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Introduction

Despite the recent advances in global navigation satellite 
system (GNSS) technology, jamming, blockage and severe 
multipath fading can still significantly impair the perfor-
mance of receivers or completely deny GNSS positions and 
time services. Interference can impact the front end, acquisi-
tion, tracking and position stages of a receiver (Borio et al. 
2016). Even a low-power jamming signal can potentially 
jeopardize the functionality of receivers in a circular region 
around the jammer with a radius of several kilometers. 
Low-cost jammers commonly known as personal privacy 
devices (PPD) can be legally or illegally procured although 
laws prohibit usage of such devices. Moreover, due to ever-
increasing built-up urban environments where most satellite 
signals are faded or blocked, pure GNSS-based positioning 
and navigation becomes inaccurate and unreliable. Antenna 
array processing and GNSS/inertial navigation system (INS) 
integration are two highly effective approaches to combat 
these challenging environments.

Processing techniques utilizing an array of antennas 
can effectively defeat various types of GNSS interference 
and jamming signals regardless of their temporal or spec-
tral characteristics (Fernández-Prades and Arribas 2016; 
Daneshmand et al. 2016; Cuntz et al. 2016). As long as the 
size, cost and power consumption of additional front ends 
and antennas are justifiable, antenna array processing is one 
of the most powerful countermeasures against both narrow- 
and wideband interfering signals. In urban environments, an 
antenna array-based receiver can alleviate multipath effects 
and increase the C/N0 by steering the main lobe of the array 
gain pattern toward the satellite signal directions (Seco-Gra-
nados et al. 2003; Fante and Vaccaro 2000; Daneshmand 
et al. 2013). However, the array-based advantage depends 
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on the availability of the GNSS signals and degrades under 
blockage and outage.

Inertial navigation systems (INS) are self-contained navi-
gation systems that provide position, velocity and attitude 
information by measuring and integrating acceleration and 
angular velocity. An INS provides this information by using 
an inertial measurement unit (IMU) and applying methods 
such as dead reckoning (DR) (Noureldin et al. 2009). Given 
initial conditions and continuous acceleration and angular 
velocity measurements, one integration of acceleration pro-
vides velocity and a second integration, along with attitude 
parameters, gives 3D position. Angular rates are processed 
to provide the attitude parameters in the form of pitch, roll 
and yaw angles and also to transform navigation parameters 
from the body frame to the local-level frame coordinate 
system. Although an INS is immune to interference and 
multipath, it cannot provide long-term high-accuracy posi-
tion solutions (Grewal et al. 2007; Wong et al. 1988). The 
inherent drifts and biases in IMU measurements, if not cor-
rectly dealt with, or aided as part of an integrated solution, 
can cause significant error over time. Among sources that 
can provide reliable external aid for an INS, GNSS is of 
great interest due to its low user equipment cost and global 
availability. Compared to INS, GNSS has less short-term 
accuracy but can provide higher long-term position accuracy 
(Noureldin et al. 2013). Therefore, due to this complemen-
tary nature of both systems, GNSS/INS integrated solutions 
are widely used in many applications (Godha et al. 2006; 
Petovello et al. 2009). A GNSS/INS solution combines IMU 
and GNSS measurements. The combined solution benefits 
from the strengths of both systems. Integrating antenna 
array-based GNSS with INS can even provide stronger pro-
tection against harsh environments, which is the focus of 
this research.

The use of antenna arrays in GNSS applications is grow-
ing rapidly, especially due to their superior capability to sup-
press both narrowband and wideband interference. Owing to 
the rapid advances and miniaturization of electronic systems 
and antenna design technologies, the hardware complexity 
of antenna array-based receivers is becoming significantly 
less challenging. An array either in a form of a multi-antenna 
receiver or a complex stand-alone antenna can be used in 
many GNSS applications. The idea of employing an array of 
antennas along with an IMU to provide attitude parameters 
has been thought of before and used in practice, especially 
in military applications. In beamforming approaches such 
as minimum variance distortionless response (MVDR), the 
knowledge of satellite steering vectors and consequently the 
array platform attitude parameters is required. Employing 
IMUs, if not the only practical solution, is certainly one of 
the best ones to provide attitude parameters especially in 
dynamic situations (De Lorenzo et al. 2005; Backen et al. 
2008; Li et al. 2014; Brown and Matthews 2006; Li et al. 

2011). That being said, albeit the apparent advantage of 
combining special processing and INS/GNSS integration, 
limited literature has been published to discuss implementa-
tion details of such combined systems. One reason is that in 
most studies the focus has been on array processing rather 
than the navigation system and the receiver design. There-
fore, the integration of INS with an antenna array is either 
not discussed or attitude parameters are considered known a 
priori. Another reason is that a complete implementation and 
development of such systems is likely the scope of military 
applications and details are not publicly available.

We briefly review different types of GNSS/INS inte-
gration, namely loosely, tightly and ultra-tightly coupled, 
and two GNSS beamformers, namely blind and distortion-
less. Possible integration strategies for array GNSS with 
INS and related advantages and disadvantages of each are 
discussed. The especial focus is on ultra-tight and tightly 
coupled GNSS/INS/distortionless beamforming. To com-
pare the performance of the proposed approach with the 
conventional implementation, actual GNSS and IMU data 
and a combination of hardware and software simulators are 
used to simulate a jamming attack situation. A multi-antenna 
software receiver is employed to analyze the performance 
suggested approaches.

Herein, the following notation is adopted: Small letters 
with arrow stand for vectors, and capital bold letters stand 
for matrices. Superscripts H and T denote conjugate trans-
pose and transpose, respectively.

INS and single‑antenna GNSS integration

INS, by using the mechanization equations, converts the out-
put of IMU raw data into high-rate position, velocity and 
attitude information. In one form of these equations, the atti-
tude parameters are first estimated from the gyroscope triad 
considering the effect of earth rotation. After compensating 
for gravity, the accelerometer triad measurements are pro-
jected to the local-frame coordinate system and integrated 
to obtain 3D velocity and finally further integrated to obtain 
3D position. INS errors grow over time owing to the implicit 
mathematical integrations in the mechanization algorithm, 
which cause bias errors of accelerometers and gyroscopes to 
accumulate at the sensor outputs. The bias errors of the iner-
tial sensors are known as long-term errors. On the contrary, 
GNSS is prone to short-term noise, but it can provide better 
long-term position and velocity estimates. Depending on the 
application and compromises between simplicity versus per-
formance, there are different types of GNSS/INS integration. 
In the following, three well-known architectures of GNSS/
INS integration, namely loosely coupled, tightly coupled and 
ultra-tight (deeply coupled), are introduced.
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Different types of GNSS/INS integration

In a loosely coupled integration, the GNSS and INS pro-
cesses provide independent navigation solutions. An optimal 
estimator such as a Kalman filter then combines the solu-
tions to achieve better performance. The distinctive feature 
of this implementation is applying separate filters for the 
GNSS and INS in addition to a combing filter. INS errors 
are estimated and compensated using GNSS measurements 
to avoid long-term biases and drifts. The main advantage of 
this implementation is simplicity, and its main drawback is 
the lack of GNSS aiding and integration when the effective 
number of satellites falls below the minimum number (four 
for the general case) of satellites needed to calculate the time 
and position solutions. This limits the applicability of this 
approach in challenging environments.

In a tightly coupled integration, the measurements from 
the GNSS and INS are integrated at a deeper level. Contrary 
to the loosely coupled integration, there is only one central 
filter. In this architecture, pseudorange and pseudorange rate 
measurements or correlator output’s in-phase and quadrature 
components from the GNSS receiver, and accelerations and 
angular rates measurements from IMUs are combined in 
one filter, generally a Kalman filter (Noureldin et al. 2013; 
Groves 2008). Therefore, this integration requires access to 
the receiver’s internal process. Tightly coupled integration 
eases the constraint on the minimum number of satellites 
for the GNSS process, and any number of satellites can still 
provide information. At the cost of increasing complexity, 
it outperforms the loosely coupled architecture, especially 
in harsh environments.

Ultra-tight or deep integration takes advantage of the fact 
that the GNSS signals are related via the receiver’s posi-
tion and velocity in order to aid weaker signal tracking and 
acquisition and overall to increase the signal-to-noise ratio. 
The ultra-tight and tightly coupled integrations are similar 
in terms of integration approach and related equations. The 
difference is in the GNSS receiver structure in ultra-tight to 
improve the tracking performance by employing the vector-
based (VB) tracking methodology (Petovello et al. 2008a, b). 
Due to its capability to track weaker signals in harsh envi-
ronments, VB is now of great interest. Its receiver structure, 
however, is much more complicated. Instead of a conven-
tional pair of delay-locked loop (DLL) and frequency-locked 
loop (FLL) for each channel, a navigation filter performs 
code phase and carrier frequency tracking for all PRNs. 
Replacing phase-locked loop (PLL) is not, however, straight-
forward and practical. The effects of different ionospheric 
errors on each satellite signal and satellite oscillator errors 
make it very hard to track phase from the navigation solu-
tion feedback loop (Petovello et al. 2008a, b). In one imple-
mentation of VB tracking, the code phase and the carrier 
frequency of the numerical controlled oscillator (NCO) are 

controlled by the navigation solution filter, while the carrier 
phase tracking is controlled in each channel individually. 
Extending the VB receiver to ultra-tight by following the 
same concept of tightly coupled strategy is straightforward 
(Petovello and Lachapelle 2006). Ultra-tight integration is 
simply a VB receiver integrated with an IMU in a tightly 
coupled manner. The main difference between them is that 
ultra-tight integration utilizes a GNSS/INS integrated navi-
gation solution rather than a GNSS-only navigation solution 
in the case of VB receiver. Another advantage of ultra-tight 
integration compared to loosely and tightly coupled integra-
tion is the possibility of having a narrower tracking loop 
filter and a longer coherent integration time since with high-
rate IMU measurements the dynamics of the user motion can 
be removed in the tracking filter.

System and measurement model for the integration 
filter

There are several methods for optimal integration of GNSS 
and INS data such as Kalman filtering, particle filtering and 
artificial intelligence approaches. Among them, the Kalman 
filter and its various forms are employed mostly in prac-
tice. Kalman filtering utilizes the system’s dynamic and the 
measurements to predict the system’s behavior over time 
and estimate the parameters of interest in the system states. 
In order to use this filter, the system should be linear or lin-
earized using either predefined information or the previous 
best estimate of the system states. Kalman filtering considers 
the accuracy of the input measurements by appropriately 
weighting them in the optimization algorithm. As men-
tioned, IMU errors grow over time and need to be estimated 
and compensated. From regular measurement updates, 
Kalman filter state errors are fed back to the inertial system 
to correct gyro-drifts and accelerometer biases in the long 
term and the INS provides short-term, accurate and high-rate 
system state estimates which in turn preserve the linearity 
assumption required for the optimization. It is more con-
venient to design the filter based on states errors rather than 
states themselves. INS errors such as initial misalignment, 
accelerometer and gyro-biases are estimated and compen-
sated in the Kalman filter over time using external informa-
tion from GNSS measurements. The following system and 
measurement models are applicable for tightly coupled and 
ultra-tight integration. These models are extended to GNSS\
INS\phased array integration in “Antenna array GNSS and 
INS integration” section. The discrete form of the GNSS/
INS system model can be written as

where 𝛿x⃗ is the state error vector that typically consists of 
position (𝛿r⃗), velocity (𝛿v⃗) and attitude (𝛿𝜀) errors as well as 

(1)𝛿x⃗k = �𝛿x⃗k−1 + w⃗k−1
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optimization problem. In order to calibrate an antenna array, 
a common approach is to use an anechoic chamber to scan all 
incident signals from different directions (Kim et al. 2004). 
For GNSS applications, the satellite signals themselves can be 
used as signal sources with known positions for the calibration 
process. By employing these signals along with an IMU to pro-
vide attitude parameters of the array platform, the calibration 
can be done. This approach for array calibration is referred to 
as on-site calibration (Backen et al. 2008; Daneshmand et al. 
2014a, b). After calibration and during the normal operation, 
an IMU is still required to provide attitude parameters for 
distortionless beamforming (De Lorenzo et al. 2005; Li et al. 

2014; Brown and Matthews 2006; Li et al. 2011).
The second type of GNSS beamformers, known as blind 

beamformers, is much simpler in terms of complexity and 
implementation. In this case, the desired signals in the opti-
mization are disregarded. Assuming that the power values of 
undesired signals are much higher, the received power is mini-
mized. Since the spatial information of the desired signals in 
the optimization is disregarded, it has the drawback of possible 
loss or attenuation of some satellite signals (Zoltowski and 
Gecan 1995; Reed and Yao 1998; Carrie et al. 2005). How-
ever, due to its simplicity, this method is also of great interest 
since the array processing functionality can be fully performed 
before Doppler removal and correlation stages of a receiver 
and it can be implemented independent of the receiver’s struc-
ture, and therefore, it can be used with off-the-shelf GNSS 
receivers. In the following subsections, first a system model 
for signals received at an antenna array is presented, and then, 
blind and distortionless beamformers are reviewed.

System model

Assume that an N-element antenna array with an arbitrary 
configuration is placed on a platform that is fixed with respect 
to the body frame coordinate system. The N × 1 vector of 
complex baseband signals consisting of measured phases and 
amplitudes at different antennas for one satellite signal can be 
written as

where a⃗ is an N × 1 vector representing the steering vector 
(array manifold vector) of the satellite signal defined as

(4)y⃗ = �a⃗ + 𝜂

gyroscope drifts (𝛿�⃗�), accelerometer biases (𝛿f⃗ ) and finally 
the receiver clock error (�br) and its drift (�bd) as

For simplicity, the gyro- and accelerometer scale factors 
and other minor sources of error are not considered in the 
problem formulization. In (1), w⃗ is a white Gaussian noise 
vector and � is the dynamic coefficient matrix consisting of 
INS sensor and GNSS receiver clock models.

The measurement model for the Kalman filter in the dis-
crete-time domain is expressed as (Noureldin et al. 2013)

where 𝛿z⃗ is the differential observation vector and 𝜌 and ⃗̇𝜌 
are pseudorange and pseudorange rate measurement vectors 
obtained from GNSS signals and �� and ��̇� are correspond-
ing design matrices. The differential observation vector is 
the difference between pseudorange and pseudorange rate 
measurements predicted by the INS and the ones measured 
by the receiver. M in (3) is the number of observations or the 
number of satellites. From the satellite navigation message, 
and other predefined models, atmospheric errors, satellite 
position and clock error and other error sources should be 
calculated and considered when pseudorange and pseudor-
ange rate measurement vectors are differentiated in the equa-
tion. Before describing how to integrate the phased array 
into these equations, different types of GNSS beamforming 
are reviewed in the following section.

GNSS beamforming

GNSS beamformers can be categorized into two general 
groups. In the first group, the beamformer is designed to maxi-
mize the received power for satellite signals and minimize the 
received power for undesired signals as in the MVDR or mini-
mum power distortionless response (MPDR) methods (Van 
Trees 2002; Arribas and Fernandez-Prades 2013). Generally, 
in this type of beamforming, the optimization is performed for 
each satellite signal separately by using the signal direction of 
arrival and the array platform attitude parameters information. 
In this method, the antenna array should be fully calibrated 
since the signal’s spatial phase information is employed in 
the constrained optimization. Here, these beamformers are 
referred to as distortionless since there is no distortion on 
the carrier phase measurements as it is compensated in the 
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in which � is the wavelength of the signal and 
z⃗n, n = 1, 2,… ,N  is a 3 × 1 vector pointing to the nth 
antenna element and e⃗B is a 3 × 1 unit vector pointing to the 
satellite in the body frame coordinate system. In (4), 𝜂 is 
a complex Gaussian noise vector and � is a N × N matrix 
modeling constant uncertainties due to antenna imperfec-
tions such as unequal cable lengths and coupling coefficients 
between antenna elements. The steering vector conveys the 
attitude information of the platform on which the array is 
mounted on. e⃗B can be stated as a function of attitude param-
eters and satellite azimuth and elevation angles as (Kono-
valtsev et al. 2013; Daneshmand et al. 2013)

where � is the transformation matrix from the east, north, 
up (ENU) coordinate system to the body frame coordinate 
system and e⃗ENU is a 3 × 1 unit vector pointing to the satellite 
in the ENU coordinate system. � is formed based on three 
angles, namely r, p and y, which refer to the roll, pitch and 
yaw (heading) angles and can be expressed as

Satellite azimuth and elevation angles in the ENU coordi-
nate system, symbolized by �ENU and �ENU in (6), can be 
accurately estimated from the GNSS position solution. 
In “Antenna array GNSS and INS integration” section, it 
is shown how this information can be integrated into the 
GNSS/INS part to provide attitude information updates.

Beamformers

Blind beamforming is based on the fact that the power of 
interfering signals, in order to be destructive after correla-
tion in the receiver, should be much higher than that of the 
pre-correlation GNSS signals, these being below the noise 
floor. The blind beamformer was first studied for GPS inter-
ference mitigation by Zoltowski and Gecan (1995) which 
was called power minimization beamformer. Another form 
of implementation is based on eigenvector decomposition 

(5)
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(Van Trees 2002; Sgammini et al. 2012). The main advan-
tage of blind beamforms is their low implementation com-
plexity since the spatial information of satellite signals is 
not utilized in the optimization problem and the goal is to 
only nullify the high power interfering signals. The optimi-
zation problem for power minimization beamformer can be 
written as

where w⃗ is the array gain vector, � is the spatial correlation 
matrix and c⃗ is a constraint vector defined as

This constraint avoids the trivial solution of w⃗ = 0⃗. This 
minimization problem can be solved by using a Lagrange 
multiplier approach. The optimal gain vector is obtained as

where � is a scale factor.
The optimization criteria for distortionless beamformer 

are the same as blind beamformer, but the constraint incor-
porates the satellite direction of the arrival information as

where again, using a Lagrange multiplier approach, the opti-
mal gain vector is obtained as

The array gain vector for both beamforming approaches can 
also be obtained based on eigenvalue decomposition (EVD). 
In this approach, first a projection matrix to the interference-
free subspace from the spatial–temporal correlation matrix 
is calculated. Interference is destructive if its power is sig-
nificantly higher than that of the GNSS and noise signals. 
This makes the interference subspace easily detected and 
estimated. A projection matrix into the interference-free 
subspace can be obtained by performing an EVD of � as

(8)
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where �Int and �Null are eigenvector matrices of interference 
and the noise-plus-GNSS signal subspaces, respectively, and 
�Int and �Null are corresponding eigenvalue matrices. In (13), 
K indicates the rank of the interference subspace. K is equal 
to or less than the number of interfering signals (equal when 
the interfering signals are uncorrelated). A projection matrix 
into the reduced-rank interference-free subspace can be 
calculated as �H

Null
�Null�Null, in which �Null is formed from 

N − K eigenvectors corresponding to the N − K smallest 
eigenvalues. In fact, the filter gain vector w⃗ which minimizes 
the filter output power belongs to this interference-free sub-
space and can be expressed as

where h⃗ is an arbitrary unique vector. Considering the fact 
that �−1 ≈ �H

Null
�Null�Null (Zoltowski and Gecan 1995), w⃗ 

is equivalent to the gain vectors obtained from power mini-
mization and distortionless beamformers if h⃗ = c⃗ and h⃗ = a⃗,  
respectively. Eigen-beamformers result in sharper nulls for 
interfering signals (Citron and Kailath 1984); however, in 
contrast to the power minimization and distortionless beam-
formers, the interference dimension K should also be deter-
mined to achieve the best performance.

Antenna array GNSS and INS integration

In this section, possible combinations of a phased array 
antenna, INS and GNSS are discussed. The combinations 
of these three range from systems working independently 
beside each other or deeply integrated together. The choice 
of a suitable and efficient receiver strategy is a function of 
operation environment and system dynamic as well as fac-
tors like performance and complexity. As stated before, the 
accuracy of an INS is affected by the sensor errors, initializa-
tion and computational algorithms. The situation is worse for 
the microelectromechanical system (MEMS) sensors where 
the INS output can drift rapidly due to severe errors. GNSS 
core prevents the inertial sensors from drifting, and INS 
provides continuity in the navigational solution. Processing 
signals from an array of antennas can increase the resistance 
of the receiver to interference, multipath and attenuation and 
also can provide attitude information. Attitude parameters 
estimated form spatial processing can provide extra informa-
tion that helps to avoid inertial solution drift and therefore 
improves overall performance.

Depending on the beamforming approach and GNSS/INS 
integration, there are six possible architectures for GNSS/
INS/phased array integration. There are three combinations 
of blind beamforming with loosely, tightly and ultra-tight 
coupled GNSS/INS integrations and three combinations 
of distortionless beamforming with those three GNSS/INS 

(14)w⃗ = 𝛼�H
Null

𝛬Null�Nullh⃗

integration types. From the previous discussion, a distor-
tionless beamformer is much more complex and requires 
modifications in the receiver structure, while a blind beam-
former is much easier to implement albeit with poorer per-
formance. On the other hand, loosely coupled GNSS/INS is 
easy to implement, while tight and ultra-tight integrations 
are more complex but have better performance. These two 
require some connection between INS and GNSS or deep 
integration. Therefore, some of six possible array GNSS/INS 
integration architectures are more interesting, while others 
cannot be justified. For example, using a loosely coupled 
GNSS/INS integration with a complex distortionless multi-
antenna receiver while an inter-connection to the multi-
antenna from IMU is required anyway to provide attitude 
parameters for beamforming is not a good design. Similarly, 
it is a better choice to integrate ultra-tight GNSS/INS with 
a distortionless beamformer rather than a blind beamformer 
unless hardware considerations prevent this. In cases where 
the implementation simplicity is the most important objec-
tive, the combination of the blind beamformer with loosely 
coupled GNSS/INS is the best solution albeit with the poor-
est performance. In this case, the functionalities of GNSS, 
INS and array parts are independent. If the performance is 
the main objective, the combination of the distortionless 
beamformer with tightly coupled or ultra-tight GNSS/INS 
could be the best option.

It should be noted that due to the Schuler effect, the 
north and the east velocity component errors are bounded 
and also related to roll and pitch errors (Noureldin et al. 
2013). Therefore, the velocity updates from GNSS receiver 
can estimate and compensate roll and pitch errors. However, 
there is no strong coupling with the yaw error which con-
sequently grows over time especially in static cases. This in 
turn degrades the long-term accuracy of position and veloc-
ity estimates especially in harsh environments where GNSS 
may be regularly interrupted. The yaw error can also sig-
nificantly affect the performance of the distortionless beam-
former when the main lobe of beam pattern is not steered 
toward the direction of the satellite signal due to the attitude 
error especially when the number of antenna elements is 
large and the beam is narrow.

It is important to have a mechanism to update attitude 
parameters including the yaw angle. In addition to the supe-
rior anti-interference capability, antenna array processing 
can also be employed as an independent source of attitude 
error estimation and provide the attitude information from 
the estimated satellite steering vectors (Daneshmand et al. 
2013). Contrary to velocity updates, all three attitude angle 
errors can be compensated even in a static case. This sec-
tion focuses on how to integrate the attitude updates from 
array processing into ultra-tight or tightly coupled GNSS/
INS architectures. The Kalman equations are similar for 
both ultra-tight and tightly coupled implementations. The 
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general schematic for ultra-tight GNSS/INS/distortionless 
beamformer integration is shown in Fig. 1. There is only 
one central Kalman filter. GNSS provides pseudorange and 
pseudorange rate measurement updates and array process-
ing core in addition to beamforming provides spatial phase 
measurements. This structure suggests modifications only 
in the measurement model to incorporate the spatial phase 
measurements in the Kalman filter.

Considering (5), the measured phase vector can be 
obtained as

in which � is the N × 3 array configuration matrix where its 
nth row is equal to z⃗T

n
, n = 1, 2,… ,N. As described in (6), 

by transferring the satellite vector into a local frame (ENU), 
�⃗�GNSS can be written as

where � is defined in (7). Equation (16) is nonlinear with 
respect to the attitude parameters and should be linearized 
for the KF. As per (3), a first-order Taylor series expansion 
around �⃗�INS (calculated directly from INS and estimated sat-
ellite azimuth and elevation angles) is obtained as

in which �� is

If a rotation matrix is obtained as a result of two consecutive 
rotations with respect to the fixed reference frame, it is well 

(15)�⃗�GNSS =
2𝜋

𝜆
�e⃗B

(16)�⃗�GNSS =
2𝜋

𝜆
��e⃗ENU

(17)�⃗�GNSS = �⃗�INS +
2𝜋

𝜆
�𝛿�e⃗ENU +

2𝜋

𝜆
��𝛿e⃗ENU

(18)�� = �(p + �p, r + �r, y + �y) −�(p, r, y)

known that the resulting rotation matrix can be described 
by the product of two rotation matrices as (Noureldin et al. 
2013)

Therefore,

Also, considering (7), it is easy to conclude that for small 
values of �p, �r and �y,

where � is an 3 × 3 identity matrix and �  is the skew matrix 
of attitude error 𝛿𝜀 defined in (2) and can be expressed as

Hence, �� can be written as

In (17), 𝛿e⃗ENU is proportional to the reciprocal of distance 
between the satellite and the receiver and negligible com-
pared to the other term; the differential phase observation 
vector 𝛿�⃗� can be calculated as

(19)�(p + �p, r + �r, y + �y) = �(p, r, y)�(�p, �r, �y)

(20)�� == �(p, r, y)�(�p, �r, �y) −�(p, r, y)

(21)

�(�p, �r, �y) ==

⎡
⎢⎢⎢⎣

1 �y −�p

−�y 1 �r

�p −�r 1

⎤
⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦
−

⎡⎢⎢⎢⎣

0 −�y �p

�y 0 −�r

−�p �r 0

⎤⎥⎥⎥⎦
= � − �

(22)�� =

⎡⎢⎢⎣

p − pINS
r − rINS
y − yINS

⎤⎥⎥⎦

(23)�� = (� − � )� −� = −��

(24)
𝛿�⃗� = �⃗�GNSS − �⃗�INS = −

2𝜋

𝜆
�𝛹�e⃗ENU
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Fig. 1  General structure of ultra-tight GNSS/INS/distortionless beamformer integration
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From the skew matrix properties,

The measurement model for pseudorange and pseudorange 
rate errors in (3) can be combined with the measured phase 
vectors of all of the satellites to create the following aug-
mented measurement model:

where H�

NM×3
 is the design matrix formed from (25) and from 

all satellite signals. Another important advantage of GNSS/
INS/phased array integration is for the attitude parameter 
alignment process. East and north velocity measurements 
from accelerometers are conventionally used for leveling and 
initial estimation for pitch and roll angles. Heading align-
ment is performed by sensing the Earth’s rotation rate from 
the gyroscope measurements in the up direction, known as 
gyro-compassing (Noureldin et al. 2013). Gyro-compassing 
is not accurate for low-grade IMUs. Moreover, the above 
methods require the receiver to be static. Attitude parameters 
estimated from array processing can be used as an external 
source that provides initial attitude parameters, especially 
the heading angle. Using an antenna array relaxes the static 
receiver condition for alignment process.

It should be also noted that in the presence of interfer-
ence and antenna array uncertainties, the spatial phase 
measurement vector �⃗�GNSS in (15) is obtained after apply-
ing the calibration and projection matrices into the esti-
mated steering vector as

The rest of the equations remains unchanged.

Simulations and data analysis

In this section, two data collection test results are pre-
sented. The first one focuses on testing the GNSS/INS/
distortionless beamformer integration proposed in the 
previous section and verifying its effectiveness in harsh 
environments using simulated array data in the absence of 
interference. The second test compares the performance 
of blind and distortionless beamformers integrated with 

(25)𝛿�⃗� = −
2𝜋

𝜆
�
(
skew(�e⃗B)

)T
𝛿𝜀 =

2𝜋

𝜆
�
(
skew(�e⃗B)

)
𝛿𝜀

(26)
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− 𝜌
INS
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INS
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𝛿�⃗�1

⋮

𝛿�⃗�M

⎤
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(2M+NM)×1

=

⎡
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�𝜌

M×3
�

M×3
�

M×3
�

M×6
− 1⃗

M×1
0⃗

M×1

�
M×3

H
�̇�

M×3 �
M×3

�
M×6

0⃗
M×1

− 1⃗
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�
MN×3

�
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H
𝜑
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0⃗
MN×1

0⃗
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⎤
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(27)�⃗�GNSS = phase(�−1�a⃗)

the ultra-tight GNSS/INS using collected signals by an 
actual antenna array in a harsh environment. For both 
tests, ultra-tight software receiver GSNRx™ is used as 
the major processing tool. The software, written in C++, 
is capable of processing GPS/GLONASS/Galileo signal 
samples from one or more front ends (Petovello et al. 
2008a, b).

Test one

In this test, an array of GPS L1 C/A data was simulated 
using previously recorded 10-min GPS digital signals from a 
single antenna. Array signals were precisely simulated using 
the method outlined in (Vagle et al. 2016). The carrier Dop-
pler, code delays and the navigation data bits extracted from 
processing the collected intermediate frequency (IF) sam-
ples were then used to generate array signals by employing 
the method of phase translations. Precise steering vectors 
are available for signal generation since exact locations of 
the satellites are known a priori and attitude parameters are 
available using a tactical IMU during the data collection. 
For this test, a dynamic user situation was considered. In 
order to evaluate the performance of the proposed approach 
in a harsh environment where the number of available satel-
lite signals is limited due to blockage, the data generated 
include only the signals of four satellites, one of which 
is blocked every other 50 s. An antenna array with three 
antenna elements in a linear configuration was used in the 
simulation. The data collection setup and environment is 
shown in Fig. 2. The NovAtel SPAN™ LCI system, which 
includes a NovAtel  SPAN® enabled GNSS/INS receiver 
(SPAN SE) and a tactical grade IMU LCI, was used as ref-
erence. IMU measurements were sent to the receiver where 
a coupled GNSS/INS position, velocity and attitude solution 
were generated at a rate of 200 Hz. Raw GPS data were also 
collected under line-of-sight (LOS) condition using another 
receiver as base station (fixed on a nearby building rooftop 
on the campus of the University of Calgary) to provide pre-
cise differential positioning. The raw IMU data were also 
used in the proposed GNSS/INS/distortionless beamformer 
integration.

In the first 100 and last 250 s of data collection, the 
antenna was static. As explained before, heading error 
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correction is challenging in a conventional GNSS/INS inte-
gration, while array processing is providing attitude parame-
ters including heading. Figure 3 compares estimated heading 
angles using the conventional ultra-tight GNSS/INS integra-
tion with the proposed GNSS/INS/phased array integration 
approach when there is a 20° initial heading error and 5° 
initial roll and pitch errors. Using the proposed method, the 
initial heading error is corrected in less than a few seconds, 
while in the conventional approach, the error is slowly cor-
rected after the receiver starts moving. As explained before, 
the north and east velocity component errors are bounded 
and also related to roll and pitch errors. Therefore, the veloc-
ity updates from the GNSS receiver can estimate and com-
pensate roll and pitch errors very fast, but since there is no 
strong coupling with the heading error, it is not corrected 
over time especially for static cases. This in turn degrades 
the long-term accuracy of position and velocity estimates 

especially in harsh environments where GNSS may be regu-
larly interrupted. Figure 3 shows that since the antenna is 
static at the end of the experiment, the heading error is not 
corrected and an offset remains.

ENU position and velocity errors for these two methods 
are also shown in Figs. 4 and 5. The array-based approach 
also increases the C/N0 of each satellite signal. These 
improve the overall performance of the integrated system. 
Table 1 compares root-mean-square (RMS) and mean values 
of velocity, position and attitude errors between these two 
methods.

Test two

Figure 6 shows the test setup and data collection environ-
ment for this test. GPS L1 C/A signals were collected using 
an array of six NovAtel GPS Antennas (Model 501). The 

Novatel Antenna

Front-end 
SPAN LCI

Fig. 2  Data collection setup and trajectory for the first test
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Fig. 3  Attitude error comparison between conventional GNSS/INSS receiver and the proposed GNSS/INS/phase array receiver
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antenna array was mounted on the top of a vehicle, and the 
six antenna elements were connected to phase coherent six-
channel Fraunhofer/TeleOrbit RF front ends. The sampling 
frequency was Fs = 20 MHz. The received signals were then 
down-converted, digitized and stored for post-processing. 
Similar to the previous data collection, the NovAtel SPAN 

LCI system was used as a reference and also for provid-
ing raw IMU data. In this test, before testing the integrated 
system, the array was first calibrated in a parking lot with 
an open view to the satellites using the proposed method in 
(Daneshmand et al. 2014a, b).
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Fig. 4  ENU position error comparison between conventional GNSS/INSS receiver and the proposed GNSS/INS/phase array receiver
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Fig. 5  ENU velocity error comparison between conventional GNSS/INSS receiver and the proposed GNSS/INS/phase array receiver

Table 1  ENU position and velocity and attitude RMS and mean error comparison between conventional GNSS/INSS receiver and the proposed 
GNSS/INS/phase array receiver

Method of 
integration

E_Pos (m) N_Pos (m) U_Pos (m) E_Vel (m/s) N_Vel (m/s) U_Vel (m/s) Pitch (°) Roll (°) Heading (°)

GNSS/INS
 RMS 15.5 9.1 49.6 0.04 0.12 0.27 0.18 0.13 13.19
 Mean 12.2 7.4 41.4 0.03 0.03 0.25 − 0.01 0.01 − 8.61

GNSS/INS/phased array
 RMS 6.0 1.9 8.1 0.07 0.13 0.15 0.34 0.28 0.96
 Mean 4.7 − 1.3 − 4.5 0.01 0.02 0.01 0.01 0.06 0.14
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Fig. 7  ENU position error comparison between conventional GNSS/INS/blind beamformer and GNSS/INS/distortionless beamformer
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As shown in Fig. 6, to create a harsh environment, a vehi-
cle was driven between tall buildings where some satellite 
signals could be blocked and strong multipath reflections 
affected the received signals. Moreover, one interfering 
signal was added to the recorded data. In order to test and 
evaluate the performance of the proposed method under 

interference, a continuous wave (CW) interfering signal 
was generated using a software simulator and added to the 
recorded samples. The position of the interference does not 
change and is assumed to be located far enough so that its 
azimuth and elevation angles are constant during the 2-min 
duration of the data collection. Jammer interference-to-noise 
ratio (JINR) was 15 dB, and its carrier frequency was at the 
L1 center frequency.

Errors in ENU coordinates for position and velocity are 
shown in Figs. 7 and 8. RMS and mean values of velocity, 
position and attitude errors between these two methods are 
shown in Table 2. As suggested in this table, the distortion-
less beamformer integrated with GNSS/INS outperforms 
the blind beamformer integrated with GNSS/INS and leads 
to the less RMS position, velocity and heading errors by 
a factor of 2–3. The factors contributing to this are extra 
attitude information from the array processing and avoid-
ance of unintentional nulls for the GNSS signals. Moreover, 
steering a main lobe of beam pattern toward the direction 
of a satellite LOS signal not only increases the C/No but 
also reduces the power of multipath reflections in the distor-
tionless beamformer. In this analysis, the raw IMU data are 
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Fig. 8  ENU velocity error comparison between conventional GNSS/INS/blind beamformer and GNSS/INS/distortionless beamformer

Table 2  ENU position and velocity and attitude RMS and mean error comparison between GNSS/INS/blind beamformer and GNSS/INS/distor-
tionless beamformer

INS/GNSS/beam-
forming method

E_Pos (m) N_Pos (m) U_Pos (m) E_Vel (m/s) N_Vel (m/s) U_Vel (m/s) Pitch (°) Roll (°) Heading (°)

Blind
 RMS 19.8 3.7 25.9 0.08 0.19 0.08 0.03 0.03 3.29
 Mean − 13.9 − 3.6 − 14.9 − 0.01 0.08 0.14 0.03 0.01 − 3.22

Distortionless beamformer
 RMS 8.2 2.4 9.5 0.04 0.12 0.07 0.03 0.04 1.25
 Mean − 8.1 − 2.3 − 8.8 0.01 0.03 0.07 0.02 0.02 − 1.22
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Fig. 9  Vehicle heading estimates using array GNSS-only processing
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obtained from the tactical grade IMU; however, the standard 
IMU calibration process has not been performed to better 
show how the errors are estimated and compensated in a 
harsh environment in these two methods. It should be also 
noted that the overall improvement is higher for lower-grade 
IMUs since the additional attitude information provided by 
array is independent of IMU measurements.

In order to evaluate the accuracy of the attitude updates 
from array processing, GNSS-only processing in the 
absence of interference was performed on the entire data, 
starting from open sky to a semi-urban area. The method 
is the extended Kalman filter described in (15)–(25) and 
the phase update of the design matrix in (26). The only 
difference is that the linearization is based on the best 
previous estimate instead of estimates from INS and IMU 
measurements. Figure 9 shows heading estimates using 
the proposed approach and the reference vehicle heading 
obtained from the SPAN LCI reference system. The sat-
ellite signals used for this analysis are the same as ones 
used in Test two. The RMS and mean errors during the 
first 150 s and the rest of data are shown separately in 
Table 3. Multipath is stronger in the second half when the 
vehicle drives between tall buildings, and therefore, the 
performance of attitude estimation is slightly degraded. 
As mentioned before, the accuracy of attitude estimates 
using array processing does not depend on IMU measure-
ments. Therefore, the overall improvement due to array 
attitude updates in the integrated system would be higher 
for lower-grade IMUs with significant errors that need to 
be corrected over time.

Conclusions

Different types of GNSS/INS integration with blind and 
distortionless beamformers were studied. The focus was 
on ultra-tight and tightly coupled GNSS/INS/distortion-
less beamformer, which not only has all the advantages of 
antenna array processing and INS in dealing with blockage, 
severe multipath and jamming, but also provides attitude 
updates from array GNSS signals. The structure of a receiver 
and modifications to the conventional Kalman filter for this 
implementation was described. Two sets of data collection 
and analysis were proposed to verify the applicability of the 
proposed integrated system and to evaluate and compare its 

performance with the conventional methods for both non-
interference and interference environments.
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