40R (2021) 19:531-548
https://doi.org/10.1007/510288-020-00459-6

RESEARCH PAPER

®

Check for
updates

Scanning integer points with lex-inequalities: a finite
cutting plane algorithm for integer programming with
linear objective

Michele Conforti' - Marianna De Santis2® - Marco Di Summa’ -

Francesco Rinaldi’

Received: 5 June 2020 / Accepted: 18 September 2020 / Published online: 23 December 2020
© The Author(s) 2020

Abstract

We consider the integer points in a unimodular cone K ordered by a lexicographic
rule defined by a lattice basis. To each integer point x in K we associate a family of
inequalities (lex-inequalities) that define the convex hull of the integer points in K
that are not lexicographically smaller than x. The family of lex-inequalities contains
the Chvatal-Gomory cuts, but does not contain and is not contained in the family of
split cuts. This provides a finite cutting plane method to solve the integer program
min{cx : x € SNZ"}, where S C R” is a compact set and ¢ € Z". We analyze the
number of iterations of our algorithm.

Keywords Nonlinear integer programming - Valid inequalities - Cutting plane
method

Mathematics Subject Classification 90C10 - 90C57

M. Conforti, M. Di Summa and F. Rinaldi were supported by the Grant 2015B5F27W of the Italian
Ministry of Education, University and Research (MIUR) and by a Grant “SID 2016” of the University of
Padova. M. De Santis acknowledges support within the Project Number RP11715C7D8537BA, which has
received funding from Sapienza, University of Rome.

B Marianna De Santis
marianna.desantis @uniromal.it

Michele Conforti
conforti @math.unipd.it

Marco Di Summa
disumma@math.unipd.it

Francesco Rinaldi
rinaldi @math.unipd.it
Dipartimento di Matematica “Tullio Levi-Civita”, Universita degli Studi di Padova, Padua, Italy

Dipartimento di Ingegneria Informatica Automatica e Gestionale, Sapienza Universita di Roma,
Rome, Italy

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10288-020-00459-6&domain=pdf
http://orcid.org/0000-0002-1189-5917

532 M. Conforti et al.

1 Introduction

The area of integer nonlinear programming is rich in applications but quite challeng-
ing from a computational point of view. We refer to the articles (Belotti et al. 2013b;
Burer and Letchford 2012) for comprehensive surveys on these topics. The tools
that are mainly used are sophisticated techniques that exploit relaxations, constraint
enforcement (e.g., cutting planes) and convexification of the feasible set. Reformula-
tions in an extended space and cutting planes for integer nonlinear programs have been
investigated and proposed for some time, see e.g. Ceria and Soares (1999), Frangioni
and Gentile (2006), Stubbs and Mehrotra (1999). This line of research mostly pro-
vides a nontrivial extension of the theory of disjunctive programming to the nonlinear
case. To the best of our knowledge, these results are obtained under some restrictive
conditions: Typically, the feasible set is assumed to be convex or to contain 0/1 points
only (these cases cover some important areas of application).
In this paper we present a finite cutting plane algorithm for problems of the form

min{cx : x € SNZ"}, (1.1

where S is a compact subset of R” (not necessarily convex or connected) and ¢ € Z".
Our algorithm uses a new family of cutting planes which do not make any use of a
description of the set S. The cutting planes employed in our algorithm are obtained
as follows. We consider the integer points in a unimodular cone K, ordered by a
lexicographic rule, associated with a lattice basis. To each integer point x in K, we
associate a family of inequalities (lex-inequalities) that, in a sense, is best possible,
as it defines the convex hull of the integer points in K that are not lexicographically
smaller than x. Our family of cuts includes the Chvatal-Gomory cuts, but it does not
contain, nor is it contained in, the family of split cuts.

Our algorithm recursively solves optimization problems of the form min{cx : x €
SN P}, where P is a polyhedron, and we assume that an algorithm for problems of this
type is available as a black box. We remark that as long as this black box is available,
no assumption on S other than compactness is required by our algorithm. To the best
of our knowledge, this is in contrast to the rest of the literature where convexity (or
even polyhedrality) is a common assumption.

The cuts we introduce are linear inequalites. As the convex hull of the integer points
in a bounded subset of R” is a polytope, a finite number of linear inequalities suffices
for its characterization, and only n such inequalities determine an optimal point.

Furthermore a finite number of linear inequalities suffices to describe some relevant
relaxations of the convex hull of the integer points in a bounded set: Most notably,
Dadush et al. (2014) proved that the Chvatal-Gomory closure of a compact convex
set is a polytope (whereas this is not the case for the split closure of the set).

However, nonlinear inequalities have also been successfully used to provide ele-
gant convex hull characterizations. We mention the work by Andersen and Jensen
(2013) where a formula to describe the convex hull of a split disjunction applied to a
second-order cone is provided. Their work is related to the paper by Modaresi et al.
(2016), where the authors derive split cuts for convex sets described by a single conic
quadratic inequality and extend general intersection cuts to a wide variety of quadratic

@ Springer

Scanning integer points with lex-inequalities: a finite.... 533

sets. Belotti et al. (2013a, 2017) introduce the so called disjunctive conic cuts study-
ing families of quadratic surfaces intersected with two given hyperplanes. Burer and
Kiling-Karzan (2017) extend the works cited above and show that the convex hull of
the intersection of a second-order-cone representable set and a single homogeneous
quadratic inequality can be described by adding a single nonlinear inequality, defining
an additional second-order-cone representable set.

From an algorithmic perspective, deriving a finite cutting plane procedure that uses
a well defined family of inequalities does not seem to be straightforward. The oldest
and most notable example is Gomory’s finite cutting plane algorithm for integer linear
programming over bounded sets based on fractional cuts (Gomory 1958, 1963). Other
finite cutting plane algorithms (again for bounded sets) can be found in Armstrong
et al. (1979), Bell (1973), Bowman and Nemhauser (1970), He and Lee (2017) for
integer linear programming and in Lee and Wiegele (2017) for mixed integer linear
programming.

While in all the papers cited above the correctness of the algorithms is based on a
specific procedure for solving the continuous relaxation, there are methods that only
assume that an optimal solution of the continuous relaxation is given by a black box.
This is the case for the lift-and-project method of Balas et al. (1993) for mixed 0/1 linear
problems, the procedure described by Orlin (1985) for 0/1 integer linear programming,
and the algorithm presented by Neto (2012) for integer linear programming over
bounded sets.

The family of cuts used in Neto’s algorithm is related to ours. As it will be clarified
later, the inequalities introduced in Neto (2012) are weaker than the lex-inequalities
and, in particular, they are derived under the assumption that a box containing the set
S is known.

We notice that a common feature of the above papers is the (explicit or implicit)
use of some lexicographic rule for the choice of an optimal solution of the continuous
relaxation or the selection of the cut. This seems to be a key tool to prove finite
convergence of this type of algorithms.

The paper is organized as follows. In Sect. 2, we introduce the lex-inequalities with
their properties. In Sect. 3, we present the cutting plane algorithm and we show that it
terminates in a finite number of iterations. In Sect. 4, an instance where the algorithm
stops after an exponential number of iterations is provided. Furthermore, we compare
the performance of our algorithm with a natural enumeration approach. A comparison
with Chvéatal-Gomory cuts and split cuts is presented in Sect. 5. Section 6 concludes
the paper.

2 Lexicographic orderings and lex-inequalities

A lattice basis of Z* is a set of n linearly independent vectors ¢!, . . ., ¢" € Z" such that
forevery v € Z" wehave thatAp, ..., A, € Zintheunique expressionv = Y ;_, rict.

The lex-inequalities that we introduce in this paper are defined for a given lattice
basis of Z". To simplify the presentation, we first work with the standard basis and
then extend the results to general lattice bases.

@ Springer

534 M. Conforti et al.

We will use standard notions in the theory of polyhedra, for which we refer the
reader to Schrijver (1986).

2.1 Standard basis

We consider the lexicographic ordering < associated with the standard basis
el,...,e" Given x!, x> € R", x! < x?if and only if x! # x? and x! < x?,
where i is the smallest index for which xil * xiz. We use <, >, > with the obvious
meaning.

We consider the cone K = R} = {x e R" : x; > 0,i = 1,...,n}. Given
x € KNZ" we define

O(x) :=convix € KNZ": x > x},
where “conv” denotes the convex hull operator.
Given x € K \ {0}, we define the leading index i (x) as the largest index i such that
)Ei > 0.

Lemma1 Fixx € KNZ". The set Q(x) is a full-dimensional polyhedron. Its vertices

are precisely the following points v', ..., V@ Fork = 1,...,i(x) — 1, v* has
entries

vk =, i=1... k-1

v =i+ 1

v =0, i=k+1,...,n,

and v'Y) = X. Furthermore, the recession cone of Q(x)is K.

Proof Define X = {x € KNZ" : x » X} and X; = vl + (K N7ZM
for every i € {1,...,7(x)}. Note that X = Ui(le) X; and therefore conv(X) =

conv (Ui(:xf conv(X i)). As any rational polyhedral cone is an integral polyhedron,

we have conv(K N Z") = K. As v' e Z", this implies conv(X;) = v’ + K
for every i, and thus these sets are integer translates of K. Therefore conv(X) =

conv{v!, ..., v ()} + K. This shows that conv(X) is a full-dimensional polyhedron
with recession cone K and its vertices are contained in (!, .., i) Tt s easy to
verify that vl . 0P are actually all vertices of conv(X). O

Let x € K be given. Our aim is to derive the inequalities that fully describe the
convex hull of the integer points in K not lexicographically smaller than x.

Forevery k € {1,...,n}andi € {1, ..., k} we define
1 ifi =k
df = 1% ifi =k—1,

BTG+ D, ifi <k -2,

@ Springer

Scanning integer points with lex-inequalities: a finite.... 535

(Note that the dl.k’s depend on the choice of x, but we omit the dependence on X to
keep notation simpler: This will never generate any ambiguity.)
Forevery k € {1, ..., n}, the k-th lex-inequality associated with x is the inequality

k k
Zdikxi ZZd{Cf,‘. (2-1)
i=1 i=1

Note that when x; = 0, (2.1) is the inequality x; > 0.

Theorem2 If x € K NZ", then the lex-inequalities (2.1) for k = 1, ..., n and the
inequalities x; > 0 fori =1, ..., n provide a description of the polyhedron Q(x).

Proof As K is the recession cone of Q(x) (Lemma 1) and Q(¥) C K, it follows that
every facet inducing inequality for Q(x) (indeed every valid inequality) is of the type

n
> aixi = ay 22)
i=1
wherea; >0,i =0,...,n.
Given k € {1,...,n}, we let Qx(x¥) € R¥ denote the orthogonal projection of
Q(x) onto the first k variables, and we define x[x} := (X1, ..., Xt). It follows from the

definition of lexicographic ordering that Q¢ (x) = QO (x[x)).

Therefore the facet inducing inequalities of Oy (x) are the facet inducing inequalities
of Q(x)suchthata; = Ofor j = k+1, ..., n.(This canbe seen, e.g., as a consequence
of the method of Fourier—Motzkin to compute projections.)

As the theorem trivially holds for Q1(x), to prove the result by induction on 7 it
suffices to characterize the facets with a, > 0. As the only facet inducing inequality
witha, > 0andag = Ois x,, > 0, from now on we consider a facet inducing inequality
(2.2) with a,, > 0 and ag > 0.

Assume first that x,, = 0. Then by Lemma 1 we have that Q(x) = Q,—1(x) X {x,, €
R : x; > 0} and we are done by induction. Therefore we assume X, > 0. Recall that,

by Lemma 1, Q(x) has n vertices, vl vt =X
Claim 1 X satisfies (2.2) at equality.
Since vﬁ =0fork = 1,...,n — 1, if x does not satisfy (2.2) at equality, the

inequality
n—1

Zam + (an — &)xn = ao
i=1

is valid for Q(x) for some ¢ > 0. Since (2.2) is the sum of ex, > 0 and the above
inequality, and these inequalities are not multiples of each other as ag > 0, (2.2) does
not induce a facet of Q(x). This proves Claim 1.

Claim2 gy >0fork=1,...,n.

@ Springer

536 M. Conforti et al.

By Claim 1 we have that

n
E aii,- = dqa.

i=1
Pick k € {1,...,n — 1}. Since v¥ satisfies (2.2), we have that

k

Za,')_c,' + ar > ag.
i=l1

Subtracting the above equation from this inequality, we obtain

n
ar > Y aifi >0,
i=k-+1

where the strict inequality follows because @; > 0 fori = 1,...,n and a,x, > 0.
This proves Claim 2.

Claim 2 shows that if x” # x’, x” > x’ (componentwise) and x’ satisfies (2.2),
then x” cannot satisfy (2.2) at equality. In particular, if x’ satisfies (2.2) at equality
and r is a nonzero ray of Q(x) then x’ + r cannot satisfy (2.2) at equality. Note
that Q(x) is a full dimensional polyhedron with exactly n vertices and (2.2) induces
a facet containing no nonzero rays. Therefore, inequality (2.2) must be satisfied at
equality by v!, ..., v". By imposing these n equations and considering the expression
ofvl, ..., 0" (see Lemma 1), one obtains a linear system in ay, . . ., a,, whose solution
is, up to scaling, a; = d}', foralli = 1,...,nand ap = Z;;l d!x;. This implies that
(2.2) is

n n
Zdinxi > Zdinf,'
i=1

i=1
and the theorem is proven. O

Remark 3 In the description given by Theorem 2, for every k such that x; = 0 the k-th
lex-inequality is redundant, as it is the inequality x; > 0. Furthermore, if x; > 0 then
also the inequality x; > 0 is redundant, as it is dominated by the first lex-inequality
(which is x; > Xxp). It can be verified that the remaining inequalities provide an
irredundant description of Q(x).

2.2 General lattice bases

Let {c!, ..., ¢"} be a lattice basis of Z". Then the n x n matrix C whose rows are
cl, ..., c" is unimodular, i.e., it is an integer matrix with determinant 1 or —1. The
unimodular transformation x +— Cx and its inverse map integer points to integer
points. By applying the transformation x +— Cx, the results of the previous subsection
can be immediately extended to the lattice basis {c!, ..., ¢"}.

@ Springer

Scanning integer points with lex-inequalities: a finite.... 537

In particular, the lexicographic ordering defined by the lattice basis is as follows:
Given x!, x? € R", we have x' < x? if and only if x; # x5 and ¢’x! < ¢/x2, where
i is the smallest index for which c/x! # ¢ x2.

The unimodular cone K is defined as K := {x € R" : dx>0,i=1,... ,n} and,
forx e KNZ", Q(x):=convix € KNZ":x > x}.

The leading index 7 (%), for ¥ € K \ {0}, is the largest index i such that ¢'X > 0.
Lemma I now reads as follows:

Lemma4 Fixx € K NZ". The convex set Q(X) is a fqll-dimensional polyhedron. Its
vertices are precisely the following points v', ... v'O: fork = 1,...,1(x) — 1, v*
is the unique point satisfying

c c'x, i=1, Lk —1
kok — ok 41
vk =0, i=k+1,...,n,

and v' = X. Furthermore, the recession cone of Q(x)is K.

Forx € K,k € {1,...,n} andi € {1,...,k}, the definition of the dl.k’s is as
follows:

1 ifi =k
df = k% ifi=k—1, (2.3)
KT (x+ 1), ifi <k —2.

The k-th lex-inequality associated with x is the following:

k k

Y dicdx =) di'x. 2.4

i=1 i=1

Theorem 2 now reads as follows:

Proposition 5 Ifx € K NZ", then the lex-inequalities (2.4) fork = 1, ..., n and the
inequalities c'x > 0 fori =1, ..., n provide a description of the polyhedron Q(x).

Neto (2012) describes a family of inequalities that, although presented in a different
setting, can be seen to be valid for Q(x) when the lattice basis {c!, ..., c"} is the
standard basis. However, those inequalities in general do not induce facets of Q(x)
and are therefore weaker than the lex-inequalities. In particular, the inequalities in
Neto (2012) are derived under the assumption that a box containing the continuous
set S is known, and their coefficients depend on the size of the box. In contrast, our
inequalities only depend on the current fractional solution x. As a consequence, we
obtain inequalities with smaller dynamism (i.e., with smaller ratio between the largest
and the smallest absolute value of the coefficients), which is a desirable property in
practice.

In order to compare Neto’s inequalities with ours, letn = 2,x = (1, 1), and consider
the box [0, 3] x [0, 3]. Neto’s inequalities are in this case x; > 1 and 3x| + xp > 4!

' We note that Neto presents his inequalities in a different form, as he considers the integer points that are
lexicographically smaller than x.

@ Springer

538 M. Conforti et al.

while the lex-inequalities are x; > 1 and x;+x> > 2. Since the inequality 3x;+x, > 4
is a proper conic combination of the two lex-inequalities, it cannot be facet inducing
for Q(x).

It should also be noted that in Neto (2012) the inequalities are described only for
the case in which the continuous set S is a bounded polyhedron, although it is not
difficult to extend them to the case of a compact set.

Furthermore, we remark that a linear-inequality description of the set Q(x) can be
inferred from a result proved by Gupte (2016, Theorem 2) in the context of super-
increasing knapsack problems: One needs to apply a change of variables and observe
that by removing the lower bounds appearing in Gupte (2016) the remaining facet
inducing inequalities are unaffected.

3 The cutting plane algorithm

Let S be a family of compact (not necessarily connected or convex) subsets of R”
with the following property:

IfSeSand Hisaclosed halfspaceinR", then SN H € S.

Linear optimization over S is the following problem: Given S € S and ¢ € Z",
determine an optimal solution to the problem min{cx : x € S} or certify that S = ¢.
(Since S is compact, either S = () or the minimum is well defined.)

Integer linear optimization over S is defined similarly, but the feasible region is
S NZ", the set of integer points in S.

We prove that an oracle for solving linear optimization over S suffices to design a
finite cutting plane algorithm that solves integer linear optimization over S.

We now make this statement more precise. Given a compact subset S of R” and
c € Z", let x € S be an optimal solution of the program min{cx : x € S}. A cutting
plane is a linear inequality that is valid for S N Z" and is violated by x. Note that a
cutting plane exists if and only if x ¢ conv(S N Z"). In particular, this is certainly the
case if x is a non-integral extreme point of conv(S).

A (pure) cutting plane algorithm for integer linear optimization over S is an iterative
procedure of the following type:

— Let S € S and ¢ € Z" be given.

— If § = @, then SN Z" = (. Otherwise, find an optimal solution x of min{cx : x €
S}.

— Ifx € SNZ", stop: x is an optimal solution to min{cx : x € SN Z"}. Otherwise,
detect a cutting plane and let H denote the corresponding half-space. Replace S
with § N H and iterate.

Assume without loss of generality that the objective function vector ¢ is nonzero
and has relatively prime entries. Then there exists a lattice basis {c!, ..., ¢"} of Z"
such that ¢! = ¢. The optimal solution X of min{cx : x € S} found by our algorithm

@ Springer

Scanning integer points with lex-inequalities: a finite.... 539

will be a lexicographically minimum or lex-min solution in S with respect to the lattice
basis:i.e., x < x forevery x € S\ {x}. The lex-min vector x in S satisfies the following
conditions:

— c'x =min{c'x : x € §};

~ x= min{czx cxes, clx= cli};

- APx= min{c3x cx e, clx=clx, 2x = czi};

— "X =min{c"x : x € S, clx=cl%, ..., " x = c”‘li}.

Since § is nonempty and compact, the above minima are well-defined and can be
computed by applying the oracle n times. Furthermore these conditions uniquely
define x. One verifies that x is an extreme point of conv(S).

Algorithm 1: Resolution of integer linear optimization over S

Input: S € S with § # @, ¢ € Z" \ {0} with relatively prime entries, and a lattice basis {c] L
of 2" with ¢! = c.
Output: an optimal integer solution x for the problem min{cx : x € S} or a certificate that
SNZ" = ¢.
Compute IZ;“ :=min{c’x : x € S}and ¢; := [Zﬂ for 1 <i < n, and apply a translation so that
¢;=0forl <i<n.LetK :={x eR" celx>0,i= 1,...,n}and replace S with SN K.
It S = ¢, stop: The given problem is infeasible.

-

woN

Else, compute the lex-min solution X in S with respect to {cl, L)
If x € Z", return x.

TN

Else, let k be the smallest index such that cX % ¢ 7 and compute
1 ifi =k
dk = 1| c*x ifi=k—1,
kx| T2 @i+, ifi <k—2.
Replace S with S N H, where H is the halfspace defined by the inequality (3.2)
koo kel
Sodbeix = Y dbels 4 af [3]
i=1 i=1

and go to step 2.

Algorithm 1 describes the procedure in detail. Note that since S is compact, numbers
1»--., £ (as defined in Algorithm 1) exist and can be determined by querying the
linear optimization oracle n times. Moreover, as {c], ..., c"} is a lattice basis of Z",
an index k as in step 5 always exists when x ¢ Z".
Given x € K, let x" be the lex-min vector in K N Z" such that x < x*. Obviously
x = x"ifand only if x € Z". If x ¢ Z", let k be the smallest index such that ckx ¢ Z.
It is easy to see that xT is the unique point satisfying the following conditions:

cxt = cix, i <k; kxt = ’Vckx-l ; cxt = 0,i>k. (3.1

@ Springer

540 M. Conforti et al.

Definition 6 Let X ¢ S N Z" and let k be the smallest index such that ckx ¢ Z.
The k-th lex-cut is the k-th lex-inequality associated with xT:

k k—1

Sdkcix = Y df e+ df [(3.2)

i=1 i=1
(This is the cut introduced at step 5 of Algorithm 1).

Proposition 7 Inequality (3.2) defines a cutting plane. Algorithm 1 terminates after a
finite number of iterations.

Proof Since, after the preprocessing of step 1, S € K and X is the lex-min point in S,
x < x1 < x'foreveryx’ € SNZ"\ {x1}. Thus SNZ" < Q(x") and by Proposition 5
inequality (3.2) is valid for S N Z". As ¢*x ¢ Z and d,]{‘ > 0, the inequality is violated
by x. This shows that (3.2) defines a cutting plane.

As different iterations of the algorithm use cuts (3.2) associated with lexicograph-
ically increasing vectors in S N Z", and S is bounded, the number of iterations of the
algorithm is finite. O

We mention that Akshay Gupte (personal communication) has elaborated an algo-
rithm to solve min{cx : x € S}, assuming that a box B containing S is given. His
algorithm iteratively constructs the convex hull of a set of the form {x € BN Z" :
x > X} for some X € Z", which can be seen as a truncated version of Q(x). However,
while in Algorithm 1 at each iteration we use x = i1, where 1 is the optimal solution
of the continuous relaxation, in Gupte’s algorithm X is obtained by “rounding” the
point optimizing an objective function with superincreasing coefficients that is differ-
ent from the original objective function. As a consequence, in Gupte’s algorithm one
can have £ < %1, which makes Q(%) (or its truncated version) weaker.

4 Lexicographic enumeration and the number of iterations

Recall the notation x T introduced in (3.1). We extend that definition to sets as follows:
Given S € R", let ST := {x : x € §}. Since S is bounded, S' is a finite set, as, given
y e Standi € {1,...,n}, c'y is an integer value satisfying min{c'x : x € S} <
¢’y < [max{c'x : x € S}].

Observation 8 Given a nonempty set S € S, let (x) be the sequence of points in S
computed at step 3 of Algorithm 1. Then the sequence (1) is the lex-ordering of some
distinct points in ST.

Proof If % is a point computed at step 3 of Algorithm 1, then clearly T € ST, as
X € §. Thus we only have to show that if x and x are points computed at step 3 in two
consecutive iterations (say iterations ¢ and ¢ + 1), then X7 < ¥'. Assume not. Then
%1 = %" and therefore the cuts introduced at these two iterations would be exactly the
same. But then the cut generated at iteration ¢ would already cut off x, contradicting
the fact that at iteration ¢ + 1 the point computed at step 3 is x. O

@ Springer

Scanning integer points with lex-inequalities: a finite.... 541

Corollary 9 |S| is an upper bound on the number of cuts produced by Algorithm 1.

We next construct a convex body containing no integer points for which the bound
|ST| on the number of cuts is exponential and tight.

Proposition 10 For every n € N, there is a convex subset S of [0, 11" (described
by a single convex constraint plus variable bounds) on which Algorithm 1 computes
ST =2" — 1 cuts.

Proof We choose the standard basis {el, ..., e"} as lattice basis of Z". Let 1 be the
point in R” with all entries equal to 1, and let || - || denote the Euclidean norm. Define
1> =n 3
S = cel0, 17" |lx —=|| <-——
{x OAFx =31 =7 16}
Note that S N Z" = P and ¢; = O fori = 1, ..., n. Furthermore, for every x €

{0, 1} \ {1}, S contains the point z(x) obtained from x by setting to 41'1 the entry with
largest index that is 0. As S C [0, 1]", this shows that st =10, 1}" \ {0}, and thus
ST =2" — 1.

We now show that every point in ST is of the form X' for some point ¥ found in
step 3. Let X be the point computed at some iteration of step 3 and assume X' # 1.
By Theorem 2, the lex-cut associated with T is satisfied by all x € {0, 1}" such
that x > xT. As the lex-cut associated with ¥ is an inequality with nonnegative
coefficients, it is also satisfied by the point z(x"). This implies that, if we denote by
% the point computed in step 3 at the next iteration, 1 is the lex-min point in {0, 1}"
that is lexicographically larger than x*. Thus every point in ST is of the form ' for
some point x found in step 3. Together with Observation 8, this shows that precisely
|ST| cuts are needed to discover that S contains no integer points, which happens at
step 2 immediately after the iteration in which ¥t = 1. O

Corollary 9 gives a guarantee on the maximum number of iterations of Algorithm 1
and Proposition 10 shows that there are instances for which the performance of this
algorithm is of the same order as that of an enumerative algorithm.

In order to better understand how Algorithm 1 compares to simple enumeration,
in the following we define Algorithm 2, which we think is the best candidate for an
enumerative algorithm.

In Algorithm 2, for ease of description § is assumed to be contained in the nonneg-
ative orthant. The variables oy, ..., o, and i* are used to impose restrictions on S, as
now illustrated. At the first iteration, &y = --- = «, = 0 and i* = 1, and therefore
S§* = § (step 2). This implies that (assuming S # ¢) x is the lex-min point in S
(step 7). Clearly, if x* € §* = S then x7 is the lex-min point in S N Z" and in this
case the algorithm stops (step 8). Otherwise, we know that the lex-min point in S N Z"
is lexicographically larger than x . Thus, we call the continuous optimization oracle
to find the lex-min point in S that is lexicographically larger than x1: this is done by
redefining S* with the restrictions ¢'x = ¢'x" fori = 1,...,n — 1 and ¢"x > "'
(step 9 and step 2 of the next iteration, with i* = n). We proceed this way until S*
becomes empty. When this happens, in order to find the lex-min point in § that is

@ Springer

542 M. Conforti et al.

Algorithm 2: Resolution of integer linear optimization over S via lex-enumeration

Input: S € S, ¢ € Z" \ {0} with relatively prime entries and a lattice basis {c!, ..., ¢"} of Z", with
¢ =c.
Output: an optimal integer solution x for the problem min{cx : x € S} or a certificate that
SNZ" =9 ‘
1 Translate Ssothat S C{x e R? : ¢'x >0,i=1,..., n}).Setay :=---:=ay :=0and i* := 1.
2 LetS*:=SN{x eR" :cix=oz,-, i <i*; cixzai, i>i*).
3IfS* =0
4 If i* = 1, stop: SNZ" = .
5 Else update i* := i* — 1, o+ := a;x + 1, ; := 0 fori > i*, and go to step 2.
6 Else
7 Let X be the lex-min point in S$*.
8 If i1 e 5*, stop: &1 is the lex-min point in S N Z".
9 Else update i* :=n, a; := it fori=1,..., n, and go to step 2.

lexicographically larger than X we have to increase ¢! x and remove the restricion
on ¢"x (step 5 with i* = n — 1). If §* is empty also when ¢"~!x is increased, we
have to increase ¢”~2x and remove the restrictions on ¢”~!x and ¢ x (again step 5,
this time with i* = n — 2). This process continues until a feasible (and thus optimal)
x1 is detected or S* = @ with i* = 1: in the latter case, S N Z" = ¢ (step 4).

The above discussion proves the correctness of Algorithm 2. In particular, the
following property has been established.

Lemma 11 In Algorithm 2, if X and X denote the points computed at two consecutive
executions of line 7, then X is the lex-min point in S that is lexicographically larger
than x7.

To analyze the performance of Algorithm 2, we need the following definitions. Let
C be the n x n matrix whose rows are ¢!, ..., c¢" and let S € S be given. For every
x € ST, let V(%) be the set of the following n vectorsal, ..., a":Fork=1,...,n—1,
o is defined as

=~

8
I
Il
—
Pl
|
—

1
k¥ 41
0, i=k+1,...,n,

R R
o o
Il
=1

and «" = Cx. Notice that by Lemma 4, V (x) contains all vectors of the form Cx
where x is a vertex of Q(x).

Let V(S) = Uzt V(¥). Notice that, given X, y € ST, the set V(¥) N V() may
be nonempty.

xeS

Proposition 12 Given a set S € S, let () be the sequence of vectors used to define
the sequence of sets (S*) in step 2 of Algorithm 2.

— IfSNZ" = O, then (@) is the lex-ordering of all points in V (S) U {0} with respect
to the standard basis.

— If SNZ" # 0, the sequence is truncated to the lex-min vector a (with respect to
the standard basis) such that C "l e SN7Z" = SN ST.

@ Springer

Scanning integer points with lex-inequalities: a finite.... 543

Proof Clearly the sequence (&) starts with @ = 0 and is lexicographically increasing
with respect to the standard basis.

Let o # 0 be a vector used in step 2 at some iteration ¢ > 1 and let x be the last
point computed at line 7 before iteration g; say that X is computed at iteration ¢’ < g.
If ¢ =¢q — 1, then o« = Cx" and therefore o € V(S).If ¢’ = g — ¢ for some t > 1,
then line 5 is executed r — 1 times between iterations ¢ and ¢g. In this case, « is the
vector defined by o; = ¢'x" fori <n—1, ap_sy1 = " HEN + 1, 0 = ¢ix7 for
i >n—t+ 2, and therefore @ € V(S).

We now show that every point in V(§) is in the sequence (o). By Lemma 11, the
sequence (o) contains all points of the form Cx for x € ST. Letnow a € V(S), where
« is not of the form Cx for any x € ST. Then there exist £ € ST and an index k < n
such that o; = ¢'% fori < k, agx = c*% + 1, and o; = O for i > k. Consider the last
iteration of line 7 in which X1 satisfies ¢'x" = ¢/ fori < k (this definition makes
sense because, as shown above, £ = ! at some iteration of line 7). The algorithm now
sets « = Cx' and executes line 5 k consecutive times. After this, we have « = Cx.
This shows that every point in V (S) is in the sequence («). O

We remark that in the definition of « at line 9, we could impose the stronger
condition a,, := ¢"x! + 1. However, this would not change substantially the bounds
on the number of iterations shown above. Moreover, when S is convex the number of
iterations is precisely the same in both cases.

By Observation 8§ and Proposition 12, the number of iterations of Algorithms 1 and
2 is upper-bounded by |ST| and |V (S)| + 1, respectively. Note that these bounds are
sharp, in the sense that they can be attained, and that the latter bound is always larger
than the former: indeed, by definition of V (S), we have |ST| < |V(S)| < n|ST]|. In
particular, for the example in Proposition 10 we have |V (S)| = 2" 4+ 2"~ — 2, thus
in that case Algorithm 2 executes roughly 50% more iterations than Algorithm 1. Itis
not clear to us whether there are instances in which |V (S)| is close to n|S*]|.

We also remark that comparing the two algorithms by counting the number of iter-
ations may not be “fair”, as the computational effort varies from iteration to iteration:
For instance, the computation of a lex-min solution (line 3 of Algorithm 1 and line 7 of
Algorithm 2) requires up to n oracle calls, while the iterations of Algorithm 2 in which
S* is empty only require a single oracle call. Nonetheless the results on the number of
iterations at least indicate that, from the theoretical point of view, Algorithm 1 tends
to be more efficient than Algorithm 2.

5 Comparison with Gomory and split cuts

Given a set S, a Chvdtal-Gomory inequality for S is a linear inequality of the form
gx > [y] for some g € Z" and y € R such that the inequality gx > y is valid for S.
We call gx > [y] a proper Chvatal-Gomory inequality if gx > [y] is violated by at
least one point in S.

Proposition 13 Given S € S, every proper Chvdtal-Gomory inequality for S is a
lex-cut for some lattice basis {cl, oo CYof 7.

@ Springer

544 M. Conforti et al.

Proof Let gx > [y] be a proper Chvital-Gomory inequality for S. Without loss of
generality, we assume that the entries of g are relatively prime integers. Let x be the lex-
min solution found at the first iteration of Algorithm 1 with respect to some lattice basis
{c', ..., "}, with ¢! = g. Since gx > [y] is a proper Chvital-Gomory inequality
for S, we have y < gx < [y]. In particular, gx ¢ Z. Then the corresponding lex-cut
is (equivalent to) gx > [gx] = [y].]

The converse of the above proposition is false; this will follow from a stronger
result.

A linear inequality is a split cut for S if there exist 7 € Z" and 7y € Z such that
the inequality is valid for both {x € S : 7x < mp}and {x € S : wx > g + 1}. It is
known that every Chvdtal-Gomory inequality is a split cut but not vice versa (see e.g.
Conforti et al. 2014).

The next result shows that our family of cuts is not included in and does not include
the family of split cuts. Combined with the previous proposition, this implies that our
family of cuts strictly contains the Chvétal-Gomory inequalities.

Proposition 14 There exist a bounded polyhedron S and a split cut for S that cannot
be obtained as (and is not implied by) a lex-cut for any choice of the lattice basis
{c!, ..., c"). Conversely, there exist a bounded polyhedron S and a lex-cut that is not

a split cut for S.

Proof Let S C IR? be the triangle with vertices (0, 0), (1, 0) and (1/2, —1). (See Fig. 1
to follow the proof.) The inequality x, > 0 is a split cut for S, as it is valid for both
sets {x € S : x; <0}and {x € S : x; > 1}. Note that after the application of the
cut, the continuous relaxation becomes the segment with endpoints (0, 0) and (1, 0),
which is the convex hull of the integer points in S.

Assume that the cut x > 0 can be obtained via an iteration of Algorithm 1 for
some lattice basis {cl, C2} and the corresponding bounds ¢1, £, € Z. In the following,
we will write ¢! = (c}, cé) and ¢? = (cf, c%).

Recall that in Algorithm 1 a translation is applied such that ¢; = 0 for every i.
However, in this proof it is convenient to work without applying the translation. It is
easy to see that in this case the form of the lex-cut is still (3.2), but now the dik are
defined as follows:

ifi =k
df == { [c*x% —] ifi =k—1,
[% — 6 T2y (R + 1=y, ifi <k—2.

Since the point (1/2, —1) is the only fractional vertex of S, we must have x =
(1/2, —1), otherwise no cut is generated. Suppose k = 1, i.e., c'x ¢ Z (see step 5
of the algorithm). Then the inequality generated by the algorithm is equivalent to
clx > |_cl)2-|. Since this inequality must be equivalent to x, > 0 and the entries of ¢!
are relatively prime integers, we necessarily have ¢! = (0, 1). But then ¢!'x = —1, a
contradiction to the assumption ¢! ¢ Z.

@ Springer

Scanning integer points with lex-inequalities: a finite.... 545

Suppose now k = 2, i.e., c'x € Z and ¢’% ¢ Z. Then the inequality given by the
algorithm is

d12 (clx — c1f> +cx — {sz—‘ > 0. 5.1

We claim that c} # 0. If this is not the case, then c% =0and c% # 0 (as {c1 , cz} isa
basis), and inequality (5.1) does not reduce to the desired cut x, > 0, as the coefficient
of x1 is dlzc{ + c% = c% # 0. Thus c% # 0. This implies that either the point (0, —1) or
the point (1, —1) satisfies the strict inequality ¢!x > ¢'%. We assume that this holds
for & := (0, —1) (the other case is similar). Note that ¢'% > ¢!%¥ 4+ 1, as ¢'x € Z and
c', % € Z?. Furthermore, the slope of the line defined by the equation c'x = ¢'x is
positive.

If ¢*% > ¢,, then £ satisfies inequality (5.1),as ¢'x —c'x > 1 and 2% —c%x >
O — % > —dlz. Since the point (1, 0) also satisfies (5.1) (as it is an integer point
in S), the middle point of X and (1, 0) satisfies (5.1). However, the middle point is
(1/2, —1/2), which is in S. This shows that in this case (5.1) is not equivalent to
xp > 0.

Therefore we assume c“x < €. Since ¢c“x > {3, the line defined by the equation
c%x = ¢, intersects the line segments [X, X] in a point distinct from x. Then, because
(0, 0) satisfies the inequality ¢>x > ¢; (as itis in §), the slope of the line defined by the
equation c¢?x = ¢, is negative. Furthermore, since ¢Z, £ € Z2, we have c?% < [{»],
and thus the line defined by the equation c2x = |£2] intersects [X, %] in some point
x*.

Now consider the system c'x = ¢'x, c?x = [£»]. Since the constraint matrix is
unimodular (as {c', ¢} is a lattice basis of Z?) and the right-hand sides are integer,
the unique solution to this system is an integer point. However, the first equation
defines a line with positive slope containing x and the second equation defines a line
with negative slope containing x*. From this we see that the intersection of the two
lines is a point satisfying 0 < x; < 1/2 and therefore cannot be an integer point, a
contradiction. This shows that also in this case (5.1) is not equivalent to x > 0. This
concludes the proof that there is a split cut that cannot be obtained via an iteration of
Algorithm 1.

For the converse, let § € RZ be the triangle with vertices (0, 3/2), (1/4, 0) and
(1, 0). If we take ¢!, ¢2 to be the vectors in the standard basis of R%, and £; = ¢, = 0,
then Algorithm 1 yields the cut 2x; 4+ xp > 2. Note that every point in S other
than (1, 0) is cut off by this inequality. Thus, if the inequality 2x; + x» > 2 is a
split cut for S, then there exist w € 72 and g € Z such that S is contained in
the “strip” {x € R? : g < wx < mg + 1}. Since S contains a horizontal and a
vertical segment of length 3 /4, this is possible only if the Euclidean distance between

the lines {x € R? : wx = mo} and {x € R? : 7x = my + 1} is at least 4%5.

2 4/3\> _ 2 : . :
Therefore ||]“ < (T) = % < 4. Since 7 is an integer vector, we deduce that

1 1

2 2

2

w1, o € {0, 1, —1}. It can be verified that if || = |72| = 1 then S is not contained in
the strip. Therefore one entry of 7 is 0 and the otheris 1 or —1. It can be checked that the
only strip of this type containing S is {x € R? : 0 < x; < 1}. However, the inequality
2x1 + xp > 2 is not valid for all the pointsin {x € S : x; <0}U{x € §:x; > 1}, as
the point (0, 3/2) is in this set but violates the inequality. O

@ Springer

546 M. Conforti et al.

(0,0)

(07 _1)

/ \
/ \c?x = |42

Fig.1 Illustration of the first part of the proof of Proposition 14. The inequality xp > 0 is a split cut for the
shadowed triangle, but is not of the type (3.2).

6 Concluding remarks

An obvious variant of Algorithm 1 is the following: Instead of being computed only
once at the beginning of the procedure, the lower bounds ¢; can be updated at every
iteration or whenever it seems convenient. It can be verified that the bounds of Obser-
vation 8 and Proposition 10 also hold for this variant of the algorithm: The proofs are
the same.

In view of Observation 8 and Proposition 10, the cardinality of ST truncated to the
lex-min point in ST N S plays a crucial role in the performance of Algorithm 1. This
number is dependent on the choice of the lattice basis and its ordering. It is easy to
see that different choices of the lattice basis (or different choices of the ordering of
the elements of the same lattice basis) may result in a different number of iterations
of the algorithm. However, this is not always the case: For instance, in the example in
Proposition 10 Algorithm 1 would produce the same number of iterations regardless
of the ordering of the standard basis.

A natural question is whether the approach described in this paper can be generalized
to the mixed integer case, i.e., to problems of the form min{cx + dy : (x,y) €
SN (Z" x RP)}, where § € R*™P isa compact set. However, it does not seem that
our algorithm can be easily extended to deal with this case.

Acknowledgements The lex-cuts defined in a previous version of this manuscript were weaker. Giacomo
Zambelli suggested to derive stronger lex-cuts via the characterization of the polyhedron Q(x). Section 4
benefited from remarks due to Stefan Weltge. We thank both of them. We are also grateful to Akshay Gupte
for his constructive comments and his pointers to the existing literature. We finally thank two anonimous
referees for their constructive comments.

Funding Open access funding provided by Universita degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.

@ Springer

Scanning integer points with lex-inequalities: a finite.... 547

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Andersen K, Jensen AN (2013) Intersection cuts for mixed integer conic quadratic sets. In: International
conference on integer programming and combinatorial optimization, pp 37-48

Armstrong R, Charnes A, Phillips F (1979) Page cuts for integer interval linear programming. Discrete
Appl Math 1(1-2):1-14

Balas E, Ceria S, Cornuéjols G (1993) A lift-and-project cutting plane algorithm for mixed 0—1 programs.
Math Program 58(1-3):295-324

Bell DE (1973) A cutting plane algorithm for integer programs with an easy proof of convergence. Working
paper 73-15, International Institute for Applied Systems Analysis, Laxenburg

Belotti P, Géez JC, Pélik I, Ralphs TK, Terlaky T (2013) On families of quadratic surfaces having fixed
intersections with two hyperplanes. Discrete Appl Math 161(16-17):2778-2793

Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed-integer nonlinear opti-
mization. Acta Numer 22:1-131

Belotti P, Géez JC, Pélik I, Ralphs TK, Terlaky T (2017) A complete characterization of disjunctive conic
cuts for mixed integer second order cone optimization. Discrete Optim 24:3-31

Bowman VJ, Nemhauser GL (1970) A finiteness proof for modified Dantzig cuts in integer programming.
Naval Res Logist Q 17(3):309-313

Burer S, Kiling-Karzan F (2017) How to convexify the intersection of a second order cone and a nonconvex
quadratic. Math Program 162:393-429

Burer S, Letchford A (2012) Non-convex mixed-integer nonlinear programming: a survey. Surv Oper Res
Manag Sci 17:97-106

Ceria S, Soares J (1999) Convex programming for disjunctive convex optimization. Math Program
86(3):595-614

Conforti M, Cornuéjols G, Zambelli G (2014) Integer programming, vol 271. Springer, Berlin

Dadush D, Dey SS, Vielma JP (2014) On the Chvatal-Gomory closure of a compact convex set. Math
Program 145:327-348

Frangioni A, Gentile C (2006) Perspective cuts for a class of convex 0—1 mixed integer programs. Math
Program 106(2):225-236

Gomory R (1958) Outline of an algorithm for integer solutions to linear programs. Bull Am Math Soc
64(5):275-278

Gomory R (1963) An algorithm for integer solutions to linear programs. In: Wolfe P, Graves RL (eds)
Recent advances in mathematical programming. McGraw-Hill, New York

Gupte A (2016) Convex hulls of superincreasing knapsacks and lexicographic orderings. Discrete Appl
Math 201:150-163

He Q, Lee J (2017) Another pedagogy for pure-integer Gomory. RAIRO Oper Res 51(1):189-197

Lee J, Wiegele A (2017) Another pedagogy for mixed-integer Gomory. EURO J Comput Optim 5(4):455—
466

Modaresi S, Kiling MR, Vielma JP (2016) Intersection cuts for nonlinear integer programming: convexifi-
cation techniques for structured sets. Math Program 155(1-2):575-611

Neto J (2012) A simple finite cutting plane algorithm for integer programs. Oper Res Lett 40(6):578-580

@ Springer

http://creativecommons.org/licenses/by/4.0/

548 M. Conforti et al.

Orlin JB (1985) A finitely converging cutting plane technique. Oper Res Lett 4(1):1-3

Schrijver A (1986) Theory of linear and integer programming. Wiley-Interscience Series in Discrete Math-
ematics. Wiley, Chichester

Stubbs RA, Mehrotra S (1999) A branch-and-cut method for O—1 mixed convex programming. Math Program
86(3):515-532

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Scanning integer points with lex-inequalities: a finite cutting plane algorithm for integer programming with linear objective
	Abstract
	1 Introduction
	2 Lexicographic orderings and lex-inequalities
	2.1 Standard basis
	2.2 General lattice bases

	3 The cutting plane algorithm
	4 Lexicographic enumeration and the number of iterations
	5 Comparison with Gomory and split cuts
	6 Concluding remarks
	Acknowledgements
	References

