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Abstract
The literature on the extreme value theory threshold optimization problem for multi-
ple time series analysis does not consider determining a single optimal tail probabil-
ity for all marginal distributions. With multiple tail probabilities, their discrepancy 
results in a differing number of exceedances, which may favour a particular mar-
ginal series. In this study, we propose a single optimal tail probability by integrat-
ing trade-offs among multiple time series within an MOO framework. Mathemati-
cally, our approach links the peaks-over-threshold technique and goal programming 
technique by developing a set of regression functions, which represent continuous 
paths of possible tail areas for multiple time series, and we formulate them at the 
desired levels within a multiobjective optimization framework. The optimal solution 
is found as the minimum Chebyshev variant weighted value. Our approach advances 
the development of the peaks-over-threshold method by considering the character-
istics of a group of time series collectively instead of independently. The proposed 
optimal tail probability can be considered an optimal reference point for practical 
risk investment portfolio analysis that employs an identical tail size across multiple 
time series data. The daily log returns of four U.S. stock market indices, namely, 
S&P 500, NASDAQ Composite, NYSE Composite, and Russell 2000, from 1 July 
1992 to 30 June 2022 are studied empirically.
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1 Introduction

Extreme value theory (EVT) is a powerful and accurate statistical modelling 
approach to examine extreme values in financial time series in accordance with 
their asymptotic nature and the behaviour of the underlying probability distribution 
(Embrechts et al. 1999; Rocco 2014). Researchers have employed EVT based on the 
peaks-over-threshold (POT) approach as a risk management tool in financial analy-
sis, such as the investigation of the asymmetry of illiquidity measures of stock prices 
and trading volumes (Będowska-Sójka et al. 2022); inspection of the tail relation-
ships between returns and volumes for high-frequency cryptocurrencies (Chan et al. 
2022); comparison of the extreme potential losses and gains of stock indices in both 
the short and long terms (Chikobvu and Jakata 2020); examination of the stress test-
ing perspective of a semiparametric copula-GARCH risk model for financial return 
series (Koliai 2016); and estimation of the potential loss for digital banking trans-
action risks (Saputra and Chaerani 2022). The procedure to identify an effective 
threshold for determining the tail of extreme values is crucial, as an inappropriate 
threshold can lead to the problem of bias or inefficiency in risk analysis (Chan et al. 
2022). Choosing a small or large threshold value can result in too many or too few 
observations of exceedances, respectively, which may cause biased parameter esti-
mates with inappropriate measurement data by including nonextreme observations 
or may induce inefficient parameter estimates with large standard errors by exclud-
ing extreme observations. Hence, the identification of an optimal threshold is a criti-
cal issue in the risk management of financial time series.

In previous empirical studies of EVT, various POT approaches have been 
adopted to choose a threshold in extreme value analysis for financial time series. 
These approaches include the applications of statistical Pareto QQ, Hill, and 
mean excess plots (Jakata and Chikobvu 2022); parameter estimates by using 
moments, probability weighted moments, and elementary percentiles (Jocković 
2016); Monte Carlo simulation from a known probability distribution (Longin 
and Solnik 2001); hyperparameter selection based on machine learning algo-
rithms (Nakamura  2021); statistical simulation from a bivariate probability 
distribution (Verster and Kwaramba 2022); and Bayesian modelling by deriv-
ing a posterior distribution for the unknown generalized parameter (Verster and 
Raubenheimer 2021). All these POT approaches have merely achieved the sin-
gle objective of choosing an individual or local threshold and analysing the tail 
properties of extreme values for each corresponding financial time series. For 
handling multiple financial time series data, the multivariate generalized Pareto 
distribution (Rootzén and Tajvidi 2006; Rootzén et  al. 2018) and generalized 
copula method (Falk et  al. 2019) have proven to be effective. The two methods 
aim to find the best distributional fitness, and the values of the optimal thresh-
olds for the involved time series are not restricted to be the same as each other. 
The discrepancy among threshold values (numbers of exceedances) causes a 
depute of fairness of the overall modelling process and the values of the optimal 
tail probabilities for the involved time series are not restricted to be the same as 
each other (Caeiro and Gomes 2015; Roth et al. 2016). The discrepancy among 
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optimal values causes a depute of fairness of the overall modelling process. In 
other words, the unbiasedness is arguable, as the estimated model may favour/
overfit a particular marginal series by resulting in a larger number of exceedances 
than other marginal series.

Multiple criteria decision analysis (MCDA) techniques are widely used in the 
process of financial decision-making as in the areas of business management and 
accounting, economics and econometrics, computing, decision science, and finan-
cial mathematics and engineering (Zopounidis et al. 2015; Spronk et al. 2016). The 
multiobjective optimization (MOO) approach is one of the core methods of MCDA 
to systematically evaluate a set of financial actions or criteria that are usually con-
flicting in nature and produce an optimal decision in accordance with an overall or 
a global perspective (Steuer and Na 2003; Steuer et al. 2007; Durbach and Stewart 
2012). The MOO approach can be employed to aggregate the results of local thresh-
olds, which are identified by using the POT approach, of individual financial time 
series into a holistic evaluation framework.

In this study, we fill this gap by proposing a single value representing the optimal 
tail probability that considers the trade-off among the involved multiple time series 
within an MOO framework. The optimality of the threshold is assessed by its ability 
to achieve minimum deviations with reference to the tail probabilities of individual 
financial time series within the group. Mathematically, our proposed approach links 
up the POT method and MOO approach by using a set of data-driven regression 
functions that model the trade-off among various tail probabilities. The regression 
function set serves as the desired levels for the formulation of MOO. The optimality 
solution is found as the minimum Chebyshev variant weighted value. Our approach 
advances the development of the peaks-over-threshold method by considering the 
characteristics of a group of time series collectively instead of independently.

In practice, the assessment of the tail risk level of investment portfolios carried 
out by investors is based on an identical tail probability across multiple time series 
data (Dupuis and Jones 2006). The literature does not directly address the need to 
obtain a single optimal tail probability for achieving the best overall distributional 
fitness. Our proposed MOO framework fills this gap, and the single optimal value 
can be considered an optimal reference point. Furthermore, the assessment of the 
risk level beyond the MOO optimal tail probability can be accurately estimated by a 
single derived set of GPDs. It is not necessary to re-estimate a distinct set of GPDs 
for each user-specified probability separately (Dupuis and Jones 2006). Those port-
folio tail risk levels can be examined via the truncated distributions conditioned on 
the user-specified value. In addition, the derived set of GPDs provided by our model 
provide the best overall distributional fitness under the restriction of having the same 
number of exceedances in all marginal time series.

The paper is organized as follows: Sect.  2 covers the background of the POT 
approach and the corresponding local threshold determination method. In Sect. 3, 
we introduce the formulation of the proposed multiobjective optimization approach 
for optimal threshold determination with the use of a data-driven regression func-
tion. The new formulation is capable of considering the influence from multiple time 
series obtained from related financial markets effectively. In Sect. 4, we describe the 
empirical data and address the simulation results. The proposed model is tested on 
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four U.S. stock market index data for assessing its effectiveness in determining the 
MOO tail probability. Concluding remarks are provided in the last section.

2  POT local threshold approach

2.1  Generalized Pareto distribution (GPD)

The POT approach in EVT is based on the formulation of a probability distribution, 
a generalized Pareto distribution (GPD), depicting the allocations of the extreme 
values beyond a certain threshold in terms of cut-off value, percentile, or tail prob-
ability (1-percentile). This approach extracts extreme values that exceed a suffi-
ciently large threshold value or location parameter � then converges to a limiting 
distribution function GPD with shape parameter � and scale parameter � . The prob-
ability density function (PDF) h�,�,�(x) and cumulative distribution function (CDF) 
H�,�,�(x) associated with the random variable X over � (the extracted extreme val-
ues) following GPD(�, �,�) are given as follows (Chikobvu and Jakata 2020; Chan 
et al. 2022):

where �, � ∈ R , � ∈ R
+ , for x ≥ � when  � ≥ 0, and � ≤ x ≤ � −

�

�
 when 𝛽 < 0.

2.2  Local threshold

The POT threshold estimation method (Longin and Solnik 2001; Chan et al. 2022) 
assumes that the distribution of extreme values exceeding the local threshold can 
be modelled by a Monte Carlo simulation of Student’s t-distribution with k degrees 
of freedom. In accordance with this assumption, the algorithm for finding the local 
threshold of a single time series can be summarized as the following algorithm:

The variable k denotes the degree of freedom of the t-distribution. The choice of 
k = 1 to 10 is based on the suggested procedure (Longin and Solnik 2001), which 
considers the adequacy of capturing different degrees of tail fatness. The objective 
of the algorithm is to find the optimal degree of freedom k* and to locate the corre-
sponding optimal tail probability �∗

k
 . Thereafter, the corresponding optimal distribu-
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in Appendix A of the paper (Longin and Solnik 2001).
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3  MOO optimal threshold approach

The MOO approach identifies an optimal solution with respect to several objec-
tives. The goal programming model (GPM) is widely adopted to solve multiob-
jective problems (Ghandforoush 1993; Tamiz et al. 1998; Jones and Tamiz 2010; 
Ghufran et al. 2015). A goal in a GPM refers to the desired level, target, or cri-
terion to be attained. The essence of GPM is to incorporate multiple goals into 
an MOO formulation that can be solved by using a conventional single objec-
tive optimization approach (Steuer et al. 2003). For an identified goal, there are 
three types of target level: exactly the target level (Type I), at most the target 
level (less is better, Type II), and at least the target level (more is better, Type 
III) (Jones and Tamiz 2010). A deviational variable is used to compute the dif-
ference between the desired level and a given solution on an identified target. 
Positive or negative deviational variables d+ or d− represent the difference in the 
achieved values above or below the target level, respectively. The GPM algo-
rithm minimizes the undesired deviational variables to attain the optimal solu-
tion with respect to their identified targets. For Type I goals, both positive and 
negative deviational variables are undesirable. For Type II and Type III goals, 
the positive and negative deviational variables are undesirable, respectively. 
There are four commonly used formulations, namely, zero–one normalization 
weighted, percentage normalization weighted, Chebyshev variant weighted, and 
lexicographic GPMs (Ghandforoush 1993; Tamiz et al. 1998). In this study, we 
adopt the Chebyshev variant weighted GPM  (GPMCVW), which demands the 

Algorithm   Determination of local thresholds for a financial time series
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optimal solution with minimum value across all weighted undesirable deviations 
to solve the multiobjective problem (Ghufran et al. 2015).

We extend Longin and Solnik’s algorithm listed in Sect. 2.2 with regression 
functions to capture the relationships between tail size and MSE of simulated 
data of the chosen degree of freedom. Based on the discrete simulation proce-
dure, the original algorithm can only consider discrete tail sizes (i.e., α = 0.01, 
0.02, ⋯, 0.20). Our method models the tail size as a continuous variable by 
using a polynomial linear regression function gi(�) to represent a continuous 
path of all possible tail areas for a particular time series i. The parameters of 
gi(�) are estimated by using the MSE of the simulated data obtained in step 4 of 
Algorithm 1 (i.e., MSEk∗.� ) with the optimal degree of freedom k*.

The setup of regression functions is essential to link the POT model with the 
MOO approach. Each continuous regression function models the characteristics 
of an individual market, and the regression function set serves as the desired 
level for the formulation of MOO. The overall formulation of the  GPMCVW is 
stated below:

Cost function MinimizeZ

Constraints g1(�)+d
−

1
− d+

1
= g1(�1

)

g2(�)+d
−

2
− d+

2
= g2(�2

)

⋮⋮⋮⋮

gm(�)+d
−

m
− d+

m
= gm(�m)

(d−1 ord
+

1 )
g1(�1)

≤ Z

(

d−2 ord+2

)

g2 (�2 )
≤ Z

⋮⋮

(d−mord
+
m)

gm(�m)
≤ Z

Boundary conditions upper bound:� ≤ �upper
lower bound:� ≥ �lower

Nonnegativity d−
1
, d+

1
, d−

2
, d+

2
,… , d−

m
, d+

m
≥ 0

Regression function gi(�) = c6�
6 + c5�

5 + c4�
4 + c3�

3 + c2�
2 + c1� + c0

where gi(�) represents the regression of MSE on tail probability � , gi(�i) represents 
the target value of minimum MSE , d−

i
 represents the negative deviation from gi(�i) , 

and d+
i
 represents the positive deviation from gi(�i) of the financial time series with 

index i = 1, 2,… ,m. A  6th order polynomial linear regression model gi(�i) is used in 
this study to achieve a satisfactory empirical result. The regression coefficients are 
estimated by using the MSEk∗.� obtained in step 4 of Algorithm 1 with the optimal 
degree of freedom k*. �upper and �lower represent the upper and lower limits of the 
tails, respectively. Their values are set to 0.01 and 0.20 with reference to the sug-
gested boundaries in the previous study (Longin and Solnik 2001). The solution of 
the  GPMCVW represents the optimal tail probability with minimum deviations from 
the local values among the group of financial time series. Our proposed model is 
implemented using MATLAB 2019b software (The MathWorks, Inc., Natick, MA, 
USA) and LINGO 18.0 software (Lindo Systems Inc., Chicago, IL, USA).
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4  Empirical results

4.1  Empirical data

The dataset presented in this study consists of 7556 daily log returns ( DLRs ) 
of four U.S. stock market indices, namely, the S&P 500, NASDAQ Composite, 
NYSE Composite, and Russell 2000, from 1 July 1992 to 30 June 2022 covering 
the periods of dot-com bubble (between April 2001 and December 2001), global 
financial crisis (between January 2008 and July 2009), and COVID-19 pandemic 
(between March 2020 and June 2022). Each index consisting of time series data 
of 7557 trading day information of closing values (from 30 June 1992 to 30 June 
2022) is downloaded from the website of Yahoo Finance. The DLR at time t  is 
calculated as follows:

For t = 1, 2,⋯ , 7556 and C0 is the closing value on 30 June 1992.
The historical closing price time series of the S&P 500, NASDAQ Compos-

ite, NYSE Composite, and Russell 2000 indices attained minimum closing prices 
of 402.66, 554.22, 2348.53, and 185.81 on 09 October 1992, 25 August 1992, 
09 October 1992, and 08 July 1992, respectively, and maxima closing prices of 
4796.56, 16,057.44, 17,353.76, and 2442.74 on 03 January 2022, 19 November 
2021, 12 January 2022, and 08 November 2021, respectively (Fig. 1).

DLR(t) = log

(
Ct

Ct−1

)
,

Fig. 1  Thirty-year historical closing price time series (consisting of 7556 trading days) of the four U.S. 
stock market indices from 1 July 1992 to 30 June 2022
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4.2  Daily log returns

The histograms, annualized means, maxima, minimums, annualized SDs, skew-
ness, and kurtoses of the daily log returns depict the distribution patterns of the 
four U.S. stock market indices over the past thirty years (Fig. 2). The NASDAQ 
Composite achieved the highest annualized mean DLR of 0.0991 compared with 
0.0753, 0.0742, and 0.0603 achieved by the Russell 2000, S&P 500, and NYSE 
Composite, respectively.

4.3  Local tail probabilities

The regressions of the mean squared error (MSE) on tail probability (�) of the 
S&P 500, NASDAQ Composite, NYSE Composite, and Russell 2000 indices are 
6th order polynomials (Fig. 3). The R-squared of each regression is greater than 
0.99.

The regression coefficients (c6, c5, c4, c3, c2, c1, c0) for i = 1(S&P 500), 2

(NASDAQ Composite), 3(NYSE Composite), and 4 (Russell 2000) are given 
by (30,625, − 21,716, 6118.0, − 872.89, 66.747, − 2.4490, 0.047158), (35,567, 
−  23,958, 6411.3, −  872.28, 64.160, −  2.2734, 0.046319), (50,697, −  34,794, 
9433.8, − 1284.0, 92.319, − 3.1967, 0.052644), and (21,054, − 14,978, 4256.4, 
−  617.31, 48.791, −  1.8926, 0.040067), respectively. The regressions reached 
minimum MSE values of 0.013690, 0.016288, 0.011089, and 0.012299 at local 
tail probabilities of 0.03951, 0.03810, 0.03853, and 0.04343, respectively.

Fig. 2  Histograms of 7556 daily log returns of the four U.S. stock market indices from 1 July 1992 to 30 
June 2022
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4.4  MOO optimal tail probability

The formulation of the  GPMCVW is given by:

The solution of the  GPMCVW representing the MOO optimal tail probability is 
0.04073. The distributions and curves of the GPD of the extreme values based on the 
optimal tail probability of 0.04073 attain global threshold values of 0.01967, 0.02702, 
0.01884, and 0.02409 negative DLRs for the S&P 500, NASDAQ Composite, NYSE 
Composite, and Russel 2000 indices, respectively (Fig. 4).

5  Summary of GDP parameter estimates

The tail probabilities and number of exceedances, together with the corresponding GPD 
parameter estimates of the four U.S. stock market indices, are tabulated in Table 1.

Minimizek

subjectto

30625�6 − 21716�5 + 6118.0�4 − 872.89�3 + 66.747�2 − 2.4490� + d−
1
− d+

1
= −0.033469

35567�6 − 23958�5 + 6441.3�4 − 872.28�3 + 64.160�2 − 2.2734� + d−
2
− d+

2
= −0.030031

50697�6 − 34794�5 + 9433.8�4 − 1284.0�3 + 92.319�2 − 3.1967� + d−
3
− d+

3
= −0.041555

21054�6 − 14978�5 + 4256.4�4 − 617.31�3 + 48.791�2 − 1.8926� + d−
4
− d+

4
= −0.027769

d+
1

0.013690
,

d+
2

0.016288
,

d+
3

0.011089
,

d+
4

0.012299
≤ k

� ≥ 0.01, � ≤ 0.20, d−
1
, d+

1
, d−

2
, d+

2
, d−

3
, d+

3
, d−

4
, d+

4
≥ 0

Fig. 3  The 6th-order polynomial regressions of mean squared error (MSE) on tail probability (�) of the 
four U.S. stock market indices
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The optimal tail probability value (i.e., 0.04073) estimated by the MOO model pro-
vides the best overall distributional fitness under the restriction of having the same 
number of exceedances (i.e., 308) in all marginal time series. Slight differences among 
the GPD parameters can be observed. For the case in which the optimal tail probability 
is larger than the locally optimized tail probability, the GPD location parameter φ is 
adjusted to a smaller value to accommodate the inclusion of additional exceedances, 
and vice versa. No indicative pattern is observed for the values of shape β and scale ω 
parameters.

However, from the empirical analysis we conclude that the location parameter φ 
estimated with the use of various local and global threshold values is between 0.01884 
and 0.02702 (mean = 0.02251) for the S&P 500, NASDAQ Composite, NYSE Com-
posite, and Russell 2000 indices from 01 July 1992 to 30 June 2022 (Table 1). The 
result is comparable to the findings of a previous study that applied the POT approach 
to compute tail risk measures of daily returns for six global stock market indices (Gilli 
and Këllezi 2006).

6  Conclusion

Investigation of probable extreme or rare incidents plays a key role in the risk 
analysis of financial portfolio management in terms of loss or gain for investors 
with a long or short position on the portfolio, respectively. The application of 

Fig. 4  The distributions and curves generated by the GPD of the 308 extreme negative daily log returns 
extracted from 7556 daily log returns of the four U.S. stock market indices
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MCDA is considered a useful tool for regulators, policy-makers, and individual, 
institutional, and corporate investors (Zopounidis et al. 2015). Accurate estima-
tion of tail risk exposure of value at risk (VaR) and expected shortfall is crucial 
for risk analysis and portfolio management. The POT approach in EVT provides 
a powerful framework to quantify extreme risk measures that avoid the underesti-
mation or overestimation of risk levels (Jakata and Chikobvu 2022).

The literature on the extreme value theory threshold optimization problem 
for multiple time series analysis does not consider determining a single optimal 
tail probability for all marginal distributions. With multiple tail probabilities, the 
discrepancy results in a differing number of exceedances, which may favour a 
particular marginal series. In this study, we develop a single optimal tail prob-
ability by integrating trade-offs among multiple time series within an MOO 
framework. Our method unites the POT technique and MOO framework. Here, 
we develop a set of regression functions, representing continuous paths of pos-
sible tail areas for multiple time series. The regression functions are then formu-
lated as the desired levels within an MOO framework. The optimality of MOO 
tail probability is assessed by its ability to achieve minimum Chebyshev variant 
weighted deviations with reference to the tail probabilities of individual financial 
time series within the group.

Apart from proper estimation of the portfolio tail risk level, an identifica-
tion of extreme returns is vital in formulating the connectedness among finan-
cial time series and in identifying contagion during financial turmoil (Bae et al. 
2003). Researchers have investigated the linkages and temporal relationships for 
rare incidents in multivariate time series (Arnold et  al. 2007; Chen and Chihy-
ing 2007) as well as transmission and comovements of prices in financial mar-
kets by using the correlation among stocks that can be employed to signify the 
dominance of specific stocks in accordance with the correlation-based network 
under consideration (Ganeshapillai et al. 2013). The optimal tail probability iden-
tified in this study can help investors connect a group of financial time series by 
using the same number of extreme returns and identify the risk that is generated 
in tandem. Furthermore, we consider the negative DLRs of four U.S. stock market 
indices, adopt the POT approach to identify the local threshold, and employ the 
Chebyshev variant weighted GPM to find the global threshold. In future studies, 
researchers can evaluate both positive and negative DLRs of stock prices or mar-
ket indices in other countries (Koliai 2016; Będowska-Sójka et al. 2022), can use 
other methods, such as the block maxima (BM) method, to find the local thresh-
old (Nakamura 2021; Będowska-Sójka et al. 2022), and can apply other weighted 
lexicographic GPMs to choose the global threshold (Jones and Tamiz 2010).

To conclude, we propose a novel MOO threshold determination framework 
that is capable of producing a single optimal tail probability for obtaining the 
same number of exceedances across multiple time series. The MOO tail prob-
ability can be considered an optimal reference point for practical risk investment 
portfolio analysis that employs an identical tail size across multiple time series 
data. The assessment of risk level beyond the MOO optimal tail can be accu-
rately estimated via the truncated distributions conditioned on the user-specified 
value. Moreover, the calculation method is demonstrated empirically with the use 
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of four U.S. stock market index data covering the period from 1 July 1992 to 30 
June 2022.
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