
4OR (2022) 20:333–345
https://doi.org/10.1007/s10288-021-00488-9

EDUCATIONAL PAPER

Teaching OR: automatic evaluation for linear programming
modelling

Hadrien Cambazard1 · Nicolas Catusse1 · Nadia Brauner1 · Pierre Lemaire1

Received: 21 November 2020 / Revised: 23 June 2021 / Accepted: 25 June 2021 /
Published online: 13 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Learning how to model a problem described in natural language as a linear program
requires students to practice using various and numerous exercises. Moreover, imme-
diate feedback on the validity of their solutions helps a better and faster understanding.
In this paper, we present an idea on how students and teachers can automatically eval-
uate linear programming models. We also describe how this idea was implemented
on the learning platform caseine.org and is now used by hundreds of students from
various universities.

Keywords Linear Programming · Modelling · Training · Students

1 Introduction

Learning how to model a problem described in natural language as a linear program
(LP) requires students to practice using various and numerous exercises. More-
over, immediate feedback on the validity of their solutions helps a better and faster
understanding. In this paper, we present an idea on how students and teachers can
automatically evaluate linear programming models. We also describe how this idea
was implemented on the learning platform caseine.org1 and is now used by hundreds
of students from various universities.

1 See a 3-minute tour of the platform on the main page of caseine.org.

B Nadia Brauner
Nadia.Brauner@grenoble-inp.fr

Hadrien Cambazard
Hadrien.Cambazard@grenoble-inp.fr

Nicolas Catusse
Nicolas.Catusse@grenoble-inp.fr

Pierre Lemaire
Pierre.Lemaire@grenoble-inp.fr

1 CNRS, Grenoble INP, G-SCOP, University of Grenoble Alpes, 38000 Grenoble, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10288-021-00488-9&domain=pdf
http://orcid.org/0000-0002-2890-4509
https://caseine.org
https://caseine.org
https://caseine.org


334 H. Cambazard et al.

Section 2 presents the platformCaseinewhich hosts our new learning tool. Section 3
states the issue we are considering, and describes the proposed solution. Section 4
shows the student view of a modelling exercise with a detailed example. Then, Sect. 5
illustrates how we generate tests used for automatic evaluation. Section 6 describes
how this modelling system was implemented and used with examples of exercises and
statistics on their usage. Section 7 opens to other tools for LP training, and to further
features for modelling evaluation. The paper concludes on how to join the project.

2 The background: a platform for OR education

Caseine is a learning platform offering advanced learning mechanisms and content
for Operations Research (OR) education. On Caseine, a community of OR teachers
shares ideas, advanced tools for evaluation and a wide variety of content. The goal is
to stimulate students’ learning and autonomy while improving the quality of the time
the teacher dedicates to them.

Caseine is based onMoodle,2 a widely used LearningManagement System (LMS),
which provides studentswith a learning environment and let teachersmonitor students’
progress. It is aimed simultaneously at teachers who create courses and content and
monitor students’ progress, at institutions which can manage groups, and at students
for their training. Compared to a classic Moodle instance, Caseine is original in that
it offers a single environment where, on the one hand, students can benefit from
an automatic evaluation of their mathematical models and programming codes3 and
on the other hand, teachers can create self-assessed activities, share them with the
community and use shared activities.

While other learning platforms exist, we do not know of any open platform offering
at the same time (1) a pedagogical environment for university training where each
teacher can build their own course and (2) coding exercises with automatic and self-
evaluation and (3) all sorts of pedagogical activities shared by an open community of
teachers. Other platforms only address one or two of these three aspects.

There are platforms to share pedagogical activities.Wims4 is an open platformwith
collections of self-assessed exercises that can be organized by teachers into courses
and proposed to students. The Unisciel project, and especially its showcase platform
Socle,5 offers open courses based on Moodle with exercises that can be used by
teachers to organize their own courses in their own Moodle platform. The Class’Code
project6 is composed of a community of teachers who shares activities and ideas for
computer science teaching for kids up to high school. The IUTenligne project7 offers
a resource catalogue that one can export and insert into their own LMS. However,

2 The Moodle project website https://moodle.org.
3 Using the VPL plugin (The Virtual Programming Lab plugin for Moodle https://moodle.org/plugins/
mod_vpl.)
4 Wims: https://wims.unice.fr.
5 Socles 3: https://socles3.unisciel.fr.
6 Pixees: https://pixees.fr/classcode-v2.
7 IUT en ligne: http://www.iutenligne.net.

123

https://moodle.org
https://moodle.org/plugins/mod_vpl
https://moodle.org/plugins/mod_vpl
https://wims.unice.fr
https://socles3.unisciel.fr
https://pixees.fr/classcode-v2
http://www.iutenligne.net


Automatic evaluation for linear programming modelling 335

as far as we know, these platforms do not offer exercises for code evaluation in any
language.

Many other platforms offer coding exercises with automatic evaluation. For
instance, on the very famous code.org8 project based on Scratch language, teach-
ers can create exercises or use existing ones and learners can train on exercises. This is
probably the closest platform to Caseine but it mostly targets school-aged learners and
it is not dedicated to university training. We can also mention FranceIOI9 which offers
programming and algorithmic training with self-assessed exercises also for school-
aged learners. Other platforms propose online coding challenges to improve skills in
coding and support the hiring by companies like CodinGame, Codility, Codecademy,
Hackerrank.10 However, they do not offer free sharing of exercises for university
courses.

The previouslymentioned platforms essentially provide resources for programming
or for fundamentals of mathematics, e.g. arithmetic, calculus and algebra. Some web-
sites offer online solvers to solve one’s own modelling examples, either in connection
with a book11 or as a showcase of a commercial editor e.g. AMPL.12 To the best
of our knowledge, no platform provides rich contents on mathematical optimization
in general and automatic evaluation for operations research training in particular, as
caseine does.

Caseine currently offers courses on general OR tools and topics like Linear Pro-
gramming (modelling, Simplex algorithm), Duality (practical interpretation, weak and
strong duality theorems, sensitivity analysis),Mixed Integer Programming (modelling,
Branch andBound), Dynamic Programming, Graph Theory, Constraint Programming,
etc. It also contains specialized courses like production planning and logistics and
practical case studies. Apart from OR, Caseine is used in various courses in Computer
Science, Industrial Engineering and Mathematics from secondary school to master
programs. This paper focuses on original ideas for teaching Linear Programming
modelling.

Teachers from various universities in the world use the platformwith their students.
Indeed,Caseine is an open academic tool, free for non-commercial use, and any teacher
or student can straightforwardly connect to the platform with their own academic
login, as long as their university is a member of the worldwide Edugain network.13

Otherwise, students or teachers can request a manual account.
During academic year 2019-2020, the platform was used by 7000 users: up to

1200 users per day were connected during the COVID-19 lockdown period in France,
from March to May 2020. The LP exercises are shared in 6 to 19 different courses
(depending on the difficulty and interest of the exercise) for hundreds of students (up to
840 students for the most classic exercises). All teachers have their own private course

8 Code.org: https://code.org.
9 France-IOI: http://www.france-ioi.org.
10 CodinGame: https://www.codingame.com, Codility: https://www.codility.com, Codecademy: https://
www.codecademy.com, Hackerrank: https://www.hackerrank.com
11 Online-optimizer: https://online-optimizer.appspot.com
12 AMPL: https://ampl.com/.
13 Edugain network: https://edugain.org.

123

https://code.org
https://code.org
http://www.france-ioi.org
https://www.codingame.com
https://www.codility.com
https://www.codecademy.com
https://www.codecademy.com
https://www.hackerrank.com
https://online-optimizer.appspot.com
https://ampl.com/
https://edugain.org


336 H. Cambazard et al.

for their students with all right reserved content. Teachers can access the shared space
to add shared exercises to their own course. They can also choose to share content that
they create with the teaching community through the sharing space, under a Creative
Commons license of their choice.

3 How to evaluate an LPmodel?

Let’s first present how students can train on modelling a problem described in natural
language as a linear program. Consider the following very simple jam production
problem:

We want to produce rhubarb and strawberry jam: A pot of rhubarb jam requires
1 kg of rhubarb and 3 kg of sugar and the profit is e3 per pot. A pot of strawberry
jam requires 2 kg of strawberries and 2 kg of sugar and the profit is e4 per pot. The
available quantities are 4 kg of rhubarb, 12 kg of strawberries and 18 kg of sugar. We
want to maximize the profit.

A possible reference linear program is as follows:

max z = 3xr + 4xs
s.t . xr ≤ 4

2xs ≤ 12
3xr + 2xs ≤ 18
xr , xs ≥ 0

where xr and xs represent the number of pots of rhubarb jam and of strawberry jam
to be produced respectively.

From the description of the problem in natural language, students propose their own
models. The formulations given by the students might differ from the formulation of
the reference model and still be perfectly correct. We do not want to impose modelling
decisions like the variables, their name, the order of the constraints, the number of
variables and/or constraints, etc. Thus, numerous models are usually possible for the
very same problem resulting in different polyhedral feasible regions since the space
(the variables) might be different. See e.g. the model proposed by the student in Fig. 2
which is valid for the jam problem (except the right hand side equal to 17 which should
be a 18) but which is neither defined on the same variables nor the same constraints.

Our objective is to assert the validity of the student’s model and provide useful
feedback to the student. A model is considered valid if it verifies the following condi-
tions: it is a linear program (linear objective function and constraints); there are binary
or integer variables only if allowed; the objective function is in the correct direction
(denoting a maximization problem, for example); the optimal value of the objective
function is the same as that of the reference model and the polyhedron associated to
the constraints correctly describes the set of feasible solutions.

The first three items are classic and easy to verify with the model of the students:
by asking the model, the system verifies that all variables are continuous, that the
objective function and the constraints are linear and by parsing the model it verifies

123



Automatic evaluation for linear programming modelling 337

Optimal c1 c2 xr xs Optimal value
point z =

∑
cixi

A 0
B 4
C 22
D 30
E

-1 -1 0 0
1 -1 4 0
4 2 4 3
3 4 2 6
-1 2 0 6 12

b
a

Fig. 1 a The reference polyhedron for the jam problem and b possible values for c to verify its extreme
points

the existence of non-linear reifications operators: OR, AND, IMPLIES, ABS, IF; and
that the objective function is in the expected direction (min or max).

Verifying the polyhedron is challenging.We propose to evaluate the student’smodel
by parameterizing some data of the problem. For given parameters we check that the
optimal values of the reference model and of the student’s model are the same. In
fact, we parameterize the objective function coefficients as follows: For each extreme
point of the reference polyhedron, we choose coefficients of the objective function for
which this point is optimal.We also choose coefficients so that the objective function is
parallel to the constraints and we test some random coefficients. The set of coefficients
can be generated once, offline for all extreme points of the reference formulation. Then,
it can be restricted since the number of such extreme points may be exponential in
the number of variables and thus require too much time or energy when the students
launch the test.

We detail how to test the student model in each vertex of the reference polyhedron.
The only technical requirement placed on the student is to use a vector c that contains
some parameters of the problem (in our case, the coefficients of the objective function).
For instance, in the jam problem, the student has to use c = (3, 4) in the model which
means that the cost of a pot of rhubarb jam has to be written c1 instead of 3 and the cost
of a pot of strawberry jam has to be written c2 instead of 4. Note that these coefficients
are always defined by the input data and not the model.

For the reference model, we adapt similarly the objective function to c1xr + c2xs .
The polyhedron associated to the constraints of this very simple model is given in
Fig. 1a. To verify the constraints of the student, the system will make the tests with the
values of c given in Fig. 1b. For instance, when c1 = 3 and c2 = 4 the optimal point
is D with value 30 and the system verifies that the student’s model also returns 30 for
these values of c1 and c2. The values of c1 and c2 are arbitrary but allow to test all five
extreme points of the polyhedron. Their calculation is described in Sect. 5. Vector c
is replaced in the model of the student while parsing the file.

123



338 H. Cambazard et al.

Ideally, we would also like to do the opposite, i.e. check the objective value given
by the reference model at each vertex of the student’s polyhedron. However, we have
no control over the model produced by the students and the generation of such extreme
points could be time-consuming. We therefore opted for a pragmatic alternative: to
evaluate also the student’s code with objective directions that are orthogonal to the
constraints of the reference model as well as a number of random directions (this
number is specified by the teacher to ensure enough robustness for detecting incorrect
models).

Note that the correctness of the optimal solutions themselves is not further verified,
e.g. by a solution checker: this would require to specify a solution description format
and would add extra burden both on the teachers and students to conform to it. In our
experience, this is only a plus for very large problems and models and the proposed
approach turns out to be already very efficient in practice.

Besides, for real classes, we manually validate the mathematical description of the
model since it could be valid but nevertheless abstruse, clumsy, too complicated, etc.
and this is not verified automatically. The automatic tests allow to gain time for the
teacher and to have immediate feedback for the student but they do not exempt the
teacher from some proofreading of the code quality. However, the time dedicated by
the teacher to the student is of better quality.

4 The student view of amodelling exercise

To create a modelling exercise, the teacher provides the description of the problem in
natural language and the referencemodel. The exercise is then generated automatically.
We use an external program to generate the tests described above before we add them
into the evaluation system. Teachers can also manually add other tests, and they can
modify the generated tests.

The student view is given in Fig. 2. In this example, the students have to model
the jam problem with the modelling language OPL of IBM ILOG.14 They can run
Cplex Community Edition solver on the model by clicking the rocket button. They
can evaluate their solutions by clicking the check mark button. The editor contains the
student’s program. The right part of the window displays the evaluation with the 5 tests
described in Fig. 1b, the 3 tests with an objective function parallel to the constraints
(with hidden parameters so that the student cannot guess the constraints from the tests)
and a randomized test. For the extreme point tests, namely, the first 5 tests, the students
can see the values of c used and the outputs of their model and of the reference model.
The linearity of the model, the type of the variables and the direction of the objective
function are also verified. The proposed grade depends on the number of tests with
equal objective values for both models. Seeing these results, the student can decide
whether their model is under-constrained or over-constrained.

The students can work in the web interface but they can also use an external editor
with the Caseine plugin, see e.g. Fig. 3 for the OPL Studio IDE. The plugin allows to

14 IBM ILOG CPLEX Optimization Studio 20.1.0 documentation https://www.ibm.com/support/
knowledgecenter/SSSA5P_20.1.0/COS_KC_home.html.

123

https://www.ibm.com/support/knowledgecenter/SSSA5P_20.1.0/COS_KC_home.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_20.1.0/COS_KC_home.html


Automatic evaluation for linear programming modelling 339

Fig. 2 Student view of a modelling exercise

Fig. 3 OPL Studio IDE with the Caseine view

123



340 H. Cambazard et al.

pull the description of the exercise and to push the student’s solution into the platform.
It also allows to launch the evaluation and it proposes a view for the evaluation result.

5 Automatic test generation: on the teacher’s side

The automatic generation of tests is based on the reference model. The model con-
tains the variables xi for i = 1, 2 . . . n, the objective function which is of the form
max /min

∑n
i=1 ci xi and some inequalities and equalities and sign constraints on the

variables. We now describe how the tests are generated.
First, add positive slack variables thus transforming each inequality into an equality.

If the j-th inequality is of the form
∑n

i=1 ai j xi ≤ b j , it becomes
∑n

i=1 ai j xi+s j = b j ;
otherwise (namely≥ inequality) it is transformed into−∑n

i=0 ai j xi +s j = −b j . One
then obtains a systemof the form Ax = bwith the initial equalities and the transformed
inequalities. Then we enumerate all possible bases of this system and verify that the
associated basic solution is feasible (with the original sign constraints and positivity
of the added slack variables).

Next, for each feasible basic solution, we calculate a vector of coefficients c for the
variables such that this basic solution is the only optimal solution. For this purpose, we
know that a basic solution is optimal for a given objective function if the reduced costs
of the basic variables are zero and the reduced costs of the non-basic variables are
all negative (for a maximization problem). Thus, given a basic solution with indices
in B for the basic variables and indices in N for non-basic variables, the following
objective function is maximal at this basic solution:

z = −
∑

i∈N
xi −

∑

j∈N
s j + z =

n∑

i=1

ci xi

Note that the coefficients -1 are arbitrary and any negative values would be suitable
as well; z is a constant equal to the objective value reached at this vertex with the
adequate ci coefficients; it is given in the last column of Fig. 1b.

To find the coefficient of xi (i.e. find ci ), one has to eliminate the slack variables s j
by replacing them by b j −∑n

i=1 ai j xi or−b j +∑n
i=1 ai j xi depending on the direction

of the original inequality. For simplicity, we only consider the first case for s j . Hence
the objective function is of the form:

z =
∑

i∈N

⎛

⎝−1 +
∑

j∈N
ai j

⎞

⎠ xi +
∑

i∈B

∑

j∈N
ai j xi +

⎛

⎝z −
∑

j∈N
b j

⎞

⎠

and thus

{
ci = −1 + ∑

j∈N ai, j if xi is non basic, i .e. i ∈ N
ci = ∑

j∈N ai, j if xi is basic, i .e. i ∈ B

123



Automatic evaluation for linear programming modelling 341

Applied to the jam example, with z = ∑
j∈N b j , this leads to the coefficients

described in Fig. 1b.
The directions of the constraints are also tested but with hidden parameters so as

not to give too much information to the students.
Notice that it is not always possible to test all extreme points with this method. This

is the case if, due to specific features of the problem description, the objective function
of the reference model does not contain all the variables. Consider for instance the
reference model {max c1x such that x + y ≤ 1; x ≥ 0; y ≥ 0}: the polyhedron has
3 extremal points but by varying the value of c1, one can not distinguish between
points (0,1) and (0,0). The same problem appears if two variables share the same
parameterized coefficient in the objective function. Consider for instance the reference
model {max c1(x + y) such that x ≤ 1; y ≤ 1; x ≥ 0; y ≥ 0}: the polyhedron has 4
extreme points but only 2 can be tested. One has to be aware of these limitations when
evaluating students’ models.

More generally, the users have to keep inmind that if the system indicates amistake,
then the model is incorrect but if the system can find nomistake, it does not necessarily
mean that the model is valid.

6 A collection of shared exercises

Once created, an LP modelling exercise can be shared with the community. Indeed,
the platform contains a collection of exercises presented by increasing difficulty. For
each exercise, the level estimated by the teacher is indicated by a color from green or
blue for easy exercises to red or black for harder ones. All teachers can contribute to
the collection by sharing their own exercises, and use any shared exercise in their own
courses. Students can give a feedback of their interest for each exercise through the
reaction system, see Fig. 4.

Table 1 describes the use of some of these exercises. Line number of courses shows
that the exercises are used in several courses from various universities. Line number
of users shows the number of users who tried the exercise and number of submissions
shows the total number of submissions for each exercise. The next line, average
number of submissions is the quotient of the two previous lines and is an indicator of
the difficulty of the activity. Line number of users with 100% indicates the number of
users who finished the exercise successfully. The last line, first submission indicates
the age of the exercise. The linear programming exercises can have various types of
modelling difficulties:

• very simple models like the previous jam production example (e.g. Cucumber and
Onions);

• a slack variable is not explicit in the description and is used in the objective function
(e.g. Dairy products);

• flow models;
• finding the right variables is already an issue (e.g. Apples);
• the heterogeneity of the units of the variables;

123



342 H. Cambazard et al.

Fig. 4 Modelling exercises with difficulty level (color rectangles) on the left and student’s reactions on the
right

Table 1 Usage of popular linear programming modelling exercises (July 2020)

Cucumber and onions Dairy products Apples wine production

Number of courses 19 16 8 6

Number of users 840 795 470 297

Number of submissions 4447 8793 6617 5312

Average nb of submissions 5.2 11.1 14.1 17.9

Number of users with 100% 756 649 356 232

First submission 05/2016 07/2019 08/2016 09/2018

• complexity comes from the length of the description (industrial case studies with
many/various constraints and constraint types);

• the difficulty also increases in the model complexity from the in-extenso descrip-
tion to an abstract model with external data and the use of keywords like sum or
for (e.g. Wine Production);

Some exercises concern mixed integer programming from classic combinatorial
problems (Knapsack,BinPacking. . .) and classic graphproblems (Independent Set. . .)
to real based case studies (a Power Plant Design).

123



Automatic evaluation for linear programming modelling 343

7 Conclusion and perspectives

To conclude, we first discuss the integration of such automated exercises within a
complete course on linear programming: in Sect. 7.1, we present other more or less
classic resources for LP training. Then, in Sect. 7.2, we describe current and future
developments on our modelling evaluation tool. We then end the paper, Sect. 7.3, with
a discussion on how to participate in the project.

7.1 Other resources for LP training

The Caseine platform offers other resources for LP training: the One idea, one story
pages, which put the results into a historical perspective, or a shared database of
numerous and various questions going from the very basics to advanced notions.
Those teaching tools focus on the student active role by increasing their engagement
and autonomy. On the platform there is a large variety of usages of these tools from
complete autonomy (personal/team work, at home/during the course) to traditional
classroom with validation in autonomy or as a support for reverse teaching.

Creating technologically advanced questions is time consuming. Therefore the idea
is to share themwithin a community. This also improves the quality and visibility of the
exercises since sharing content implies a benevolent peer-reviewing. Technically, these
questions are merely managed as classic Moodle questions. However, we emphasize
two original uses of this bank. Firstly, we can generate offline hundreds of questions,
based on dedicated patterns (see e.g. Fig. 5); randomly drawn questions from selected
collections are then submitted to students, allowing them to train on always renewed
tests. Secondly, the thousands of LP-related questions is generated and shared bymany
teachers from various universities who use them in their own courses.

TheORopencourses (https://moodle.caseine.org/course/view.php?name=LPOpen)
illustrate the usage of automatically evaluated modelling exercises along with quizzes
built from the bank of questions. They show howmodelling exercises and quizzes both
fit well in the setting of a course, as they complement one another, allowing different
assessments for different pedagogic purposes.

7.2 Perspectives: going further with tests

We are currently developing a new tool to enhance the experience of automatically
evaluated modelling exercises. This tool finds which constraints are incorrect based
on the errors in the student’s solution. The general idea is: because each constraint is
tight for a specific set of points, if the evaluation fails on all these points, it is likely
that the corresponding constraint is incorrect. Thus, we can give a better feedback to
the students. For instance, in the jam problem, if evaluations at all points are correct
except for C and D, then the system indicates that the mistake is probably in the sugar
constraint.

In this paper, we declare parameters for a subset of the problem data, namely
the objective function. In other contexts, it is usual to test various instances of a
problem, and hence to change the whole data: in an industrial context, one may test

123

https://moodle.caseine.org/course/view.php?name=LPOpen


344 H. Cambazard et al.

Fig. 5 Two examples each drawn from a collection of 200 questions

with several historical data sets to verify the validity or response time of a model, and
in a research context, one may test various random or benchmark data sets to assert the
efficiency of a formulation. This could be done but our goal is different: wewant to give
students the best possible feedback to improve their training. By limiting the changes
to the objective function, we ensure that we can provide a clear and understandable
feedback. Changing other coefficients would be technically easy, but requires further
investigations to put a helpful diagnosis on the mistakes. Even though the procedure
described in this paper for testing linear program works very well in practice, it is not
sufficient for mixed integer programs (MIP), for which clever instances have to be
designed to test correctly the students’ model.

Regarding MIP, we are also working on additional automatic evaluation features.
For small models, we verify the number of feasible solutions using a constraint pro-
gramming model. It could be interesting to try and work with the convex hull of the
feasible solutions.

Among other future works, there is a need for an automatic test selection, when the
system generates too many tests for large models (this is currently done by hand), and
for integrating other modelling languages (only OPLmodels are currently supported).

7.3 How to join

In this paper, we presented an original idea on how to automatically evaluate the linear
programmingmodelling skill of a student.We explained howwe implemented it in the

123



Automatic evaluation for linear programming modelling 345

Caseine platform and how teachers from various universities used it in their courses
for hundreds of students. The objective of this tool is to provide students with a better
learning and to increase the efficiency of teachers.

In the context of the Covid-19 pandemic, the community of Caseine teachers was
happy to rely on this tool (among others) for distant learning even if it was not designed
especially for it. The teacher community was very active for sharing content, expe-
riences and ideas. We observed that teachers who were already users of the Caseine
platform relied even more heavily on the platform during the lockdown period. Dur-
ing that time, Caseine saw a surge of activity: the activity level in the first month of
lockdown (from March 15 to April 15, 2020) is similar to the cumulated activity of
the 5 previous months.

If you might be interested in using these tools or joining the adventure, you can
start by visiting the site caseine.org.

Acknowledgements The authors would like to thank the two engineers of the platform, Astor Bizard and
Florence Thiard who develop the tools and help teachers use the platform. They also thank Bernard Penz
and Olivier Briant for interesting discussions. They thank Michael Perin for the discussions which lead to
the first idea described in the perspectives.

Compliance with ethical standards

Funding This work has been partially supported by the Idex Université Grenoble-Alpes (ANR-15-IDEX-
0002) and by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01), both funded by the French program
Investissement d’avenir.

Conflicts of interest The authors declare that they have no conflict of interest.

Availability of data and material All functionalities described in this paper are available on the Caseine
platform: caseine.org

Code availability All examples described in this paper can be tested on the Caseine platform: caseine.org

123

https://caseine.org
https://caseine.org
https://caseine.org

	Teaching OR: automatic evaluation for linear programming modelling
	Abstract
	1 Introduction
	2 The background: a platform for OR education
	3 How to evaluate an LP model?
	4 The student view of a modelling exercise
	5 Automatic test generation: on the teacher's side
	6 A collection of shared exercises
	7 Conclusion and perspectives
	7.1 Other resources for LP training
	7.2 Perspectives: going further with tests
	7.3 How to join

	Acknowledgements




