃V |t ∈ j,0

)
 for j = 2, 3, 5, 6. Therefore, the lead-

ing factors driving the difference between (IR|0 − IRo|0) 
for � = 10−1 and (IR|0 − IRo|0) for � = 10−2 are the 
probabilities P

(
t ∈ j≠0|0

)
 which, according to (51), get 

10 times smaller when reducing � from 10−1 to 10−2. There-
fore, the reduction of (IR|0 − IRo|0) due to reducing � 
from 10−1 to 10−2 is expected to be by almost one order of 
magnitude.

From Fig. 6, we note that the difference between the two 
PDFs fx̂Vj

(
𝜃V |0

)
 and fx̂Vj |t∈j

(
𝜃V |t ∈ j,0

)
 can be 

arranged in an ascending order for j = 6, 3, 5, 2, 1, 4. To 
understand the impact of conditioning on t ∈ j on x̂j, we 
consider (11), which describes the link between x̂j and t 
established through Lj , cf. (12). For the observational model 
at hand, in which the redundancy is r = 2 and also x ∈ ℝ3, 
Lj is a 3 × 2 matrix which can be decomposed as 
Lj = [lj,1, lj,2, lj,3]

T with lj,i ∈ ℝ2(i = 1, 2, 3). The conditional 
PDF fx̂Vj |t∈j

(
𝜃V |t ∈ j,0

)
 is then given by

 in which

with qx̂0 x̂V0 ∈ ℝ3 the covariance vector between x̂0 and x̂V0
 , 

wj(�) given by (7), and the average receiver-satellite unit 
direction vector ū =

1

m

∑m

j=1
uj. The above equations reveal 

that the impact of Lj on the vertical component x̂Vj
 is gov-

erned by various factors. Table  3 gives the values of 
|qT

x̂0 x̂V0
(uj − ū)|

/
||ctj ||Qtt

 in (53) for �p = 1m for all hypoth-
eses j = 1,… , 6. As the value of P

(
t ∈ j|0

)
 does not 

(51)� → s × � ⇒ P(t ∈ j≠0|0) → s × P
(
t ∈ j≠0|0

)
.

(52)

fx̂Vj |t∈j
(𝜃V |t ∈ j,0) =

1

P(t ∈ j|0)

× �
j

ft(𝜏|0) fx̂V0
(𝜃V + lT

j,3
𝜏|0) d𝜏

(53)lT
j,3
𝜏 = −

wj(𝜏)

||ctj ||Qtt

qT
x̂0 x̂V0

(
uj − ū

)

Fig. 6   Illustration of the PDFs fx̂Vj
(
𝜃V |0

)
 (dashed blue curves) and 

fx̂Vj |t∈j

(
𝜃V |t ∈ j,0

)
 for � = 10−1 (blue curves) and � = 10−2 (red 

curves), for the model in (45), corresponding to the satellite geometry 
in Fig. 5 and �p = 1m, for all six alternative hypotheses j = 1,… , 6. 
The probability given on top of each panel is computed for � = 10−1
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change too much for different j (see Fig. 6), it can be stated 
that the shapes of the regions j are similar to each other. 
Therefore, the leading factor driving the difference in the 
shape of fx̂Vj |t∈j

(
𝜃V |t ∈ j,0

)
 is |qT

x̂0 x̂V0

(
uj − ū

)
|
/
||ctj ||Qtt

 
which is by far greatest for j = 4. This explains the discrep-
a n c y  b e t w e e n  fx̂V4 |t∈4

(
𝜃V |t ∈ 4,0

)
 a n d 

fx̂Vj≠4 |t∈j≠4
(
𝜃V |t ∈ j≠4,0

)
. The red and blue curves for 

j = 4 in Fig. 6 (middle right) really differ from those in the 
other panels.

Example 2: Fig. 7

Figure 7 presents the same type of information as Fig. 5 but 
for a different geometry of six satellites. For this example, 
again we note the ‘positive’ values for (IR|0 − IRo|0) in 
case of both the vertical and horizontal components. The 
difference in integrity risk (rigorous minus approximate) in 
general behaves similar to the earlier example.

Example 3: Fig. 8

In Fig. 8, we present the same type of information as in 
Figs. 5 and 7, but now for a multi-constellation example 
given in Blanch et al. (2012), Appendix J. This constellation 
is made of five GPS (G) and five Galileo (E) satellites. In 
this case, we have three position parameters and two receiver 
clock parameters (one for GPS and one for Galileo). The 
misclosure vector is of the dimension of five. Note that the 
results in Fig. 8 use an elevation-dependent variance ( Cint in 
the mentioned paper) for the observations. Also here, like 
in the previous examples, we note the ‘positive’ values for 
(IR|0 − IRo|0).

Summary and conclusion

The message of this contribution finds its origin in the 
combination of parameter estimation and statistical test-
ing. These two activities are typically disconnected in prac-
tice when it comes to describing the quality of the eventual 

estimator. That is, the distribution of the estimator under an 
identified statistical hypothesis is used without regard to the 
conditioning process that led to the decision to accept this 
hypothesis as the working model. We analyzed what the 
contribution of this simplification is to the actual integrity 
risk.

Considering a null hypothesis and a single alternative, the 
different distributions were first shown graphically for a sim-
ple observational model with a one-dimensional unknown 
parameter and a one-dimensional misclosure for statistical 
testing. It was demonstrated that, with normally distributed 
observables and linear models, the distributions of the estima-
tors conditioned on false alarm and correct detection turn out 
to be no longer normal. To compute the integrity risk rigor-
ously, one needs to condition on both the hypothesis and the 
testing outcome. An approximate risk is obtained, however, 
when one omits the connection between testing and estima-
tion and thus only conditions on the hypothesis and not on the 
testing outcome.

For the simple observational model, it was mathemati-
cally proven that the rigorous integrity risk exceeds the 
approximate one. This comparison of the rigorous and 
approximate integrity risk was then continued by means of 
a number of satellite-based single-point positioning exam-
ples, focusing again on the contributions under the null 
hypothesis. Although a mathematical proof for the multi-
dimensional case does not yet exist, these examples sup-
port the previously obtained conclusion that the approxi-
mate integrity risk has a tendency of being smaller than its 
rigorous counterpart. Thus, by including the uncertainty of 
the decision process driven by statistical testing and using 
conditional distributions instead of unconditional ones, the 
actual integrity risk may end up being larger than the com-
puted approximate one. In other words, the approximate 
approach may provide a too optimistic description of the 
integrity risk and thereby not sufficiently safeguard against 
possibly hazardous situations.

We, therefore, clearly advocate the use of the rigorous 
approach to evaluate the integrity risk, as underestimating 
the risk, or knowingly allowing this possibility to exist, can-
not be acceptable particularly in critical and safety-of-life 
applications.

Table 3   Evaluation of (53) for 
Example 1 (Fig. 5) assuming 
�p = 1m

j 6 3 5 2 1 4

|qT
x̂0 x̂V0

(
uj − ū

)
|
/
||ctj ||Qtt

0.47 0.73 0.80 0.89 1.58 9.79
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Fig. 7   Skyplot of the satellites (top), the difference (IR|0 − IR
o|0) 

for vertical component (second row) and horizontal components 
(third and fourth rows) in the model given in (45), as a function of 
alert limit AL, for different values of �p (cf. 45) and PFA = �

Fig. 8   Skyplot of the satellites (top), the difference (IR|0 − IR
o|0) 

for vertical component (second row) and horizontal components 
(third row) in the model given in Blanch et al. (2012), Appendix J, as 
a function of alert limit AL, for different values of PFA = �

http://creativecommons.org/licenses/by/4.0/
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Appendix

To prove that the difference (IR|0 − IRo|0) in (42) is 
always positive, consider the following expression:

which, given P(t ∉ 0|0) = � and

can be worked out as

 with

As x̂0
0
∼  (x, 𝜎2

x̂0
) and also x = [x − AL, x + AL] is a con-

vex x-centered region, for some Alert Limit AL > 0, we have

which, given the definition of 0 in (32), results in

in  which the  second equal i ty  fo l lows f rom 
P
(
t ∈ 0|0

)
=
(

1

�
− 1

)
× P

(
t ∈ c

0
|0

)
, and the third 

inequality follows from (48) given that �𝜏� <
√
k𝛼,1 for any 

(54)I = �
x

[
fx̂a|FA(𝜃|FA) − fx̂a

(
𝜃|0

)]
d𝜃

(55)

fx̂a|FA(𝜃|FA) =
1

𝛼 �
c
0

fx̂a,t
(
𝜃, 𝜏|0

)
d𝜏

fx̂a

(
𝜃|0

)
= �

ℝ

fx̂a,t
(
𝜃, 𝜏|0

)
d𝜏

(56)I = I1 − I2

(57)

I1 = �
c
0

(
1

𝛼
− 1

)
ft
(
𝜏|0

)
�
x

fx̂0

(
𝜃 + La𝜏|0

)
d𝜃d𝜏

I2 = �
0

ft
(
𝜏|0

)
�
x

fx̂0

(
𝜃 + La𝜏|0

)
d𝜃d𝜏

(58)

|𝜏1| ≥ |𝜏2| ⇒ �
x

fx̂0

(
𝜃 + La𝜏1|0

)
d𝜃 ≤ �

x

fx̂0

(
𝜃 + La𝜏2|0

)
d𝜃

(59)

I1 ⩽ �
c
0

(
1

𝛼
− 1

)
ft
(
𝜏|0

)
d𝜏 �

x

fx̂0

(
𝜃 + La

√
k𝛼,1

|||0

)
d𝜃

= �
0

ft
(
𝜏|0

)
d𝜏 �

x

fx̂0

(
𝜃 + La

√
k𝛼,1

|||0

)
d𝜃

< �
0

ft
(
𝜏|0

)
�
x

fx̂0

(
𝜃 + La𝜏

|||0

)
d𝜃d𝜏

= I2

� ∈ 0. From (59), we have I < 0, and with c
x
= ℝn∕x we 

get for (42)
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