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Abstract In an attempt to model regular variations of the

ionosphere, the least-squares harmonic estimation is

applied to the time series of the total electron contents

(TEC) provided by the JPL analysis center. Multivariate

and modulated harmonic estimation spectra are introduced

and estimated for the series to detect the regular and

modulated dominant frequencies of the periodic patterns.

Two significant periodic patterns are the diurnal and annual

signals with periods of 24/n hours and 365.25/n days

(n = 1, 2, …), which are the Fourier series decomposition

of the regular daily and yearly periodic variations of the

ionosphere. The spectrum shows a cluster of periods near

27 days, thereby indicating irregularities at this solar cycle

period. A series of peaks, with periods close to the diurnal

signal and its harmonics, are evident in the spectrum. In

fact, the daily signal harmonics of xi = 2pi are modulated

with the annual signal harmonics of xj = 2pj/365.25 as

xijM = 2pi(1 ± j/365.25i). Among them, at low and mid-

latitudes, the largest variations belong to the diurnal signal

modulated to the semiannual signal. Some preliminary

results on the modulated part are presented. The maximum

ranges of the modulated daily signal are ±15 TECU and

±6 TECU at high and low solar periods, respectively.

A model consisting of purely harmonic functions plus

modulated ones is capable of studying known regular

anomalies of the ionosphere, which is currently in progress.

Keywords Ionospheric modeling � Harmonic estimation �
Total electron content (TEC) � Modulated signal

Introduction

Ionospheric modeling is an important issue in many real-

time GNSS applications. Reliable and fast knowledge

about ionospheric variations becomes increasingly impor-

tant. GNSS users of single-frequency receivers and satellite

navigation systems need accurate corrections to remove

signal degradation caused by the ionosphere. Ionospheric

modeling using signal-processing techniques is the subject

of discussion in the present contribution. Long-term iono-

spheric prediction is in progress for future work.

Variations of the ionosphere can be classified as regular

and irregular. Regular variations occur more or less in

cycles and therefore can be modeled in advance with rea-

sonable accuracy. Irregular variations, which are mainly

due to abnormal solar behavior such as sudden changes in

solar radiation, cannot be predicted in advance. Examples

of regular variations are diurnal, annual, and solar cycle

variations (Jain et al. 1996). Possible modulations of the

diurnal signal with other frequencies are also identified

as regular variations. In this case, the amplitude of the

daily signal changes from one season to another. A math-

ematical foundation is developed to detect and model such

occurrences.

Since the existence of the ionosphere is due to solar

radiation, the relative location of the earth with respect to

the sun is responsible for a large part of the ionospheric

variations. The daily earth rotation changes the solar zenith
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angle, which describes a large part of the daily ionospheric

variations. The principal diurnal (24 h) component of the

daily signal and its higher harmonics (24/n hours, n [ 1)

are due to the day–night variation of the ionosphere and

hence of the total electron contents (TEC) values.

The solar zenith angle has also an annual period. Sea-

sonal variations are the result of the earth’s revolution as

the sun moves from one hemisphere to the other. There-

fore, regular daily variations of the ionosphere contain a

seasonal signature. Parts of these variations are known as

anomalies. For example, the ionization density of the layers

is greatest during the summer. The F2 layer, however, does

not follow this pattern; its ionization is greatest in winter

and least in summer. As a result, operating frequencies for

F2 layer propagation are higher in the winter than in the

summer. This is known as winter anomaly (Jones et al.

1959).

There exist other anomalies that can be related to the

regular modulated variations of the ionosphere. The

semiannual anomaly is caused because NmF2 is greater at

equinoxes than at either solstice (Torr and Torr 1973). The

evening anomaly explains that midlatitude summer NmF2

attains its highest values several hours beyond midday

(Papagiannis and Mullaney 1971). This is in connection

with the daytime double maxima (Pi et al. 1993), which

explains that twin peaks in the ionospheric TEC at middle

and lower latitudes are due to substorm signatures in both

auroral electrojet and ring current variations. There exists

another double maxima phenomenon on the latitude profile

near the maximum ionospheric effect (latitude profile at

zero longitude in the sun-fixed frame) that is due to

equatorial anomaly (Anderson 1973; Oliveira and Walter

2005).

Sunspots are partly responsible for variations in the

ionization level of the ionosphere. A regular solar cycle

variation of sunspot activity has a minimum and maximum

level and occurs approximately every 11 years. The sun-

spot distribution at the solar surface is not homogeneous.

Solar rotation with an approximate period of 27 days is

also reflected in sunspot numbers (Le Mouël et al. 2007).

The number of sunspots at any given time continually

changes as some disappear and new ones emerge.

Because the TEC values show cyclic variations for their

regular part, they can be modeled by a series of periodic

functions such as sinusoidal functions. We apply the least-

squares harmonic estimation (LS-HE), developed by

Amiri-Simkooei (2007), to the TEC values derived from

ionospheric models. Modulated and multivariate formula-

tions of the LS-HE will be developed. The formulation

used is aimed to detect, elaborate, and hence, model parts

of the regular modulated variations of the ionosphere. The

time series in our analysis consists of 12 years of bihourly

TEC values provided by IGS analysis centers.

We first introduce a mathematical foundation for the

harmonic estimation where multivariate time series and/or

modulated signals are involved. Compared with previous

studies, (Zhao et al. 2007; Unnikrishana et al. 2002), we

consider a more advanced model that includes not only the

pure sinusoidal signals but also a few modulated ones.

Then, the numerical results based on the application of the

proposed method to the TEC time series are presented. We

aim to find the principal pure and modulated frequencies

present in the TEC time series. Based on the new model

and the preliminary results obtained, a few observations

regarding the modulated part of the TEC behavior are

presented. Finally, we summarize and conclude the study.

Least-squares harmonic estimation (LS-HE)

The least-squares harmonic estimation (LS-HE) was

introduced and applied to GPS position time series by

Amiri-Simkooei (2007) and Amiri-Simkooei et al. (2007).

The method improves the functional part of the model by

identifying and including harmonic functions to the model.

Consider the following linear model of observation

equations,

EðyÞ ¼ Ax;DðyÞ ¼ Qy ð1Þ

where A is the m 9 n design matrix, Qy is the

m 9 m covariance matrix of the m-vector of observables y,

x is the n-vector of unknown parameters, and E and D are

the expectation and dispersion (or covariance) operators,

respectively. The linear model needs to be improved by

identifying some periodic patterns in the series. Such

periodic patterns are expressed as a series of sinusoidal

signals in LS-HE.

The harmonic estimation (HE) is used to find any

potential periodicities in the non-equally spaced TEC time

series provided by different analysis centers. There are

periodic components to the solar variations, the principal

one being the 11-year sunspot cycles, also called the solar

cycle. The TEC values exhibit this period. Other significant

signals that are supposed to be detectable by HE are the

diurnal and annual signals, along with their higher-order

harmonics. In this section, we introduce different aspects of

the LS-HE.

To increase the detection power of the signals, we derive

the formulation of the harmonic estimation for a multi-

variate linear model. The goal is to detect common-mode

signals that are assumed to be present in different TEC time

series. It is then applied to a set of TEC time series given at

different latitudes. Another aspect of HE is the use of

modulated sinusoidal signals rather than the pure sine

functions to express parts of the regular variations of the

ionosphere. This leads us to the modulated LS-HE.
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As a generalized form of the Fourier spectral analysis,

LS-HE is limited neither to evenly spaced data nor to

integer frequencies. As a special case, in the sequel, our

formulation will be considerably simplified for a zero-

mean stationary random process. If, in addition, the noise

of the random process is only white, we may write Qy = I,

which further simplifies the formulations. The simplified

formulations will be provided for these special cases.

Univariate harmonic estimation

The harmonic estimation (HE) is used to identify unmod-

eled periodic effects in the functional model. The simplest

structure of the series may take into account an individual

trigonometric term yðtÞ ¼ a1
k cos xkt þ a2

k sin xkt; which is

a sinusoidal wave with an initial phase. One then has to

extend the functional part Ax of the model to

EðyÞ ¼ Axþ Akxk; DðyÞ ¼ Qy ð2Þ

where the matrix Ak consists of two columns corresponding

to frequency xk of the sinusoidal function

Ak ¼

cos xkt1 sin xkt1
cos xkt2 sin xkt2

..

. ..
.

cos xktm sin xktm

2
6664

3
7775; xk ¼

a1
k

a2
k

� �
ð3Þ

with a1
k ; a

2
k and xk being unknown real numbers. The

unknown frequency xk in (2) is identified using HE. For

this purpose, the following null and alternative hypotheses

are put forward: H0: E(y) = Ax versus Ha: E(y) = Ax ?

Akxk. This means that under the null hypothesis the periodic

effect is absent, while under the alternative hypothesis

it is present. The identification of the frequency xk is

completed through the following maximization problem

(Amiri-Simkooei et al. 2007):

xk ¼ arg max
xj

PðxjÞ ð4Þ

where

PðxjÞ ¼ êT
0 Q�1

y AjðAT
j Q�1

y P?A AjÞ�1AT
j Q�1

y ê0 ð5Þ

with ê0 ¼ P?A y the least-squares residuals and P?A ¼ I �
AðAT Q�1

y AÞAT Q�1
y an orthogonal projector (both are given

under the null hypothesis). The matrix Aj has the same

structure as Ak in (3) in which xj replaces xk; the one that

maximizes P(xj) is set to be Ak. Analytical evaluation of

this maximization problem is complicated due to the

existence of many local maxima. One may apply the global

optimization methods such as those presented in Xu

(2002). In practice, it is more convenient to be satisfied

with numerical evaluation of the maximization, which

provides us with the full spectrum. A plot of the spectral

values P(xj) versus a set of discrete values for xj is used to

investigate the contribution of different frequencies in the

construction of the original time series y. We, therefore,

compute the spectral values P(xj) for discrete frequencies

xj, sampled according to Amiri-Simkooei and Tiberius

(2007) and take the one that maximizes P(xj). This is

considered to be xk from which the matrix Ak is con-

structed using (3).

After the detection of xk, one has to test H0 against Ha to

see whether the spectrum at this frequency is indeed sig-

nificant. The following test statistic is used:

T2 ¼ êT
0 Q�1

y AkðAT
k Q�1

y P?A AkÞ�1AT
k Q�1

y ê0 ð6Þ

If Qy is known, this test statistic has a central chi-square

distribution with two degrees of freedom under H0, i.e.,

T2 * v2(2,0) (Teunissen 2000). If the covariance matrix is

of the form Qy = r2Q, with r2 denoting the unknown

variance of unit weight, the test statistic as well as its

distribution will be modified (Amiri-Simkooei 2007). If the

null hypothesis is rejected, we may perform the same

procedure for finding yet other frequencies.

In the study by Vanı́ček (1971), Lomb (1976), Scargle

(1982, 1989, 1997), and Kay (1999), some forms of Fourier

transform and power spectrum methods applicable for

unevenly spaced data series are presented. With LS-HE

presented in this contribution, we may in addition include

the following terms in the analysis: 1) the linear trend Ax,

as a deterministic part of the model, and the covariance

matrix Qy, as a stochastic part of the model. Also, multi-

variate and modulated LS-HE are presented, which are the

unique features of this method.

For a zero-mean stationary random process, the pre-

ceding formulation of the spectral values P(xj) can be

simplified. In this case, we have A = 0 and hence P?A ¼ I.

Further simplification is possible in case that the random

process contains only white noise (Qy = I). Equation (5)

then simplifies to

PðxjÞ ¼ êT
0 AjðAT

j AjÞ�1AT
j ê0 ð7Þ

This spectrum is identical to the least-squares spectral

analysis (LSSA) method developed by Vanı́ček (1971),

Lomb (1976), and Scargle (1982). For some applications of

LSSA, we may refer to the study by (Craymer 1998;

Abbasi 1999; Asgari and Harmel 2005).

Multivariate harmonic estimation

If in a linear model, there exist several (r) time series, i.e.,

observation vectors with identical design matrix A and

covariance matrix Qy, the model is referred to as a multi-

variate linear model (Amiri-Simkooei 2007; 2009). We

may for instance think of the TEC time series at different
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latitudes. For a multivariate model, equation (1) is gen-

eralized to

EðvecðYÞÞ ¼ ðIr � AÞvecðXÞ þ ðIr � AkÞvecðXkÞ ð8Þ

with the multivariate covariance matrix

DðvecðYÞÞ ¼ R� Q ð9Þ

where vec is the vector operator and � is the Kronecker

product, which is an operation on two matrices of arbitrary

size resulting in a block matrix. For the properties of the

vector operator and the Kronecker product, we refer to

the study by Magnus (1988) and Amiri-Simkooei (2007).

The structure introduced in Ir � Ak indicates that there

exists a common periodic signal in all of the series, which

needs to be detected using the harmonic estimation

method. The amplitude and phase of the common sinu-

soidal signal are allowed to vary among different series.

The m 9 r matrix Y = [y1y2…yr] collects observations

from the r series, as do the n 9 r matrices X = [x1x2…xr]

and Xk = [x1kx2k…xrk] for the unknowns. In general, the full

structure of the r 9 r matrix R and some unknowns of the

m 9 m matrix Q can be estimated using a multivariate anal-

ysis method (see Amiri-Simkooei 2009).

For obtaining the power spectrum of the multivariate

model, one needs to substitute the terms in (2) from the

multivariate model as follows: I � A! A, I � Aj ! Aj,

R� Q! Qy, vecðÊÞ ! ê. One then obtains

xk ¼ arg max
xj

PðxjÞ ð10Þ

where

PðxjÞ ¼ trðÊT Q�1AjðAT
j Q�1P?A AjÞ�1AT

j Q�1ÊR�1Þ ð11Þ

with Ê ¼ P?A Y ; the least-squares residuals of r groups and

P?A ¼ I � AðAT Q�1AÞ�1AT Q�1; the orthogonal projector of

the univariate model. The power spectrum given in (11) is

referred to as multivariate power spectrum, which

simultaneously uses all time series and takes into account

the cross-correlation through R and time correlation

through Q in an optimal least-squares sense. We estimate

R as R̂ ¼ ÊT Q�1Ê=ðm� nÞ (Amiri-Simkooei 2009). To

test the significance of the detected signal, the following

test statistic

T ¼ trðÊT Q�1AkðAT
k Q�1P?A AkÞ�1AT

k Q�1ÊR�1Þ ð12Þ

is used, which under the null hypothesis is distributed as a

central chi-square distribution with 2r degrees of freedom,

i.e., T � v2ð2r; 0Þ provided that both R and Q are known

and that the original observables are normally distributed.

A special case of the multivariate model occurs when

the time series yi are zero-mean series, which gives A = 0,

and therefore, P?A ¼ I. Further simplification is achieved by

choosing R ¼ diagðr11; r22; . . .; rrrÞ when the series are

uncorrelated, and taking Q = Im when the noise of the series

is white. In this case, the power spectrum simplifies to

PðxjÞ ¼
Xr

i¼1

êT
i AjðAT

j AjÞ�1AT
j êi=rii; ð13Þ

which is the weighted stacked power spectrum of the

individual power spectra. This power spectrum has been

used in the study by Amiri-Simkooei et al. (2007) and Ray

et al. (2008) for the detection of the common-mode signals

in multivariate GPS position time series. Note that the

aforementioned assumptions are hardly valid, as the GPS

position time series are spatially and temporally correlated.

This also holds for the time series of TEC provided by the

analysis centers.

Modulated harmonic estimation

In its basic form, amplitude modulation consists of the signal

yðtÞ ¼ AðtÞ sinðxt þ uÞ, in which the amplitude A(t) of the

signal is a function of time. When A(t) is also a sinusoidal wave,

amplitude modulation produces a signal with power concen-

trated at the carrier frequency and in two adjacent sidebands,

which is called double-sideband amplitude modulation.

Therefore, the modulated signal has three components, the

original wave and two sinusoidal waves whose frequencies are

slightly above and below the original frequency.

To understand how the harmonic estimation method

works for such modulated signals, consider that the

amplitude modulation is created by forming the following

product: yðtÞ ¼ ðAþM sinðx1t þ u1ÞÞ sinðx2t þ u2Þ. This

can, for instance, be due to the diurnal signal with fre-

quency x2 modulated with the annual signal with fre-

quency x1, i.e., the amplitude of the diurnal signal changes

periodically over one year.

One can show that the frequency spectrum of this

expression consists of 3 components at frequencies x2,

x2 ? x1, and x2 - x1. These two sinusoidal components

at the sum and difference frequencies of the modulator

and original signal are called sidebands of the original

signal. The choice A = 0 eliminates the carrier compo-

nent, but leaves the sidebands. The modulated part of y(t),

namely yðtÞ ¼ M sinðx1t þ u1Þ sinðx2t þ u2Þ; can be

trigonometrically manipulated into the following equiva-

lent form:

y¼Bk sinðxs
ktþu2þu1ÞþBk sinðxd

k tþu2�u1Þ ð14Þ

or

y ¼ b1
k cos xs

kt þ b2
k sin xs

kt þ b3
k cos xd

k t þ b4
k sin xd

k t ð15Þ

where xs
k ¼ x2 þ x1 and xd

k ¼ x2 � x1. The amplitudes

of the trigonometric terms have the following relation:
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Bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1

kÞ
2 þ ðb2

kÞ
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb3

kÞ
2 þ ðb4

kÞ
2

q
. This relation

indicates that there exist only 3 independent unknown

coefficients in (15). In the subsequent analysis, it is

assumed that all coefficients in (15) are unknown. This is

allowed since overparameterization in the functional model

in general does not introduce biases provided that the

observations contain respective information that allow

estimation of all parameters and that the remaining

redundancy is large enough to obtain sufficiently precise

estimates for the parameters. This holds for time series

analysis as we usually have m � n in (1).

For the modulated signal, the extended functional part of

the model E(y) = Ax ? Akxk has the following form for Ak:

Ak ¼

cos xs
kt1 sin xs

kt1

cos xs
kt2 sin xs

kt2

..

. ..
.

cos xs
ktm sin xs

ktm

cos xd
k t1 sin xd

k t1

cos xd
k t2 sin xd

k t2

..

. ..
.

cos xd
k tm sin xd

k tm

2
66664

3
77775
;

xk ¼

b1
k

b2
k

b3
k

b4
k

2
666664

3
777775

ð16Þ

Having Aj based on the preceding equation (replace xk

with xj), equation (5) can be used to obtain the modulated

spectrum. Also, in case of r time series, equation (11) can

be used to obtain the multivariate modulated spectrum. For

the modulated spectrum, the test statistics in (6) and (12),

with Ak taken from (16), has now a central chi-square

distribution with 4 and 4r degrees of freedom, respectively,

i.e., T2� v2ð4; 0Þ and T2� v2ð4r; 0Þ.
Finally, a practical comment on the implementation of the

modulated harmonic estimation is in order. Because the

search space is two dimensional over x1 and x2, the method

could be time-consuming. This indicates that for a given x1,

a full search for the x2 is required. Since the number of

candidates to be searched for either of the frequencies is

large, two-dimensional searches become inefficient. It is,

therefore, suggested to hold one of the frequencies to an

expected value, which for instance is given from the uni-

variate harmonic analysis and search for the other frequency.

As example, x2 can be equated to the suspected diurnal

frequency or its higher harmonics in order to find the mod-

ulation with other frequencies such as the annual signal.

Results and discussions

The data used in this study are the global TEC time series

provided by the international GNSS service (IGS) pro-

duct centers. The data can be downloaded from

ftp://cddis.gsfc.nasa.gov/gps/products/ionex/. The daily

files include 12 bihourly VTEC maps starting at 1:00 UT,

or more recent containing 13 maps starting at 0:00 UT.

Such bihourly maps are expressed in an earth-fixed frame.

The geographic longitude and latitude, respectively, range

from -180� to 180� (5� resolution) and from -87.5� to

87.5� (2.5� resolution).

Different data sets were extracted and analyzed from

these analysis centers. The results presented in this study use

data from the JPL analysis center, due to the relative com-

pleteness of its data sets. The latitude cross section with the

fixed longitude k = 0� (Greenwich meridian) will be ana-

lyzed. The TEC values were extracted on the equator and on

every latitude increments of ±5�, from -80� to ?80�. This

makes 33 bihourly time series of TEC values. The series are

non-equally spaced and cover 12 years from 1998 to 2009.

The temporal and spatial variations of ionosphere are of

particular interest in this study and will be explored with the

methodology developed in the previous section.

Harmonic analysis

The least-squares harmonic estimation (LS-HE) method

developed in the previous section is now applied. The

numerical search for the discrete frequencies is applied to

(5) and (11) for the univariate, multivariate, and modulated

spectra. The step size used for the sampled periods

Tj = 2p/xj is small at high frequencies and gets larger

at lower frequencies. The following recursive relation

(Amiri-Simkooei and Tiberius 2007) is used, Tjþ1 ¼
Tj 1þ aTj=T
� �

; a ¼ 0:1; j ¼ 1; 2; . . . and a starting fre-

quency of x1 ¼ 2p=T1; with T1 ¼ 4 hours (Nyquist fre-

quency). The letter T is being the total time span of

12 years. For this time series, the lowest frequency

checked in the analysis is xmin = 2p/T, i.e., one cycle over

the total time span.

Regular periodic signals

The method is applied to the multivariate TEC time series,

consisting of 33 separate series, to obtain the least-squares

spectrum of the series and to interpret the results. Com-

mon-mode signals can be detected using the multivariate

analysis. The periods with dominant spectral values are

started from 4 h to one day (Figure 1). The spectrum shows

a periodic pattern with periods of 24 h/n, n = 1,…,6; the

spectral peaks are at harmonics of 1–6 cycles per day.

Higher harmonics could likely be seen if the sampling rate

was higher than 2 h. To explain these signals, we recall the

theory of Fourier series expansion of periodic functions.

Let the function f(x) be a periodic function with period of

T [i.e., f(x) = f(x ? T)]. This function can be written as

GPS Solut (2012) 16:77–88 81
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an infinite sum of sine and cosine functions on the interval

[- T/2, T/2]. The results presented are in fact an interesting

example of Fourier decomposition of a periodic function of

T = 24 h into a ‘truncated’ sum of simple oscillating

functions sines and cosines.

Seasonal variations of the TEC values are also of par-

ticular interest. A periodic pattern with periods of 365.25/n

days, n = 1,…,4 is the most obvious one. This is another

example of the Fourier decomposition of another periodic

pattern (T = 365.25 days) into a truncated sum of sines

and cosines. The well-known annual cycle results from the

changing of the solar zenith angle and hence solar radiation,

through one year. The first harmonics (183 days) known as

semiannual signal is due to seasonal variation of F2 region

(Mansillaa et al. 2005). Total F2 ionization is actually lower in

the local summer months than in the winter (Seeber 2003),

which is known as the winter anomaly.

There are signals with solar cycle variation. Quasiperi-

odicities near the solar rotation period of 27-days appear in

the time series of the TEC. A cluster of periods close to the

27-day period, along with their first harmonics, can be seen

in the spectrum. This indicates irregularities at this solar

cycle period as the number of sunspots at any given time

are not constant.

Modulated periodic signals

The regular signals with the periods mentioned above are

not the only signals in the TEC time series. A zoom-in of

the diurnal signal in Fig. 1 is shown in Fig. 2-a. Close to

the diurnal signal itself a series of peaks with periods of

1� je ¼ 1� j=365:25 ¼ 1� 0:0027j days (j = 1, 2, …)

are clearly seen in the spectrum. Each pair of plus and

minus signals corresponds to the diurnal signal modulated

with the annual signal and its higher harmonics (1 year/j,

j = 1, 2, …).

A similar situation holds true for the higher harmonics

of the diurnal signals (frames b, c, and d in Fig. 2). A close

inspection indicates that they are also modulated with the

annual signal and its higher harmonics. In other words, if

the frequencies of the diurnal and annual signal harmonics

are xi = 2pi and xj = 2pj/365.5, (i, j = 1, 2, …),

respectively, the frequency of the modulated signals are

then xijM ¼ 2pið1� j=365:25iÞ. This is clearly seen for the

semi-, tri-, and quad-diurnal signals in frames b, c, and d in

Fig. 2, respectively.

The above-mentioned results can also be verified

through an investigation into the modulated power spec-

trum. To see this, the multivariate spectrum of (11), with Aj

from the modulated model of (16), is calculated. For this

spectrum, the original diurnal frequency x2 ¼ 2p is kept

fixed, and the goal is to detect its modulated signal(s) with

frequency of x1 (therefore, the search is done over x1).

Figure 3-a shows that the modulated signals to the diurnal

signal are the annual signal and its higher frequencies

(1 year/j, j = 1, 2, 3, 4). The same situation holds for the

semi-, tri-, and quad-diurnal signals (frame b, semidiurnal

signal only).

Fig. 1 Multivariate least-squares power spectrum of 33 bihourly TEC time series covering latitudes ranging from -80 to 80 degrees and period

2001–2007. The vertical dashed lines indicate diurnal and annual signals along with their higher harmonics
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Model identification

A realistic functional model should therefore include the

diurnal signal and its higher harmonics, (i ¼ 1; 2; 3; 4),

modulated to the annual signal and its higher harmonics

(j ¼ 1; 2; 3; 4). Because each of the modulated signals

introduces 4 columns, there are 4� 4� 4 ¼ 64 additional

columns into the A matrix.

Fig. 2 Zoom-in of multivariate least-squares spectrum of TEC time

series. Harmonics i; i ¼ 1; 2; . . . of diurnal signals are modulated to har-

monics j; j ¼ 1; 2; . . . of annual signal as xijM ¼ 2pið1� j=365:25iÞ.

Modulated diurnal signal (a), semidiurnal signal (b), tri-diurnal signal

(c), and quad-diurnal signal (d)

Fig. 3 Multivariate least-squares spectrum of diurnal (a) and semidiurnal (b) signals modulated with annual (j = 1), semiannual (j = 2), tri-

annual (j = 3), and quad-annual (j = 4) signals
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The results presented above show that an appropriate

model that can present the long-term regular variations of

the ionosphere is composed of a series of harmonic func-

tions and modulated harmonic functions

yðtÞ ¼ y1ðtÞ þ y2ðtÞ ð17Þ

where

y1ðtÞ ¼
Xp

k¼1

a1
k cos xkt þ a2

k sin xkt ð18Þ

represents the regular harmonic terms, and

y2ðtÞ ¼
Xq

k¼1

b1
k cos xs

kt þ b2
k sin xs

kt þ b3
k cos xd

k t þ b4
k sin xd

k t

ð19Þ

represents the regular modulated harmonic terms (xs
k ¼

x2 þ x1 and xd
k ¼ x2 � x1). In this study, both p and q

are set to 4. The model expressed in (17) containing the

y1(t) and y2(t) terms can be used to evaluate several regular

variations of the ionosphere. The best known examples are

the seasonal anomaly (winter anomaly), semiannual

anomaly, evening anomaly, and equatorial anomaly.

Evaluation of these observations and phenomena using

TEC time series analysis, based on the combined effects of

y1(t) and y2(t), will be in progress. In the next subsection,

some preliminary results on the modulated regular signal

will be provided using the second part y2(t) in (17) only.

The average values of such variations become zero over

one full day. They could therefore be considered as

anomaly or disturbance of the purely harmonic variations,

which change over different seasons.

Modulated regular ionospheric variations

This section presents the modulated regular variation of

TEC values. The time series of the TEC have been detr-

ended using a linear regression model and a series of

harmonic functions to remove the diurnal and annual

variations along with their higher harmonics (18). The

detrended series are then input to a least-squares fit using

the modulated model (19).

Fig. 4 Diurnal/semidiurnal signal modulated with annual (frame a/b)

and semiannual (frame c/d) signals for 2001. Superposition of diurnal

and semidiurnal signals modulated with annual/semiannual signals

(frames on right; a ? b/c ? d), superposition of diurnal/semidiurnal

signal modulated with annual and semiannual signals (frames on

bottom; a ? c/b ? d), and superposition of all four signals (frames at

corner; a ? b?c ? d). Vertical lines indicate equinoxes and solstices
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Fig. 5 Map of diurnal variation of TEC in 2001 using modulated formula (19) at different geographical latitudes. The northern hemisphere is

left, and the southern hemisphere is right. White horizontal lines indicate the equinoxes and solstices
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Fig. 6 Map of diurnal variation of TEC in 2006 using modulated formula (19) at different geographical latitudes
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Diurnal signals modulated with annual signals

The diurnal signal frequencies are modulated with the

annual signal frequencies for the time series of TEC at the

equator (xijM ¼ 2pið1� j=365:25iÞ). Figure 4 shows the

diurnal and semidiurnal signals modulated with the annual

and semiannual signals. Among them, the diurnal signal

modulated with the semiannual signal shows the largest

variations of ±10 TECU at high solar variations for the

year 2001. At low solar variations in 2006, it could reach

up to ±4 TECU (results not included). Indicated in the plot

is also the superposition of the total modulated signal,

which can reach ±15 TECU.

For signals modulated with the annual frequency, the

diurnal signal shows maximum variations in February and

August and minimum in May and November, while the

semidiurnal signal shows maximum variations in solstices and

minimum in equinoxes. For signals modulated with the

semiannual frequency, both diurnal and semidiurnal signals

show their maximum variations in the equinoxes and solstices.

Superposition of all four signals (a ? b?c ? d) indi-

cates that the maximum variations occur in March equinox

and the June and December solstices, while the minimum

variations belong to the September equinox. The largest

values occur in March equinox and June solstice, and the

smallest values belong to the December solstice.

Variations of modulated signal

Superposition of total diurnal signal, including its higher

harmonics up to i = 4, modulated with the annual signal,

including its higher harmonics up to j = 4, is investigated

now. Since the series have been detrended using the regular

diurnal and annual signals, the modulated signal changes

around zero, with the average over one day being zero. The

changes in the modulated signal are shown for one full year

and different latitudes. See Fig. 5 for the high solar activ-

ities in 2001 and Fig. 6 for the low activities in 2006.

At all latitudes, the largest variations happen in July

when the maximum ?15 TECU is at around 6 local time,

and the minimum of -15 TECU is around 14 local time.

This holds also approximately in January. A reverse situ-

ation holds in April and November, where the minimum

occurs in the morning and the maximum in the afternoon.

The fact that the cross section of the daily signal experi-

ences two peaks (two maxima and two minima over one

year) highlights the effect of the diurnal signal modulated

with the semiannual signal.

The following observations can also be established: (1)

Close to the equinoxes in May and September the lowest

daily variations can be observed, (2) TEC variations at

different latitudes exhibit similar pattern, though they are

different in the details, (3) At very high latitudes such as

/ ¼ 75	, the range of variations reduces by a factor of 2

(±7 TECU for the high solar period in 2001), (4) Some of

the maxima and minima variations are around the equinoxes

and solstices, while some are halfway between equinox and

solstice, and (5) Similar plots to Figs. 5 and 6, but versus

latitudes and not shown here, indicate that most of the

largest variations are at lower and middle latitude adjacent

the equator, in agreement with the equatorial anomaly,

which states that at low latitudes in midday and evening

hours the NmF2 is greater at about 15� north and south of

the geomagnetic equator than at the equator itself.

Summary and conclusions

Based on the least-squares harmonic estimation (LS-HE),

we attempted to model regular modulated variations of the

ionosphere. For this purpose, a mathematical foundation

for the multivariate and modulated LS-HE was developed.

The method was applied to the time series of total electron

contents (TEC) at different latitudes provided by the JPL

analysis center. Multivariate and modulated least-squares

spectra were estimated for the series to detect and hence

model the regular and modulated dominant frequencies of

the periodic patterns.

As expected, two significant periodic patterns were the

diurnal and annual signals with the periods of 24/n hours and

365.25/n days (n = 1, 2,…), along with their higher har-

monics. The spectra showed a cluster of periods around

27 days. These clustered periods indicate irregularities at this

solar cycle period. A zoom-in of the spectrum for the diurnal

signal and/or its higher harmonics showed a series of peaks

with periods close to these signals. This indicated that the

daily signal harmonics of xi ¼ 2pi; i ¼ 1; 2; . . . were

modulated with the annual signal harmonics of xj ¼ 2pj=

365:25; j ¼ 1; 2; . . ., as xijM ¼ 2pið1� j=365:25iÞ;which

are called regular modulated frequencies. It was shown that

the largest variations belong to diurnal signal modulated to the

semiannual signal. The maximum ranges of the total modu-

lated daily signal are ±15 TECU and ±6 TECU at high and

low solar activity periods, respectively.

A model consisting of a linear trend plus regular sinusoidal

functions along with modulated sinusoidal ones is capable of

studying long-term variations of the ionosphere. Future

applications of the proposed method will consider studying

different anomalies such as the winter anomaly, semiannual

anomaly, evening anomaly, and equatorial anomaly of the

ionosphere. Long-term prediction of the regular ionospheric

variations could also be another application of the proposed

method, which is considered in future work.
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