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Abstract
We present a derivative-free separable quadratic modeling and cubic regularization
technique for solving smooth unconstrained minimization problems. The derivative-
free approach is mainly concerned with building a quadratic model that could be
generated by numerical interpolation or using a minimum Frobenius norm approach,
when the number of points available does not allow to build a complete quadratic
model. This model plays a key role to generate an approximated gradient vector and
Hessian matrix of the objective function at every iteration. We add a specialized cubic
regularization strategy to minimize the quadratic model at each iteration, that makes
use of separability. We discuss convergence results, including worst case complexity,
of the proposed schemes to first-order stationary points. Some preliminary numerical
results are presented to illustrate the robustness of the specialized separable cubic
algorithm.
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1 Introduction

We consider unconstrained minimization problems of the form

min
x∈Rn

f (x), (1)

where the objective function f : R
n → R is continuously differentiable in R

n .
However, we assume that the derivatives of f are not available and that cannot be
easily approximated by finite difference methods. This situation frequently arises
when f must be evaluated through black-box simulation packages, and each function
evaluation may be costly and/or contaminated with noise (Conn et al. 2009b).

Recently (Brás et al. 2020;Martínez and Raydan 2015, 2017), in a derivative-based
context, several separable models combined with either a variable-norm trust-region
strategy or with a cubic regularization scheme were proposed for solving (1), and
their standard asymptotic convergence results were established. The main idea of
these separable model approaches is to minimize a quadratic (or a cubic) model at
each iteration, in which the quadratic part is the second-order Taylor approximation
of the objective function. With a suitable change of variables, based on the Schur
factorization, the solution of these subproblems is trivialized and an adequate choice
of the norm at each iteration permits the employment of a trust-region reduction
procedure that ensures the fulfillment of global convergence to second-order stationary
points (Brás et al. 2020; Martínez and Raydan 2015). In that case, the separable model
method with a trust-region strategy has the same asymptotic convergence properties
as the trust-region Newton method. Later in Martínez and Raydan (2017), starting
with the same modeling introduced in Martínez and Raydan (2015), the trust-region
schemewas replacedwith a separable cubic regularization strategy.Adding convenient
regularization terms, the standard asymptotic convergence results were retained, and
moreover the complexity of the cubic strategy for finding approximate first-order
stationary points became O(ε−3/2). For the separable cubic regularization approach
used in Martínez and Raydan (2017), complexity results with respect to second-order
stationarity were also established. We note that regularization procedures serve to the
same purpose and are strongly related to trust-region schemes, with the advantage of
possessing improved worst-case complexity (WCC) bounds; see, e.g., (Bellavia et al.
2021; Birgin et al. 2017; Cartis et al. 2011a, b; Cartis and Scheinberg 2018; Grapiglia
et al. 2015; Karas et al. 2015; Lu et al. 2012; Martínez 2017; Nesterov and Polyak
2006; Xu et al. 2020).

However, as previously mentioned, the separable cubic approaches developed in
Brás et al. (2020), Martínez and Raydan (2015), Martínez and Raydan (2017) are
based on the availability of the exact gradient vector and the exact Hessian matrix
at every iteration. When exact derivatives are not available, quadratic models which
are based only on the objective function values, computed at sample points, can be
obtained retaining good quality of approximation of the gradient and the Hessian of
the objective function. These derivative-free models can be constructed by means
of polynomial interpolation or regression or by any other approximation technique.
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These models are called, depending on their accuracy, fully-linear or fully-quadratic;
see (Conn et al. 2008a, b, 2009b) for details.

Fully-linear and fully-quadraticmodels are thebasis for derivative-free optimization
trust-region methods (Conn et al. 2009a, b; Scheinberg and Toint 2010) and have also
been successfully used in the definition of a search step for unconstrained directional
direct search algorithms (Custódio et al. 2010). In the latter, minimum Frobenious
norm approaches are adopted, when the number of points available does not allow the
computation of a determined interpolation model.

This state of affairs motivated us to develop a derivative-free separable version
of the regularized method introduced in Martínez and Raydan (2017). This means
that we will start with a derivative-free quadratic model, which can be obtained by
different schemes, to obtain an approximated gradient vector and Hessian matrix per
iteration, and thenwewill add the separable regularization cubic terms associated with
an adaptive regularization parameter to guarantee convergence to stationary points.

The paper is organized as follows. In Sect. 2 we present the main ideas behind the
derivative-based separable modeling approaches. Section3 revises several derivative-
free schemes for building quadratic models. In Sect. 4 we describe our proposed
derivative-free separable cubic regularization strategy, and discuss the associated con-
vergence properties. Section5 reports numerical results to give further insight into the
proposed approach. Finally, in Sect. 6 we present some concluding remarks.

Throughout, unless otherwise specified, we will use the Euclidean norm ‖x‖ =
(x�x)1/2 on R

n , where the inner product x�x = ∑n
i=1 x

2
i . For a given �̃ > 0 we

will denote the closed ball B(x; �̃) = {y ∈ R
n | ‖y − x‖ ≤ �̃}.

2 Separable cubic modeling

In the standard derivative-based quadratic modeling approach, for solving (1), a
quadraticmodel of f (x) around xk is constructed by defining themodel of the objective
function as

mk(s) = fk + g�
k s + 1

2
s�Hks, (2)

where fk = f (xk), gk = ∇ f (xk) is the gradient vector at xk , and Hk is either the
Hessian of f at xk , ∇2 f (xk), or a symmetric approximation of it. The step sk is the
minimizer of mk(s).

In Martínez and Raydan (2015), instead of using the standard quadratic model
associated with Newton’s method, the equivalent separable quadratic model

mS
k (y) = fk + (Q�

k gk)
�y + 1

2
y�Dk y (3)

was considered to approximate the objective function f around the iterate xk . In (3),
the change of variables y = Q�

k s is used, where the spectral (or Schur) factorization
of Hk :

Hk = QkDkQ
�
k , (4)
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124 A. L. Custódio et al.

is computed at every iteration. In (4), Qk is an orthogonal n×n matrix whose columns
are the eigenvectors of Hk , and Dk is a real diagonal n × n matrix whose diagonal
entries are the eigenvalues of Hk . Let us note that since Hk is symmetric then (4)
is well-defined for all k. We also note that (3) may be non-convex, i.e., some of the
diagonal entries of Dk could be negative.

For the separable regularization counterpart in Martínez and Raydan (2017), the
model (3) is kept and a cubic regularization term is added:

mSR
k (y) = fk + (Q�

k gk)
�y + 1

2
y�Dk y + σk

1

6

n∑

i=1

|yi |3, (5)

where σk ≥ 0 is dynamically obtained. Note that a 1/6 factor is included in the last
term of (5) to simplify derivative expressions. Notice also that, since Dk is a diagonal
matrix, models (3) and (5) are indeed separable.

As a consequence, at every iteration k the subproblem

min
y∈Rn

mSR
k (y)

is solved to compute the vector yk , and then the step will be recovered as sk = Qk yk .
The gradient of the model mSR

k (y), given by (5), can be written as follows:

∇mSR
k (y) = Q�

k gk + Dk y + σk

2
ûk,

where the i-th entry of the n-dimensional vector ûk is equal to |yi |yi . Similarly, the
Hessian of (5) is given by

∇2mSR
k (y) = Dk + σk diag(|yi |).

To solve ∇mSR
k (y) = 0, and find the critical points, we only need to independently

minimize n one-dimensional special functions. These special one-variable functions
are of the following form

h(z) = c0 + c1z + c2z
2 + c3|z|3.

The details on how to find the globalminimizer of h(z) are fully described in (Martínez
and Raydan 2017, Sect. 3).

In the next section, we will describe several derivative-free alternatives to compute
a model of type (2), to be incorporated in the separable regularized model (5).

3 Fully-linear and fully-quadratic derivative-freemodels

Interpolation or regression based models are commonly used in derivative-free opti-
mization as surrogates of the objective function. In particular, quadratic interpolation
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models are used as replacement of Taylor models in derivative-free trust-region
approaches (Conn et al. 2009a; Scheinberg and Toint 2010).

The terminology fully-linear and fully-quadratic, to describe a derivative-freemodel
that retains Taylor-like bounds, was first proposed in Conn et al. (2009b). Defini-
tions 3.1 and 3.2 provide a slightly modified version of it, suited for the present work.
Throughout this section, �max is a given positive constant that represents an upper
bound on the radii of the regions in which the models are built.

Assumption 3.1 Let f be a continuously differentiable function with Lipschitz con-
tinuous gradient (with constant Lg).

Definition 3.1 (Conn et al. 2009b, Definition 6.1) Let a function f : Rn → R, that
satisfies Assumption 3.1, be given. A set of model functions M = {m : Rn → R, m ∈
C1} is called a fully-linear class of models if:

1. There exist positive constants κe f and κeg such that for any x ∈ R
n and �̃ ∈

(0,�max ] there exists a model function m(s) in M , with Lipschitz continuous
gradient, and such that

• the error between the gradient of the model and the gradient of the function
satisfies

‖∇ f (x + s) − ∇m(s)‖ ≤ κeg �̃, ∀s ∈ B(0; �̃), (6)

and
• the error between the model and the function satisfies

| f (x + s) − m(s)| ≤ κe f �̃2, ∀s ∈ B(0; �̃).

Such a model m is called fully-linear on B(x; �̃).
2. For this class M there exists an algorithm, which we will call a ‘model-

improvement’ algorithm, that in a finite, uniformly bounded (with respect to x
and �̃) number of steps can

• either establish that a given model m ∈ M is fully-linear on B(x; �̃) (we will
say that a certificate has been provided),

• or find a model m ∈ M that is fully-linear on B(x; �̃).

For fully-quadraticmodels, stronger assumptions on the smoothness of the objective
function are required.

Assumption 3.2 Let f be a twice continuously differentiable function with Lipschitz
continuous Hessian (with constant LH ).

Definition 3.2 (Conn et al. 2009b, Definition 6.2) Let a function f : Rn → R, that
satisfies Assumption 3.2, be given. A set of model functions M = {m : Rn → R, m ∈
C2} is called a fully-quadratic class of models if:

1. There exist positive constants κe f , κeg , and κeh such that for any x ∈ R
n and

�̃ ∈ (0,�max ] there exists a model functionm(s) inM , with Lipschitz continuous
Hessian, and such that
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• the error between the Hessian of the model and the Hessian of the function
satisfies

‖∇2 f (x + s) − ∇2m(s)‖ ≤ κeh �̃, ∀s ∈ B(0; �̃), (7)

• the error between the gradient of the model and the gradient of the function
satisfies

‖∇ f (x + s) − ∇m(s)‖ ≤ κeg �̃2, ∀s ∈ B(0; �̃), (8)

and
• the error between the model and the function satisfies

| f (x + s) − m(s)| ≤ κe f �̃3, ∀s ∈ B(0; �̃).

Such a model m is called fully-quadratic on B(x; �̃).
2. For this class M there exists an algorithm, which we will call a ‘model-

improvement’ algorithm, that in a finite, uniformly bounded (with respect to x
and �̃) number of steps can

• either establish that a given model m ∈ M is fully-quadratic on B(x; �̃) (we
will say that a certificate has been provided),

• or find a model m ∈ M that is fully-quadratic on B(x; �̃).

Algorithms for model certification or for improving the quality of a given model
can be found in Conn et al. (2009b). This quality is directly related to the geometry of
the sample set used in its computation (Conn et al. 2008a, b). However, some practical
approaches have reported good numerical results related to implementations that do
not consider a strict geometry control (Bandeira et al. 2012; Fasano et al. 2009).

4 Derivative-free separable cubic regularization approach

In a derivative-free optimization setting, instead of (2), we will consider the following
quadratic model

m̃k(s) = fk + g̃�
k s + 1

2
s� H̃ks,

where g̃k = ∇m̃k(xk) and H̃k = ∇2m̃k(xk) are good quality approximations of gk
and Hk , respectively, built using interpolation or aminimumFrobenius norm approach
(see Chapters 3 and 5 in Conn et al. (2009b)). Hence, analogous to the discussion in
Sect. 2, by using the change of variables y = Q̃�

k s, where H̃k = Q̃k D̃k Q̃�
k , with Q̃k

an orthogonal n×n matrix whose columns are the eigenvectors of H̃k , and D̃k is a real
diagonal n×n matrix whose diagonal entries are the eigenvalues of H̃k , the equivalent
separable quadratic model

m̃S
k (y) = fk + (Q̃�

k g̃k)
�y + 1

2
y� D̃k y (9)

is used for the approximation of the objective function f around the iterate xk . We
then regularize (9) by adding a cubic or a quadratic term, depending on having been
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able to compute a fully-quadratic or a fully-linear model, respectively:

m̃SR
k (y) = fk + (Q̃�

k g̃k)
�y + 1

2
y� D̃k y + σk

1

p!
n∑

i=1

|yi |p,

where p ∈ {2, 3} and σk ≥ 0 is dynamically obtained.
As a consequence, at every iteration k the subproblem

min
y∈Rn

m̃SR
k (y) subject to

ξ

σk
≤ ‖y‖∞ ≤ �, (10)

is solved to compute the vector yk , and then the step will be recovered as sk = Q̃k yk .
The constraint ‖y‖∞ ≤ �, where � > 0 is a fixed given parameter for all k, is

necessary to ensure the existence of a solution of problem (10) in some cases. Indeed,
since some diagonal entries of D̃k might be negative, for p = 2 the existence of an
unconstrainedminimizer of the objective function in (10) is not guaranteed. In the case
of p = 3 and any σk > 0, the existence of an unconstrained minimizer of the same
function is guaranteed. Nevertheless, if some diagonal entries of D̃k are negative, and
σk is still close to zero, imposing the constraint ‖y‖∞ ≤ � prevents the obtained
vector y from being too large, and therefore avoids unnecessary numerical difficulties
when solving (10).

The additional constraint ‖y‖∞ ≥ ξ
σk

relates the stepsize with the regularization
parameter and is required to establish WCC results. A similar strategy has been used
in Cartis and Scheinberg (2018) when building models using a probabilistic approach.
As we will see in Section 4, this additional lower bound does not prohibit the iterative
process to drive the first-order stationarity measure below any given small positive
threshold.

In this case, by solving n one-dimensional independent minimization problems in
the closed intervals [−�,−ξ/σ ] and [ξ/σ,�], we are being more demanding than
the original constraint. These one-variable functions are of the form

h(z) = c0 + c1z + c2z
2 + c3|z|3.

The details on how to find the global minimizer of h(z) on the closed and bounded
intervals [−�,−ξ/σ ] and [ξ/σ,�], for � > 0 and ξ/σ > 0, are similar to the
ones described in (Martínez and Raydan 2017, Sect. 3). A practical approach for the
resolution of (10) will be suggested and tested in Sect. 5.

The following algorithm is an adaptation of Algorithm 2.1 in Martínez and Raydan
(2017), for the derivative-free case.

Algorithm 1
Let α > 0, σsmall > 0, η > 1, and ξ > 0 be algorithmic parameters. Assume that
x0 ∈ R

n is a given initial approximation to the solution of problem (1). Initialize
k ← 0.

Step 1: Choose σk = σsmall and � >
ξ
σk
.
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Step 2:Build a quadratic polynomialmodel m̃k(s) = fk+g̃�
k s+ 1

2 s
� H̃ks, by selecting

points in B(xk,
ξ
σk

) (fully-linear, minimumFrobenious normmodels or fully-quadratic
polynomial models can be considered, depending on the number of points available
for reuse or on the effort allowed in terms of number of function evaluations). Set
p = 2 (respectively p = 3) if the computed model is fully-linear (respectively fully-
quadratic).

Step 3: Compute a solution strial of

Minimize g̃�
k s + 1

2
s� H̃ks + σk

p!
n∑

i=1

|[Q̃�
k s]i |p subject to

ξ

σk
≤ ‖Q̃�

k s‖∞ ≤ �,

(11)

where H̃k = Q̃k D̃k Q̃�
k is a Schur factorization of H̃k .

Step 4: Test the sufficient decrease condition

f (xk + strial) ≤ f (xk) − α

n∑

i=1

|[Q̃�
k strial ]i |p. (12)

If (12) is fulfilled, define sk = strial , xk+1 = xk + sk , update k ← k + 1 and go to
Step 1. Otherwise set σnew = ησk , update σk ← σnew, and go to Step 2.

Remark 4.1 The upper bound constraint in (11) does not affect the separability nature
of Step 3, since it can be equivalently replaced by |(Q̃�

k s)i | ≤ � for all i . However, the
lower bound in (11) affects the separability of Step 3. Two strategies have been devel-
oped to impose the lower bound constraint in (11) while maintaining the separability
approach. These strategies will be described in Sect. 5.

In the following subsections, the convergence andworst-case behavior ofAlgorithm
1 will be analyzed independently for the fully-linear and fully-quadratic cases.

4.1 Fully-linear approach

This subsection will be devoted to the analysis of the WCC of Algorithm 1 when
fully-linear models are used. For that, we need the following technical lemma.

Lemma 4.1 (Nesterov 2004, Lemma 1.2.3) Let Assumption 3.1 hold. Then, we have

∣
∣
∣ f (x + s) − f (x) − ∇ f (x)�s

∣
∣
∣ ≤ Lg

2
‖s‖2. (13)

As it is common in nonlinear optimization, we assume that the norm of the Hessian
of each model is bounded.
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Assumption 4.1 Assume that the norm of the Hessian of the model is bounded, i.e.,

‖H̃k‖ ≤ κH̃ , ∀k ≥ 0 (14)

for some κH̃ > 0.

We also assume that the trial point provides decrease to the current model, i.e., that
for p = 2 the value of the objective function of (11) at strial is less than or equal to
its value at s = 0.

Assumption 4.2 Assume that

g̃�
k strial + 1

2
s�
tr ial H̃kstrial + σk

2

n∑

i=1

[Q̃�
k strial ]2i ≤ 0. (15)

Clearly, (15) holds if strial is a global solution of (11) for p = 2. Hence, taking
advantage of our separability approach, the vector strial obtained at Step 3 ofAlgorithm
1 satisfies (15).

In the following lemma, we will derive an upper bound on the number of function
evaluations required to satisfy the sufficient decrease condition (12), which in turn
guarantees that every iteration of Algorithm 1 is well-defined. Moreover, we also
obtain an upper bound for the regularization parameter.

Lemma 4.2 Let Assumptions 3.1, 4.1, and 4.2 hold and assume that at Step 2 of
Algorithm 1 a fully-linear model is always used. In order to satisfy condition (12),
with p = 2, Algorithm 1 needs at most

⎡

⎢
⎢
⎢

log
([

2
(
α + Lg

2 + κeg + κH̃
2

)]
/σsmall

)

logη

⎤

⎥
⎥
⎥

+ 1 (16)

function evaluations, not accounting for the ones required for model computation. In
addition, the maximum value of σk for which (12) is satisfied, is given by

σmax = max

{

σsmall , 2η

(

α + Lg

2
+ κeg + κH̃

2

)}

. (17)

Proof First, we will show that if

σk ≥ 2

(

α + Lg

2
+ κeg + κH̃

2

)

(18)

then the sufficient decrease condition (12) of Algorithm 1 is satisfied for p = 2.
In view of (15), we have

f (xk + strial) − f (xk) ≤ f (xk + strial) − f (xk) − g̃�
k strial − 1

2
s�
tr ial H̃kstrial
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−σk

2

n∑

i=1

[Q̃�
k strial ]2i

≤| f (xk+strial)− f (xk)−∇ f (xk)
�strial |

+|(∇ f (xk) − g̃k)
�strial |

+
∣
∣
∣
∣
1

2
s�
tr ial H̃kstrial

∣
∣
∣
∣−

σk

2

n∑

i=1

[Q̃�
k strial ]2i .

Thus, by using (6), (13), (14), and ‖strial‖ ≥ ξ
σk

(due to Step 3 of Algorithm 1), we
obtain

f (xk + strial) − f (xk) ≤ Lg

2
‖strial‖2κeg ξ

σk
‖strial‖

+κH̃

2
‖strial‖2−σk

2

n∑

i=1

[Q̃�
k strial ]2i

≤
(
Lg

2
+ κeg + κH̃

2

)

‖strial‖2 − σk

2

n∑

i=1

[Q̃�
k strial ]2i

=
(
Lg

2
+ κeg + κH̃

2
− σk

2

) n∑

i=1

[Q̃�
k strial ]2i

≤ −α

n∑

i=1

[Q̃�
k strial ]2i ,

where the equality in the third line follows from the fact that Q̃ is an orthogonal n×n
matrix and so ‖strial‖2 = ‖Q̃�

k strial‖2 = ∑n
i=1[Q̃�

k strial ]2i , and the last inequality
holds due to (18).

Now, from the way σk is updated at Step 4 of Algorithm 1, it can be easily seen that
for the fulfillment of (12) with p = 2 we need

⌈ log
([

2
(

+ Lg
2 + κeg + κH̃

2

)]
/σsmall

)

logη

⌉+ 1

function evaluations, and, additionally, the upper bound on σk at (17) is derived
from (18). �

The following assumption, which holds for global solutions of subproblem (11)
(with p = 2), is central in establishing our WCC results. For similar assumptions
required to obtain worst-case complexity bounds see (Birgin et al. 2017; Martínez
2017).
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Assumption 4.3 Assume that, for all k ≥ 0,

‖Q̃�
k strial‖∞ = ξ

σk
, or ‖Q̃�

k strial‖∞ = �,

or

∥
∥
∥
∥
∥
∥
∇s

[

g̃�
k s + 1

2
s� H̃ks + σk

2

n∑

i=1

[Q̃�
k s]2i

]

s=strial

∥
∥
∥
∥
∥
∥

≤ β1‖strial‖, (19)

for some β1 > 0.

Under this assumption, we are able to prove that, when the trial point is not on the
boundary of the feasible region of (11) (with p = 2), then the norm of the gradient
of the objective function at the new point is of the same order as the norm of the trial
point.

Lemma 4.3 Let Assumptions 3.1, 4.1, 4.2, and 4.3 hold. Then, we have

‖Q̃�
k strial‖∞ = ξ

σk
or ‖Q̃�

k strial‖∞ = �, (20)

or
‖∇ f (xk + strial)‖ ≤ κ1‖strial‖,

where κ1 = Lg + κeg + κH̃ + σmax + β1, and σmax was defined in Lemma 4.2.

Proof Assume that none of the equalities at (20) hold. We have ∇sm̃SR
k (strial) =

g̃k + H̃kstrial + r(strial), where

r(strial) = σk Q̃k

(
[Q̃�

k strial ]1, . . . , [Q̃�
k strial ]n

)�
.

Now, by using Assumption 3.1, (14), and (6), we have

∥
∥
∥∇ f (xk+strial)−∇sm̃

SR
k (strial)

∥
∥
∥=
∥
∥
∥∇ f (xk+strial)−

(
g̃k+H̃kstrial+r(strial)

)∥
∥
∥

≤ ‖∇ f (xk + strial)−∇ f (xk)‖+ ‖∇ f (xk)−g̃k‖
+
∥
∥
∥H̃kstrial

∥
∥
∥+ ‖r(strial)‖

≤ (Lg + κeg + κH̃ + σmax
) ‖strial‖.

Therefore, in view of (19), we have

‖∇ f (xk + strial)‖ ≤ ‖∇ f (xk + strial) − ∇sm̃
SR
k (strial)‖ + ‖∇sm̃

SR
k (strial)‖

≤ (Lg + κeg + κH̃ + σmax + β1
) ‖strial‖,

which completes the proof. �

123



132 A. L. Custódio et al.

Now,wehave all the ingredients to derive anupper boundon the number of iterations
required by Algorithm 1 to find a point at which the norm of the gradient is below
some given positive threshold.

Theorem 4.1 Given ε > 0, let Assumptions 3.1, 4.1, 4.2, and 4.3 hold. Let {xk} be the
sequence of iterates generated by Algorithm 1, and fmin ≤ f (x0). Then the number
of iterations such that ‖∇ f (xk+1)‖ > ε and f (xk+1) > fmin is bounded above by

f (x0) − fmin

αmin

{(
ξ

σmax

)2
, ( ε

κ1
)2
} , (21)

where σmax and κ1 were defined in Lemmas 4.2 and 4.3, respectively.

Proof In view of Lemma 4.3, we have

‖sk‖ ≥ min

{
ξ

σk
,�,

‖∇ f (xk+1)‖
κ1

}

.

Hence, since ‖∇ f (xk+1)‖ > ε and � >
ξ
σk
, we obtain

‖sk‖ ≥ min

{
ξ

σk
,

ε

κ1

}

≥ min

{
ξ

σmax
,

ε

κ1

}

.

On the other hand, due to the sufficient decrease condition (12), we obtain

f (xk+1) ≤ f (xk) − α

n∑

i=1

[Q̃�
k sk]2i

= f (xk) − α‖Q̃�
k sk‖2

≤ f (xk) − αmin

{(
ξ

σmax

)2
,

(
ε

κ1

)2
}

.

By summing up these inequalities, for 0, 1, . . . , k, we obtain

k + 1 ≤ f (x0) − fmin

αmin

{(
ξ

σmax

)2
,
(

ε
κ1

)2
} ,

which concludes the proof. �
Since κeg = O(

√
n) (see Chapter 2 in Conn et al. 2009b), we have κ1 = O(

√
n).

Now, if ξ is chosen such that ξ
σmax

= O( ε
κ1

), then the dependency of the upper bound
given at (21) on n is O(n). Furthermore, for building a fully-linear model we need
O(n) function evaluations. Combining these facts with Theorem 4.1, we can derive an
upper bound on the number of function evaluations that Algorithm 1 needs for driving
the first-order stationarity measure below some given positive threshold.
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Corollary 4.1 Given ε > 0, let Assumptions 3.1, 4.1, 4.2, and 4.3 hold. Let {xk} be the
sequence of iterates generated by Algorithm 1 and assume that ‖∇ f (xk+1)‖ > ε and
f (xk+1) > fmin. Then, Algorithm 1 needs at most O (n2ε−2

)
function evaluations

for driving the norm of the gradient below ε.

The complexity bound derived here matches the one derived in Garmanjani et al.
(2016) for derivative-free trust-region optimization methods and for direct search
methods in Vicente (2013); see also Dodangeh et al. (2016).

4.2 Fully-quadratic approach

In this subsection, we will analyze the WCC of Algorithm 1 when we build fully-
quadratic models. The following lemma is essential for establishing such bounds.

Lemma 4.4 (Nesterov 2004, Lemma 1.2.4) Let Assumption 3.2 hold. Then, we have
∣
∣
∣
∣ f (x + s) − f (x) − ∇ f (x)�s − 1

2
s�∇2 f (x)s

∣
∣
∣
∣ ≤

LH

6
‖s‖3, (22)

and ∥
∥
∥∇ f (x + s) − ∇ f (x) − ∇2 f (x)s

∥
∥
∥ ≤ LH

2
‖s‖2. (23)

Similarly to the fully-linear case, we assume that the trial point provides decrease
to the current model, i.e., that for p = 3 the value of the objective function of (11) at
strial is less than or equal to its value at s = 0.

Assumption 4.4 Assume that

g̃�
k strial + 1

2
s�
tr ial H̃kstrial + σk

6

n∑

i=1

|[Q̃�
k strial ]i |3 ≤ 0. (24)

We note that (24) is clearly satisfied if strial is a global solution of (11) when p = 3.
Therefore, taking advantage of our separability approach, the vector strial obtained at
Step 3 of Algorithm 1 satisfies (24).

With this assumption, we are able to obtain upper bounds on the number of function
evaluations required to satisfy the sufficient decrease condition (12), and also on the
regularization parameter.

Lemma 4.5 Let Assumptions 3.2 and 4.4 hold and assume that at Step 2 of Algorithm 1
a fully-quadratic model is always used. In order to satisfy condition (12), with p = 3,
Algorithm 1 needs at most

⎡

⎢
⎢
⎢

log
([

6
(
α + √

n
(
LH
6 + κeg + κeh

2

))]
/σsmall

)

logη

⎤

⎥
⎥
⎥

+ 1
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function evaluations, not considering the ones required for model computation. In
addition, the maximum value of σk for which (12) is satisfied, is given by

σmax = max

{

σsmall , 6η

[

α + √
n

(
LH

6
+ κeg + κeh

2

)]}

. (25)

Proof First, we will show that if

σk ≥ 6

(

α + √
n

(
LH

6
+ κeg + κeh

2

))

(26)

then the sufficient decrease condition (12) of Algorithm 1 is satisfied, with p = 3.
In view of (22), we have

f (xk + strial) − f (xk) ≤ ∇ f (xk)
�strial + 1

2
s�
tr ial∇2 f (xk)strial + LH

6
‖strial‖3

≤ g̃�
k strial + 1

2
s�
tr ial H̃kstrial + LH

6
‖strial‖3

+ |(∇ f (xk) − g̃k)
�strial |

+ 1

2
|s�
tr ial(∇2 f (xk) − H̃k)strial |.

Thus, by using (7), (8), and since ‖strial‖ ≥ ε
σk

(due to Step 3 of Algorithm 1), we
obtain

f (xk + strial) − f (xk) ≤ g̃�
k strial + 1

2
s�
tr ial H̃kstrial + LH

6
‖strial‖3

+ κeg(
ξ

σk
)2‖strial‖ + κeh

2
‖strial‖3

≤ g̃�
k strial + 1

2
s�
tr ial H̃kstrial+

(
LH

6
+κeg+κeh

2

)

‖strial‖3.

Now, by applying (24), we have

f (xk + strial) − f (xk) ≤ −σk

6

n∑

i=1

|[Q̃�
k strial ]i |3 +

(
LH

6
+ κeg + κeh

2

)

‖strial‖3,

which, in view of the inequality ‖ · ‖3 ≥ n−1/6‖ · ‖2 (see Theorem 16 on page 26 in
Hardy et al. (1934)), leads to

f (xk+strial)− f (xk)≤−σk

6

n∑

i=1

|[Q̃�
k strial ]i |3+

√
n

(
LH

6
+κeg+κeh

2

)

‖Q̃�
k strial‖33

=
(√

n

(
LH

6
+ κeg + κeh

2

)

− σk

6

) n∑

i=1

|[Q̃�
k strial ]i |3
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≤ −α

n∑

i=1

|[Q̃�
k strial ]i |3,

where the equality in the second line follows from the fact that, for any vector w ∈
R
n , ‖w‖33 = ∑n

i=1 |wi |3 and so ‖Q̃�
k strial‖33 = ∑n

i=1 |[Q̃�
k strial ]i |3, and the last

inequality holds due to (26).
Now, from the way σk is updated at Step 4 of Algorithm 1, it can easily be seen that

for the fulfillment of (26) we need

⌈ log
([

6
(
α + √

n
(
LH
6 + κeg + κeh

2

))]
/σsmall

)

log η

⌉+ 1

function evaluations, and, additionally, the upper bound on σk at (25) is derived
from (26). �

The following assumption is quite similar to condition (14) given in Martínez and
Raydan (2017), and it holds for global solutions of subproblem (11) (with p = 3). For
similar assumptions, required to obtain worst-case complexity bounds associated with
cubic regularization, see (Bellavia et al. 2021; Birgin et al. 2017; Cartis et al. 2011b;
Cartis and Scheinberg 2018; Martínez 2017; Xu et al. 2020).

Assumption 4.5 Assume that, for all k ≥ 0,

‖Q̃�
k strial‖∞ = ξ

σk
, or ‖Q̃�

k strial‖∞ = �,

or

∥
∥
∥
∥
∥
∥
∇s

[

g̃�
k s + 1

2
s� H̃ks +

n∑

i=1

σk

6
|[Q̃�

k s]i |3
]

s=strial

∥
∥
∥
∥
∥
∥

≤ β2‖strial‖2, (27)

for some β2 > 0.

Again, we are able to prove that, when the trial point is not on the boundary of the
feasible region of (11) (with p = 3), then the norm of the gradient of the function
computed at the new point is of the order of the squared norm of the trial point.

Lemma 4.6 Let Assumptions 3.2, 4.4, and 4.5 hold. Then, we have

‖Q̃�
k strial‖∞ = ξ

σk
or ‖Q̃�

k strial‖∞ = �, (28)

or
‖∇ f (xk + strial)‖ ≤ κ2‖strial‖2,

where κ2 = LH
2 + κeg + κeh + σmax

2 + β2, and σmax was defined in Lemma 4.5.
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Proof Assume that none of the equalities at (28) hold. We have ∇sm̃SR
k (strial) =

g̃k + H̃kstrial + r(strial), where

r(strial) = σk

2
Q̃k

(
sign

(
[Q̃�

k strial ]1
)

[Q̃�
k strial ]21, . . . , sign

(
[Q̃�

k strial ]n
)

×[Q̃�
k strial ]2n

)�
.

Now, by using (23), (7), and (8), we have

∥
∥
∥∇ f (xk+strial)−∇sm̃

SR
k (strial)

∥
∥
∥=
∥
∥
∥∇ f (xk+strial)−

(
g̃k+H̃kstrial+r(strial)

)∥
∥
∥

≤
∥
∥
∥∇ f (xk+strial)−∇ f (xk)−∇2 f (xk)strial

∥
∥
∥

+ ‖∇ f (xk)−g̃k‖ +
∥
∥
∥
(
∇2 f (xk)−H̃k

)
strial

∥
∥
∥

+ ‖r(strial)‖
≤
(
LH

2
+κeg+κeh+σmax

2

)

‖strial‖2.

Therefore, in view of (27), we have

‖∇ f (xk + strial)‖ ≤ ‖∇ f (xk + strial) − ∇sm̃
SR
k (strial)‖ + ‖∇sm̃

SR
k (strial)‖

≤
(
LH

2
+ κeg + κeh + σmax

2
+ β2

)

‖strial‖2,

which completes the proof. �
Now, we have all the supporting results to establish the WCC bound of Algorithm

1 for the fully-quadratic case.

Theorem 4.2 Given ε > 0, let Assumptions 3.2, 4.4, and 4.5 hold. Let {xk} be the
sequence of iterates generated by Algorithm 1, and fmin ≤ f (x0). Then the number
of iterations such that ‖∇ f (xk+1)‖ > ε and f (xk+1) > fmin is bounded above by

√
n( f (x0) − fmin)

αmin

{(
ξ

σmax

)3
, ( ε

κ2
)3/2
} , (29)

where σmax and κ2 were defined in Lemmas 4.5 and 4.6, respectively.

Proof In view of Lemma 4.6, we have

‖sk‖ ≥ min

{
ξ

σk
,�,

√
‖∇ f (xk+1)‖

κ2

}

.
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Hence, since ‖∇ f (xk+1)‖ > ε and � >
ξ
σk
, we obtain

‖sk‖ ≥ min

{
ξ

σk
,

√
ε

κ2

}

≥ min

{
ξ

σmax
,

√
ε

κ2

}

.

On the other hand, due to the sufficient decrease condition (12) and the inequality
‖ · ‖3 ≥ n−1/6‖ · ‖2, we obtain

f (xk+1) ≤ f (xk) − α

n∑

i=1

|[Q̃�
k sk]i |3

≤ f (xk) − α‖Q̃�
k sk‖3√
n

≤ f (xk) −
αmin

{(
ξ

σmax

)3
, ( ε

κ2
)3/2
}

√
n

.

By summing up these inequalities, for 0, 1, . . . , k, we obtain

k + 1 ≤
√
n( f (x0) − fmin)

αmin

{(
ξ

σmax

)3
, ( ε

κ2
)3/2
} ,

which concludes the proof. �

Similarly to what we saw before for the fully-linear case, since κeg = O(n) and
κeh = O(n) (see Chapter 3 in Conn et al. (2009b)), we have κ2 = O(n3/2). By

choosing ξ in a way such that ξ
σmax

= O(
√

ε
κ2

), the dependency of the upper bound

given at (29) on n becomes of the order O(n11/4). Additionally, for building a fully-
quadratic model we need O(n2) function evaluations. Combining these facts with
Theorem 4.2, we can establish a WCC bound for driving the first-order stationarity
measure below some given positive threshold.

Corollary 4.2 Given ε > 0, let Assumptions 3.2, 4.4, and 4.5 hold. Let {xk} be the
sequence of iterates generated by Algorithm 1 and assume that ‖∇ f (xk+1)‖ > ε and
f (xk+1) > fmin. Then,Algorithm1needs atmostO (n19/4ε−3/2

)
function evaluations

for driving the norm of the gradient below ε.

In terms of ε, the derived complexity bound matches the one established in Cartis
et al. (2012) for a derivative-free method with adaptive cubic regularization. The
dependency of the bound derived here on n is worse than the one derived in Cartis
et al. (2012). However, we have explicitly taken into account the dependency of the
constants κeg and κeh on n.
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5 Illustrative numerical experiments

In this section we illustrate the different options to build the quadratic models at Step
2 of Algorithm 1 and two different strategies to address the subproblems (10).

Model computation is a key issue for the success of Algorithm 1. However, in
Derivative-free Optimization, saving in function evaluations by reusing previously
evaluated points is a main concern. At each evaluation of a new point, the correspond-
ing function value is stored in a list, of maximum size equal to (n + 1)(n + 2), for
possible future use in model computation. If new points need to be generated with the
sole purpose of model computation, the center, ‘extreme’ points and ‘mid-points’ of
the set defined by xk + 1

σk
[I − I ] are considered. Inspired by the works of Bandeira

et al. (2012), Fasano et al. (2009), no explicit control of geometry is kept (in fact, we
also tried the approach suggested by Scheinberg and Toint (2010), but the results did
not improve). If a new point is evaluated and the maximum number of points allowed
in the list has been reached, then the point farther away from the current iterate will be
replaced by the new one. Points are always selected in B(xk; 1

σk
) for model compu-

tation. The option for a radius larger than ξ
σk
, since in our numerical implementation

ξ = 10−5, allows a better reuse of the function values previously computed, avoiding
an excessive number of function evaluations just for model computation. Additionally,
the definition of the radius as 1

σk
ensures that if the regularization parameter increases,

the size of the neighborhood in which the points are selected decreases, a mechanism
that resembles the behavior of trust-region radius in derivative-based optimization.

Fully-linear and fully-quadratic models can be considered at all iterations, as well
as hybrid versions, where depending on the number of points available for reuse inside
B(xk; 1

σk
) the option for a fully-linear or a fully-quadratic model is taken (thus, some

iterations will use a fully-linear model and others a fully-quadratic model). Fully-
quadratic models always require (n+1)(n+2)/2 points for computation. Fully-linear
models are built using all the points available in B(xk; 1

σk
), once that this number is

at least n + 2 and does not exceed (n + 1)(n + 2)/2 − 1. In this case, a minimum
Frobenius norm approach is taken to solve the linear system that provides the model
coefficients (see Conn et al. 2009b, Section 5.3).

Regarding the solution of subproblem (10), the imposed lower bound causes diffi-
culties to the separability approach. Two strategies were considered to address it. In
the first one, every one-dimensional problem considers the corresponding lower and
upper bounds. This approach is not equivalent to the original formulation. It imposes
a stronger condition since any vector y computed with this approach will satisfy
‖y‖∞ ≥ ξ

σk
, but there could be a vector y satisfying ‖y‖∞ ≥ ξ

σk
, which does not

satisfy |yi | ≥ ξ
σk

,∀i ∈ {1, . . . , n}. The second approach adopted disregards the lower
bound condition, only considering ‖y‖∞ ≤ � when solving subproblem (10). After
computing y, the lower bound condition is tested and, if not satisfied,maxi=1,...,n |yi | is
set equal to ξ

σk
to force the obtained vector y to also satisfy the lower bound constraint

at (10).
Algorithm 1 was implemented in Matlab 2021a. The experiments were executed

in a laptop computer with CPU Intel core i7 1.99 GHz, RAM memory of 16 GB,
running Windows 10 64-bits. As test sets, we considered the smooth collection of
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44 problems proposed in Moré and Wild (2009) and 111 unconstrained problems
with 40 or less variables from OPM, a subset of the CUTEst collection (Gould et al.
2015). Computational codes for the problems and the proposed initial points can be
found at https://www.mcs.anl.gov/~more/df and https://github.com/gratton7/OPM,
respectively.

Parameters in Algorithm 1 were set to the following values: � = 10, for each
iteration k, σsmall = 0.1, η = 8, and α = 10−4. At each iteration, the process is
initialized with the minimization of the quadratic model (9), with no regularization
term, computed by selecting points in B(xk; 1). In this case, no lower bound is con-
sidered when solving subproblem (10). If the sufficient decrease condition (12) is not
satisfied by the computed solution, then the regularization process is initiated, con-
sidering σk = σsmall . This approach allows to take advantage of the local properties
of the “pure” quadratic models. As stopping criteria we consider ‖g̃k‖ < ε, where
ε = 10−5, or a maximum of 1500 function evaluations.

Regarding model computation, four variants were tested, depending on using fully-
linear or fully-quadratic models and also on the value of p in the sufficient decrease
condition used to accept new points at Step 4 of Algorithm 1. Fully-quadratic
variant always computes a fully-quadratic model, built using (n+ 1)(n+ 2)/2 points,
with a cubic sufficient decrease condition (p = 3).Fully-linear always computes
a quadratic model, using n+2 points, under aminimumFrobenious norm approach. In
this case, the sufficient decrease condition considers p = 2. Hybrid versions compute
fully-quadratic models, using (n+1)(n+2)/2 points or fully-linear minimum Frobe-
nious norm models, with at least n+2 points and a maximum of (n+1)(n+2)/2−1
points (depending on the number of points available in B(xk; 1/σk)). In this case,
variant Hybrid_p3 always uses a cubic sufficient decrease condition to accept new
points, whereas variant Hybrid_p23 selects a quadratic or cubic sufficient decrease
condition, depending on the type of model that could be computed at the current
iteration (p = 2 for fully-linear and p = 3 for fully-quadratic).

Results are reported using data profiles (Moré andWild 2009) and performance pro-
files (Dolan andMoré 2002). In a simplifiedway, a data profile provides the percentage
of problems solved by a given algorithmic variant inside a given computational budget
(expressed in sets of np + 1 function evaluations, where n p denotes the dimension
of problem p). Let S and P represent the set of solvers, associated to the different
algorithmic variants considered, and the set of problems to be tested, respectively. If
h p,s represents the number of function evaluations required by algorithm s ∈ S to
solve problem p ∈ P (up to a certain accuracy), the data profile cumulative function
is given by

ds(ζ ) = 1

|P|
∣
∣
∣
∣

{

p ∈ P : h p,s

n p + 1
≤ ζ

}∣
∣
∣
∣ . (30)

With this purpose, a problem is considered to be solved to an accuracy level τ if
the decrease obtained from the initial objective function value ( f (x0) − f (x)) is at
least 1 − τ of the best decrease obtained for all the solvers considered ( f (x0) − fL ),
meaning:

f (x0) − f (x) ≥ (1 − τ)[ f (x0) − fL ]. (31)

In the numerical experiments reported, the accuracy level was set equal to 10−5.
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Fig. 1 Data and performance profiles comparing the use of different strategies for the computation of the
quadratic models

Performance profiles allow to evaluate the efficiency and the robustness of a
given algorithmic variant. Let tp,s be the number of function evaluations required
by solver s ∈ S to solve problem p ∈ P , according to the criterion (31). The cumula-
tive distribution function, corresponding to the performance profile for solver s ∈ S
is given by:

ρs(ς) = 1

| P | | {p ∈ P : rp,s ≤ ς} |,

with rp,s = tp,s/min{tp,s̄ : s̄ ∈ S}. Thus, the value of ρs(1) represents the percentage
of problems where solver s required the minimum number of function evaluations,
meaning it was the most efficient solver. Large values of ς allow to evaluate the
capability of the algorithmic variants to solve the complete collection.

Figure 1 reports the results obtained when considering different strategies for
building the quadratic models. In this case, the stricter approach is used for solv-
ing subproblem (10), always imposing the lower bound for each entry of the vector y
at each one-dimensional minimization.

It is clear that the hybrid version, that adequately adapts the sufficient decrease
condition to the type of computed model, presents the best performance. The hybrid
version that does not adapt the sufficient decrease condition is no better than the
fully-linear approach. Even so, both are better than requiring the computation of a
fully-quadratic model at every iteration.

For the best variant, namely the hybrid version that adapts the sufficient decrease
condition, we considered the second approach to the solution of problem (10), where
the lower bound constraint is initially ignored, being the computed solution ymodified
a posteriori, if it does not satisfy the lower bound constraint. We denote this variant by
adding the word projection. Results are very similar and can be found in Fig. 2.

It isworthmentioning that themodification of the final solution,whichwas obtained
by ignoring the lower bound constraint, was required only in seven problems, with a
maximum of three times in two of those seven problems.
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Fig. 2 Data and performance profiles comparing two different strategies to address the solution of subprob-
lem (10)

6 Conclusions and final remarks

We present and analyze a derivative-free separable regularization approach for solving
smooth unconstrained minimization problems. At each iteration we build a quadratic
model of the objective function using only function evaluations. Several variants
have been considered for this task, from a less expensive minimum Frobenius norm
approach, to a more expensive fully-quadratic model, or a hybrid version that com-
bines the previous approaches depending on the number of available useful points
from previous iterations.

For each one of the variants, we add to the model either a separable quadratic or
a separable cubic regularization term to guarantee convergence to stationary points.
Moreover, for each option we present a WCC analysis and we establish that, for
driving the norm of the gradient below ε > 0, the fully-quadratic and the minimum
Frobenius norm regularized approaches need at most O (n19/4ε−3/2

)
or O (n2ε−2

)

function evaluations, respectively.
The application of a convenient changeof variables, basedon theSchur factorization

of the approximate Hessian matrices, trivializes the computation of the minimizer of
the regularizedmodels required at each iteration. In fact, the solution of the subproblem
required at each iteration is reduced to the global minimization of n independent one-
dimensional simple functions (a polynomial of degree 2 plus a term of the form |z|3)
on a closed and bounded set on the real line. It is worth noticing that, for the typical
low-dimensions used in DFO, the O(n3) computational cost of Schur factorizations is
insignificant, as compared to the cost associated with the function evaluations required
to build the quadratic model. Nevertheless, in addition to its use in Brás et al. (2020),
this separability approach can be extended to be efficiently applied in other large-scale
scenarios, for example in inexact or probabilistic adaptive cubic regularization; see,
e.g., (Bellavia et al. 2021; Cartis and Scheinberg 2018). Wewould like to point out that
the global minimizers of the regularized models can also be obtained using some other
tractable schemes that, instead of solving n independent one-dimensional problems,
solve at each iteration only one problem in n variables; see, e.g., (Cartis et al. 2011a;
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Cristofari et al. 2019; Nesterov and Polyak 2006). These non-separable schemes, as
well as our separable approach, require an O(n3) linear algebra computational cost.

We also present a variety of numerical experiments to add understanding and illus-
trate the behavior of all the different options considered for model computation. In
general, we noticed that all the options show a robust performance. However, the
worst behavior, concerning the required number of function evaluations, is consis-
tently observed when using the fully-quadratic approach, and the best performance
is observed when using the hybrid versions combined with a separable regularization
term.

Concerning the worst case complexity (WCC) results obtained for the considered
approaches, a few comments are in order. Even though these results are of a theoretical
nature and in general pessimistic in relation to the practical behavior of the methods,
it is interesting to analyze which of the two considered approaches produces a better
WCC result. For that, it is convenient to use their leading terms, i.e., n19/4ε−3/2 for
the one using the fully-quadratic model and n2ε−2 for the one using the minimum
Frobenius normmodel. After some simple algebraic manipulations, we obtain that for
the fully-quadratic approach to be better (that is, to require fewer function evaluations
in the worst case), it must hold that n < ε−2/11 or equivalently that ε < 1/n11/2.
Therefore, if n is relatively small and ε is not very large (for example n < 9 and
ε ≈ 10−5) then the combined scheme that is based on the fully-quadratic model
has a better WCC result than the scheme based on the minimum Frobenius norm
approach. In our numerical experiments, the average dimension was 8.8 and for our
stopping criterion we fix ε = 10−5, and hence from the theoretical WCC point of
view, the best option is the one based on the fully-quadratic model. However, in our
computational experiments the worst practical performance is clearly associated with
the combination that uses the fully-quadratic model. We also note that if we choose a
more tolerant stopping criterion (say ε = 10−2), then for most of the same considered
small-dimensional problemswe have that ε > 1/n11/2, and so the scheme that uses the
minimum Frobenius norm model exhibits simultaneously the best theoretical WCC
result as well as the best practical performance.

Finally, for future work, it would be interesting to study the practical behavior
and the WCC results of the proposed derivative-free approach in the case of convex
functions.
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