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Abstract
Under a two-factor stochastic volatility jump (2FSVJ) model we obtain an exact 
decomposition formula for a plain vanilla option price and a second-order approxi-
mation of this formula, using Itô calculus techniques. The 2FSVJ model is a general-
ization of several models described in the literature such as Heston (Rev Financ Stud 
6(2):327–343, 1993); Bates (Rev Financ Stud 9(1):69–107, 1996); Kou (Manag Sci 
48(8):1086–1101, 2002); Christoffersen et al. (Manag Sci 55(12):1914–1932, 2009) 
models. Thus, the aim of this study is to extend some approximate pricing formu-
las described in the literature, like formulas in Alòs (Finance Stoch 16(3):403–422, 
2012); Merino et al. (Int J Theor Appl Finance 21(08):1850052, 2018); Gulisashvili 
et  al. (J Comput Finance 24(1), 2020), to pricing under the more general 2FSVJ 
model. Moreover, we provide numerical illustrations of our pricing method and its 
accuracy and computational advantage under double exponential and log-normal 
jumps. Numerically, our pricing method performs very well compared to the Fourier 
integral method. The performance is ideal for out-of-the-money options as well as 
for short maturities.
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1 Introduction

In the quest to enhance option pricing models in order to reproduce the volatility 
smile or smirk observed in derivative markets, researchers like Heston (1993) 
and some others, came up with stochastic volatility models to cater this styl-
ized fact. Recall that in a stochastic volatility model, the price process under a 
risk-neutral measure is assumed to depend not on constant volatility as in the 
Black–Scholes model, but on a stochastic volatility described by a second sto-
chastic differential equation driven by a Brownian motion correlated with the 
Brownian motion that drives the price process. Later, in order to improve them, 
jumps following a compound Poisson process were added to the price process, 
as in Bates (1996a, b). Currently, Heston and Bates models (see Heston (1993) 
and Bates (1996a) respectively) are standard models regularly used in the finan-
cial industry. Bates model is the Heston model with the addition of jumps in 
the price process described by a compound Poisson process with normal ampli-
tudes. In Bates (2000), in order to overcome some inconsistencies of Heston and 
Bates models in trying to generate volatility surfaces similar to those observed 
in derivative markets, a second factor was added to the volatility equation, mod-
eling separately the long-term and the short-term volatility evolution. This idea 
was later developed by several authors, see for example Christoffersen et  al. 
(2009) and Andersen and Benzoni (2010).

Certainly, most of previous models, have the advantage of having exact semi-
closed pricing formulas, however, they involve numerical integration which is 
computationally expensive especially when calibrating models. See the recent 
papers Orzechowski (2020), Deng (2020), and Orzechowski (2021) for discus-
sions about the efficiency of different methods to compute approximately these 
formulas. The last two papers cover the 2FSVJ model and in fact, Deng (2020) 
extends the 2FSVJ model including jumps in the volatility equations.

In general, the need for fast option pricing has driven, during the last years, 
the research of closed approximate formulas. A different line in this direction is 
the one started by Alòs (2012), who derived an exact decomposition of an option 
price in terms of volatility and correlation in the case of the Heston model, that 
can be well approximated by an easy-to-manage closed approximate formula. 
In this approach, the problem is not how to do fast numerical integration in the 
price closed formula but to obtain another type of approximate formula based 
on a Taylor type decomposition. This point of view is not only interesting since 
the computational finance point of view, but also since an intrinsic point of view 
that shows the impact of correlation and volatility of volatility in option pricing.

The ideas in Alòs (2012) were exploited in Alòs et  al. (2015) to develop an 
alternative method to fast calibration of the Heston model on the basis of a mar-
ket price surface. This approximate formula for the Heston model was improved 
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in terms of accuracy in Gulisashvili et al. (2020). Moreover, the same ideas were 
extended beyond Heston model in several papers. In Merino and Vives (2015) 
the decomposition formula was extended to a general stochastic volatility models 
without jumps, in Merino and Vives (2017), stochastic local volatility and spot-
dependent models were considered, and in Merino et al. (2018) the case of Bates 
model was treated. Recently, in Merino et  al. (2021), similar results for rough 
Volterra stochastic volatility models have been obtained.

It is important too to comment on the advantages of this line of research 
with alternative methodologies in relation to accuracy and computational effi-
ciency in pricing derivatives. In Alòs (2012), results are compared with another 
approximate formula developed by E. Benhamou, E. Gobet and M. Miri based 
on Malliavin calculus techniques, see Benhamou et al. (2010) and the references 
therein. In Alòs et al. (2015), accuracy and computational efficiency is compared 
with results in Forde et al. (2011) based on a an alternative closed form approxi-
mate formula. In Merino et al. (2018), one of the main references for the present 
paper, the accuracy and computational efficiency of the obtained approximate 
formula for Bates model is compared with transform pricing methods based on 
a  semi-closed pricing formula. Concretely, the new formula is compared with 
the Fourier transform based pricing formula used in Baustian et  al. (2017), 
resulting in a three times faster method with similar accuracy. As a summary, 
approximate formulas based on the mentioned decomposition formula, beyond 
its advantages in terms of computational efficiency, allow to understand the key 
terms contributing to the option fair value and to infer parametric approxima-
tions to the implied volatility surface.

In the present paper, in line with the mentioned previous papers, the goal is 
to obtain a decomposition formula and a closed approximate option pricing for-
mula for a two-factor Heston–Kou 2FSVJ model, as described in Bates (2000) 
and Christoffersen et al. (2009). Our study brings some innovations to the exist-
ing and mentioned literature on three fronts. Firstly, we consider a two-factor 
model which to the best of our knowledge has not been studied in the context 
of the mentioned decomposition formula. Secondly, we get a second-order for-
mula like in the case of Gulisashvili et al. (2020) while most research in this line 
obtains first-order formulae only. Lastly, in addition to log-normal jumps, double 
exponential jumps as in Kou (2002) and Gulisashvili and Vives (2012) are con-
sidered, and in this sense, this is a generalization of Merino et al. (2018). Our 
results are compared with the Fourier integral method obtaining faster results.

The rest of the paper is divided as follows: in Sect. 2 we introduce the model and 
outline some key concepts and assumptions. In Sect. 3 the generic decomposition for-
mula is obtained. In Sect. 4 we derive the first and second-order approximate formulae. 
Section 5 describes the numerical experiments and results while Sect. 6 outlines the 
conclusions of our research.
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2  The model

Assume we have an asset S ∶= {St, t ∈ [0, T]} described by the SDE

under a risk-neutral probability measure, where (Bi,t)t∈[0,T] and (Wi,t)t∈[0,T] are mutu-
ally independent Wiener processes for i = 1, 2 . The i.i.d. jumps (Zi)i∈ℕ have a known 
distribution and are independent of the Poisson process Nt and the Wiener processes.

In order to compute the decomposition formula we need a version of the vari-
ance processes suitable for our computations. We use an alternative adapted spec-
ification that is suitable for Itô calculus, that is, the expected future average vari-
ance defined as

where �t denotes the conditional expectation with respect to the complete natural 
filtration generated by the five processes involved in the model.

The following lemma will be useful in the remainder of the paper.

Lemma 1 The process Vi,t satisfies the differential form

where

is a martingale. In particular,

(1)

dSt

St−
= (r − k�)dt +

�
Y1,t

�
�1dW1,t +

√
1 − �1dB1,t

�

+
�

Y2,t

�
�2dW2,t +

√
1 − �2dB2,t

�
+ d

Nt�

i=1

(eZi − 1)

(2)dY1,t = �1(�1 − Y1,t)dt + �1

√
Y1,tdW1,t

(3)dY2,t = �2(�2 − Y2,t)dt + �2

√
Y2,tdW2,t

Vi,t =
1

T − t ∫
T

t

�t[Yi,s]ds for i = 1, 2,

dVi,t =
1

T − t

(
dMi,t + (Vi,t − Yi,t)dt

)
for i = 1, 2,

Mi,t = ∫
T

0

�t[Yi,s]ds for i = 1, 2

(4)dMi,t = �i�i(t)
√

Yi,tdWi,t for i = 1, 2
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where

Proof Integrating (2) and (3) on [t, s] and taking conditional expectations yields:

and

Transforming the second expression via an integrating factor we get the following 
differential equation:

Integrating and multiplying by e−�is reveals that

Integrating the above on [t, T] yields

Now, from the definition of Vi,t

where

Then, the differential form of Vi,t follows.
In relation with the expression of dMi,t , note that using (5) we have

�i(t) = ∫
T

t

e−�i(s−t)ds =
1

�i

(
1 − e−�i(T−t)

)
.

Yi,s = Yi,t + �i ∫
s

t

(�i − Yi,u)du + �i ∫
s

t

√
Yi,udWi,u

�t

[
Yi,s

]
= Yi,t + �i ∫

s

t

(�i − �t

[
Yi,u

]
)du.

d
(
e�is�t

[
Yi,s

])
= �i�ie

�isds.

�t

[
Yi,s

]
= �i +

(
Yi,t − �i

)
e−�i(s−t).

(5)∫
T

t

�t

[
Yi,s

]
ds = �i(T − t) +

1

�i

(
Yi,t − �i

)(
1 − e−�i(T−t)

)
.

dVi,t =
1

T − t
[Vi,tdt + d ∫

T

t

�t

[
Yi,s

]
ds]

d ∫
T

t

�t

[
Yi,s

]
ds =

[
−�i −

(
Yi,t − �i

)
e−�i(T−t)

]
dt +

1

�i

(
1 − e−�i(T−t)

)
dYi,t

=
[
−�i −

(
Yi,t − �i

)
e−�i(T−t)

]
dt

+
1

�i

(
1 − e−�i(T−t)

)(
�i(�i − Yi,t)dt + �i

√
Yi,tdWi,t

)

= − Yi,tdt +
�i

�1

(
1 − e−�i(T−t)

)√
Yi,tdWi,t.
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and

Substituting the expression of dYi,t , the differential form of Mi,t, (4), follows.   ◻

Remark 1 Recall that in the two-factor Black–Scholes model, we transform the dif-
fusion term as follows:

where

and

Thus, taking the above remark into account and letting Xt = ln(St) we have

where

and

The process Yt has an expected future average variance whose differential form

can easily be derived since it is a linear combination of independent processes. Here,

Mi,t = ∫
t

0

Yi,sds + �i(T − t) +
(
Yi,t − �i

)
�i(t)

dMi,t = Yi,tdt − �idt + �i(t)dYi,t +
(
Yi,t − �i

)
� �
i
(t)dt

= �i�i(t)(Yi,t − �i)dt + �i(t)dYi,t

�1dW1,t + �2dW2,t = ‖�‖dW̃t

‖�‖ =

�
�2
1
+ �2

2

dW̃t =
1

‖�‖
�
�1dW1,t + �2dW2,t

�
.

(6)dXt = (r − k� −
1

2
Yt)dt +

√
YtdW̃t + d

Nt∑

i=1

Zi

dW̃t =
1

�
Yt

��
Y1,t

�
�1dW1,t +

√
1 − �1dB1,t

�
+
�

Y2,t

�
�2dW2,t +

√
1 − �2dB2,t

��

Yt = Y1,t + Y2,t.

dVt =
1

T − t

(
dMt + (Vt − Yt)dt

)

Vt =
1

T − t ∫
T

t

�t[Ys]ds
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and

3  Decomposition formula

Having defined the terms and processes related to the volatility, we recall some nota-
tion according to the Black–Scholes formula. Let B(t,  x,  y) be the Black–Scholes 
function that gives the acclaimed plain vanilla Black–Scholes option price with vari-
ance y, log price x, and maturity T:

where N is the standard normal cumulative distribution function and

Recall that LyB(t, x, y) = 0 where Ly is the Black–Scholes operator

We begin by obtaining a generic decomposition formula which is instrumental 
throughout our discussion. It will be particularly useful in deriving the approximate 
versions of the decomposition formula as discussed in the “Appendix”.

Lemma 2 Let

be the continuous part of Xt , and let the function

satisfy

Suppose that Gt is a continuous semi-martingale adapted to the complete natural 
filtration generated by W1,t and W2,t. Then, the following generic decomposition for-
mula holds:

Mt = ∫
T

0

�t[Ys]ds.

B(t, x, y) = exN(d+) − e−r(T−t)KN(d−)

d+ =
x − ln(K) + (r + y∕2)(T − t)

√
y(T − t)

,

d− = d+ −
√
y(T − t).

Ly = −r + �t +
(
r − k� −

y

2

)
�x +

y

2
�2
x
.

X̂t = X0 + ∫
t

0

(
r − k� −

1

2
Yt

)
dt + ∫

t

0

√
YtdW̃t

A ∈ C1,2,2([0, T] ×ℝ × [0,∞))

(7)�yA(t, x, y) =
1

2
(T − t)(�2

x
− �x)A(t, x, y).
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where Λ = �x , Γ ∶= �2
xx
− �x.

Proof Refer to Theorem 3.1 in Merino et al. (2018).   ◻

Remark 2 Note that in the Lemma 2 function A is a generic function. Moreover, 
condition (7), which is satisfied by the Black–Scholes function, is used only to sim-
plify terms in the decomposition. The proof is based on the Itô formula. Therefore, 
the methodology used in this paper is completely general. Properties of the Black–
Scholes function and of any concrete stochastic volatility model can be useful to 
obtain some simplifications, but the ideas behind the decomposition formula, are 
general and can be developed for any stochastic volatility model and any function.

Corollary 1 Assuming that A(t, x, y) = B(t, x, y) and G ≡ 1 in Lemma 2, we have

Remark 3 Though this formula can be written similarly to the one derived by Merino 
et al. (2018), it is different due to the two driving stochastic volatility terms

�t

[
e−r(T−t)A(T , X̂T ,VT )GT

]
= A(t, X̂t,Vt)Gt

+ �t

[

∫
T

t

e−r(s−t)A(s, X̂s,Vs)dGs

]

+
1

8

2∑

i=1

�t

[

∫
T

t

e−r(s−t)GsΓ
2A(s, X̂s,Vs)d[Mi,Mi]s

]

+
1

2

2∑

i=1

�i�t

[

∫
T

t

e−r(s−t)Gs

√
Yi,sΛΓA(s, X̂s,Vs)d[Wi,Mi]s

]

+

2∑

i=1

�i�t

[

∫
T

t

e−r(s−t)
√

Yi,sΛA(s, X̂s,Vs)d[Wi,G]s

]

+
1

2

2∑

i=1

�t

[

∫
T

t

e−r(s−t)ΓA(s, X̂s,Vs)d[Mi,G]s

]
,

P(t) = B(t, X̂t,Vt)

+

2∑

i=1

1

8
�t

[

∫
T

t

e−r(s−t)Γ2B(s, X̂s,Vs)d[Mi,Mi]s

]
(I.i)

+

2∑

i=1

�i
2
�t

[

∫
T

t

e−r(s−t)
√

Yi,sΛΓB(s, X̂s,Vs)d[Wi,Mi]s

]
(II.i)

d[W̃,M]t =
1

√
Yt

(
�1

√
Y1,td[W1,M1]t + �2

√
Y2,td[W2,M2]t

)

d[M,M]t = d[M1,M1]t + d[M2,M2]t
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Hence, our decomposition formula can be resolved into five terms instead of three 
terms.

In Merton (1976) and Merino et al. (2018) the treatment of a jump model prob-
lem is reduced to a treatment of a continuous case problem by conditioning on 
the number of jumps. Assuming that we observe k jumps in the time period [t, T] 
we have

where Lk =
∑k

i=1
Zi.

From now on we will write for simplicity Ds ∶= Xt + X̂s − X̂t for any s ≥ t. 
Note that Dt = Xt. Define moreover

Thus, it follows that we can set

where in general, for any positive �,

and then,

is the probability of observing k jumps in [t, T].
This enables us to deal with our problem in a continuous setting. Following 

that, we obtain the decomposition of the 2FSVJ model.
Applying Lemma 2 recursively to A = Hk and G ≡ 1 we obtain the following 

corollary:

XT = X̂T +

NT∑

i=1

Zi = Xt + X̂T − X̂t + Lk

Hk(s,Ds,Vs) = �Lk

[
B(s,Ds + Lk,Vs)

]

P(t) = �t

[
e−r(T−t)B(T ,XT ,VT )

]

=

∞∑

k=0

pk(�(T − t))�t

[
e−r(T−t)B(T , X̂T +

NT∑

i=1

Zi,VT )|
|||NT − Nt = k

]

=

∞∑

k=0

pk(�(T − t))�t

[
e−r(T−t)�Lk

[B(T ,DT + Lk,VT )]
]

=

∞∑

k=0

pk(�(T − t))�t

[
e−r(T−t)Hk(T ,DT ,VT )

]

pk(�) ∶= e−�
�k

k!
,

pk(�(T − t)) = e−�(T−t)
�k(T − t)k

k!
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Corollary 2 The price of the plain vanilla European call option is given as

4  Approximate formulae

In the study of decomposition formulas, it has been found that formulas like (8) 
are not easy to compute in their present form. But they allow building closed-form 
approximation formulas that are computationally tractable.

The idea is to freeze the integrands in formula (8), to compute the difference 
between the original and the frozen approximate formulas, and decompose this error 
formula in a series of decreasing terms. Adding to the approximate formula terms of 
the error formula up to a certain order allows us to obtain good approximations; see 
Gulisashvili et al. (2020).

Freezing the integrands of the formula in Corollary 2 gives

where �(T − t) denotes an error term that has to be estimated.
From now on we will denote

and

(8)

P(t) =

∞∑

k=0

pk(�(T − t))Hk(t,Xt,Vt)

+
1

8

2∑

i=1

∞∑

k=0

pk(�(T − t))�t

[

∫
T

t

e−r(s−t)Γ2Hk(s,Ds,Vs)d[Mi,Mi]s

]

+

2∑

i=1

�i
2

∞∑

k=0

pk(�(T − t))�t

[

∫
T

t

e−r(s−t)
√

Yi,sΛΓHk(s,Ds,Vs)d[Wi,Mi]s

]

P(t) =

∞∑

k=0

pk(�(T − t))Hk(t,Xt,Vt)

+

2∑

i=1

∞∑

k=0

pk(�(T − t))Γ2Hk(t,Xt,Vt)�t

[
1

8 ∫
T

t

d[Mi,Mi]s

]

+

2∑

i=1

∞∑

k=0

pk(�(T − t))ΛΓHk(t,Xt,Vt)�t

[
�i

2 ∫
T

t

√
Yi,sd[Wi,Mi]s

]
+ �(T − t)

Ri,t =
1

8
�t

[

∫
T

t

d[Mi,Mi]s

]
,

Ui,t =
�i

2
�

[

∫
T

t

√
Yi,sd[Wi,Mi]s

]
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Using this notation, the first naive version of the approximate formula is given by

Before giving precise approximate formulas, we recall two lemmas:

Lemma 3 (Alòs 2012) For any n ≥ 0 and 0 ≤ t ≤ T , there exists a constant C(n) 
such that

Lemma 4 (Alòs et al. 2015) The following relations hold:: 

1. 

2. 

3. 

4. 

5. 

6. 

Qi,t = �i�

[

∫
T

t

√
Yi,sd[Wi,Ui]s

]
.

P(t) =

∞∑

k=0

pk(�(T − t))Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(R1,t + R2,t)Γ
2Hk(t,Xt,Vt)Ri,t

+

∞∑

k=0

pk(�(T − t))(U1,t + U2,t)ΛΓHk(t,Xt,Vt) + �(T − t)

ΛnΓB(t, x, y) ≤ C(n)

(
√
y(T − t))n+1

.

�i(t) ≤ 1

�i
.

�
T

t

�t

[
Yi,s

]
ds ≥ Yi,t�i(t).

�
T

t

�t

[
Yi,s

]
ds ≥ �i�i

2
�2

i
(t).

Ri,t =
�2
i

8 ∫
T

t

�t[Yi,u]�
2
i
(u)du.

Ui,t =
�i�i

2 ∫
T

t

�i(u)�t

[
Yi,u

]
du.

Qi,t =
�2
i
�2
i

2 ∫
T

t

�t

[
Yi,u

](

∫
T

u

e−�i(z−u)�i(z)dz

)
du.
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7. 

8. 

9. 

Following Gulisashvili et  al. (2020) we derive higher order approximations by 
applying the generic decomposition formula in Lemma 2 for appropriate choices of 
A(t,Xt,Vt) and Gt as follows. Under this approach, it is necessary to evaluate the 
respective error bounds.

Proposition 1 We have the following approximate formula:

where

where C(�1, �2, �1, �2) is a constant that depends only on parameters �i and �i and 
� = max{�1, �2}.

dRi,t =
�3
i

8

(

∫
T

t

e−�i(z−t)�i(z)
2dz

)√
Yi,tdWi,t −

�2
i

8
�2

i
(t)Yi,tdt

dUi,t =
�i�

2

i

2

(

∫
T

t

e−�i(z−t)�i(z)dz

)√
Yi,tdWi,t −

�i�i

2
�i(t)Yi,tdt

dQi,t =
�2
i
�3
i

2 ∫
T

t

[
e−�i(u−t)

(

∫
T

u

e−�i(z−u)�i(z)dz

)
du

]√
Yi,tdWi,t

−
�2
i
�2
i

2

(

∫
T

t

e−�i(z−t)�i(z)dz

)
Yi,tdt

P(t) =

∞∑

k=0

pk(�(T − t))Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(R1,t + R2,t)Γ
2Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(U1,t + U2,t)ΛΓHk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(U1,t + U2,t)
2Λ2Γ2Hk(t,Xt,Vt)

+

∞∑
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pk(�(T − t))(Q1,t + Q2,t)Λ
2ΓHk(t,Xt,Vt)

+ �(T − t)

|�(T − t)| ≤ (
1

r
∧ (T − t))C(�1, �2, �1, �2)�

3
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Proof See the “Appendix”.   ◻

Remark 4 Note that this approximated option price is the Black–Scholes price plus 
appropriate correction terms. It is worth mentioning that this formula provides 
significant generality within the framework of the 2FSVJ model. Furthermore, it 
encompasses and extends the formulas presented in the references cited, namely 
Heston (1993), Bates (1996a). Christoffersen et al. (2009), Merino et al. (2018), as 
well as some of the results obtained in Gulisashvili et al. (2020), which can be con-
sidered specific instances of our more comprehensive formula.

While the above approximate formula is second-order one, we can obtain the 
first-order version as it is given in the following corollary.

Corollary 3 We have the following approximate formula:

where

where C(�1, �2, �1, �2) is a constant that depends only on �1, �2, �1, �2.

Proof See the “Appendix”.   ◻

Remark 5 

1. Expanding the scope of the approximate options pricing formula to include other 
types of options, such as barrier or American options, presents great potential. 
However, it is important to note that the decomposition results are derived from 

P(t) =

∞∑

k=0

pk(�(T − t))Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(R1,t + R2,t)Γ
2Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(U1,t + U2,t)ΛΓHk(t,Xt,Vt)

+ �(T − t)

|�(T − t)| ≤(1
r
∧ (T − t))C(�1, �2, �1, �2)

×

2∑

i=1

{
2∑

j=1

[
�2
i
�2
j
+ �2

i
�j|�j|

]
+ |�i|�3i + �4

i

+

2∑

j=1

[
|�i|�i�2j + |�i||�j|�i�j

]

+ |�i|2�2i + |�i|�3i
}
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the Black–Scholes formula, which is specifically applicable to European options. 
Therefore, extending these decomposition formulae to include additional option 
types requires extensive investigation and comprehensive studies to establish 
a robust framework. Such explorations have the potential to open up new ave-
nues for research and provide valuable insights into the pricing and analysis of a 
broader range of option types.

2. Incorporating real-data examples would not only enhance the credibility of the 
research but also offer valuable contributions to the field. Nevertheless, there are 
numerous challenges that contribute to the difficulty in obtaining real market data 
examples for the application of option pricing formulas, such as our decomposi-
tion formula. The challenges include limited availability, market complexity, and 
potential deviations from model assumptions, such as risk-neutral assumptions. 
It is worth noting that the lack of real-data examples presents an opportunity for 
new directions of future research to explore and provide valuable insights into 
the practical application and performance of the formula using real market data.

5  Numerical computations

Though our focus is on a class of Heston–Kou like models with two factors, this 
model is general enough to cover other jump structures studied in the literature. 
Thus, from henceforth we shall assume that jumps are defined by the Compound 
Poisson process

where Zi is a double exponential random variable whose distribution is given by

where 𝜂1 > 1 , 𝜂2 > 0 , p, q ∈ (0, 1) such that p + q = 1 . Assuming that k jumps are 
recorded then the convolution of the law of k jumps is

where

Jt =

Nt∑

i=1

(
eZi − 1

)

f (u) = p𝜂1e
−𝜂1u11{u≥0} + q𝜂2e

−𝜂2|u|11{u<0}

f ∗(k)(u) = e−𝜂1u
k∑

j=1

Pk,j𝜂
j

1

1

(j − 1)!
uj−111{u≥0}

+ e𝜂2u
k∑

j=1

Qk,j𝜂
j

2

1

(j − 1)!
(−u)j−111{u<0}

Pk,j =

k−1∑

i=j

(
k − j − 1

i − j

)(
k

i

)(
�1

�1 + �2

)i−j(
�2

�1 + �2

)k−i

piqk−i
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for all 1 ≤ j ≤ k − 1 , and

for all 1 ≤ j ≤ k − 1 with Pk,k = pk and Qk,k = qk . See Kou (2002) and Gulisashvili 
and Vives (2012).

Consequently,

Then, we want to compute

And this is equal to

where

with

and

Qk,j =

k−1∑

i=j

(
k − j − 1

i − j

)(
k

i

)(
�1

�1 + �2

)k−i(
�2

�1 + �2

)i−j

pk−iqi

Hk(t,Dt,Vt)

= �Lk

[
B(t,Dt + Lk,Vt)

]

= �
∞

−∞

B(t,Dt + u,Vt)f
∗(k)(u)du

=

∞

�
−∞

B(t,Dt + u,Vt)

(
k∑

j=1

Pk,j

𝜂
j

1
uj−1

(j − 1)!
e−𝜂1u11{u≥0} +

k∑

j=1

Qk,j

𝜂
j

2
(−u)j−1

(j − 1)!
e𝜂2u11{u<0}

)
du.

∞∑

k=1

pk(�(T − t))Hk(t,Dt,Vt).

(9)∫
∞

−∞

B(t,Dt + u,Vt)K(u)du

K(u) =

∞∑

j=1

1

(j − 1)!
(𝜂

j

1
𝛼ju

j−1e−𝜂1y11{u≥0} + 𝜂
j

2
𝛽j(−u)

j−1e𝜂2y11{u<0})

�j =

∞∑

k=j

Pk,jpk(�(T − t))

�j =

∞∑

k=j

Qk,jpk(�(T − t)).
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To compute the integral (9) we truncate it at ±30.5. Additionally, we consider that 
there are a total of 150 jumps. We are assured that the approximation converges well 
since several terms converge to zero very fast.

Besides the double-exponential jumps, we also consider the case where (Zi) are 
i.i.d. normal random variables with mean �J and standard deviation �J . In this case, 
see Merino et al. (2018),

where the modified risk-free rate r∗ = r − �(e�J+
�2
J

2 − 1) + k
�J+

�2
J

2

(T−t)
 is used.

Hk(t,Dt,Vt) = B

(
t,Dt,Vt + k

�2

J

(T − t)

)

Table 1  Model parameters
S0 = 100.0 Y1,0 = 0.1625 Y2,0 = 0.08683 �1 = 9 �

J
= −.240

K = 100 �1 = 1.967 �2 = 8.451 p = 0.5 �J = .318

r = 0.01 �1 = 0.17819 �2 = 0.05267025 �2 = 5

� = 0.079 �1 = 0.245 �2 = 0.205 q = 0.5

�1 = −0.865 �2 = −0.997

Fig. 1  Pricing error against strike price under double exponential jumps

Fig. 2  Option pricing error against strike price under log-normal jumps
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The parameters used in our computations are obtained from Pacati et al. (2018) 
who consider a similar model with log-normal jumps. Unless otherwise stated, the 
parameters used are given in Table 1.

Fig. 3  Pricing error against underlying price under double exponential jumps

Fig. 4  Option pricing error against underlying price under log-normal jumps

Fig. 5  Second order pricing error against strike price for various maturities under log-normal jumps
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Comparing the first-order and the second-order decomposition methods to the 
Fourier integral method based on Gil-Pelaez (1951) and we find that the decompo-
sition methods perform very well in relation to the Fourier integral method under 
both the log-normal and double exponential jumps. See Figs.  1,  2,  3 and 4. Take 
note that the error is so small that the three option price plots for the Fourier integral 
(green), the first-order decomposition (blue), and the second-order decomposition 
(orange) cannot be distinguished by the naked eye. The first-order approximation 
indicates that the method performs well under out-of-the-money conditions. Moreo-
ver, we analyze the impact of time to maturity on the method performance in Figs. 5 
and 6. Finally, in Figs. 7 and 8 we show the impact of the vol-of-vol in the pricing 
error for different strike prices and different jump regimes. Generally, our method 
behaves well for short-dated options. In addition, we find that the method is faster 
and more accurate for log-normal jumps as compared to double exponential jumps.

Additionally, to investigate the computational performance of our method we 
computed option prices for five different strikes and measured the average time 
taken. This experiment was repeated 1000 times and the results in Table 2 show 

Fig. 6  Second order pricing error against strike price for various maturities under double exponential 
jumps

Fig. 7  Pricing error against Vol. of vol. �1 for S0 = 100 under Double Exponential jumps
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that the decomposition is at least 20% faster than the Fourier integral method 
under log-normal jumps.

6  Conclusion

This paper investigates the valuation of European options under an enhanced model for 
the underlying asset prices. We consider a two-factor stochastic volatility jump (2FSVJ) 
model that includes stochastic volatility and jumps. A decomposition formula for the 
option price and first-order and second-order approximate formulae via Itô calculus 
techniques are obtained. Moreover, several numerical computations and illustrations 
are carried out, and they suggest that our method under double exponential and log-
normal jumps offers computational gains. The results of this paper generalize the exist-
ing work in the literature in relation to the decomposition formula and its applications. 
As in the other cases cited in the introduction, the given approximate pricing formula is 
fast to compute and accurate enough.

Appendix 1: First order approximation

We consider the formula in Corollary 2:

and apply the generic formula in Lemma 2 for appropriate choices of A and G.

P(t) =

∞∑

k=0

pk(�(T − t))
(
Hk(t,Xt,Vt) + I.1 + I.2 + II.1 + II.2

)

Fig. 8  Pricing error against Vol. of vol. �1 for S0 = 100 under Log-Normal jumps

Table 2  Computational speed 
comparison in seconds

Log-normal jumps Double exp. jumps

Fourier time 0.195 0.156
Decomp time 0.152 27.623



 Y. El-Khatib et al.

1 3

    3  Page 20 of 28

Term I.i

Consider

Let A = Γ2Hk and Gt = Ri,t. Then we have

Term II.i

Consider

Let A = ΛΓHk and Gt = Ui,t. Then we have

I.i =
1

8
�t

[

∫
T

t

e−r(s−t)Γ2Hk(s,Ds,Vs)d[Mi,Mi]s

]
.

I.i = Γ2Hk(t,Xt,Vt)Ri,t

+
1

8

2∑

j=1

�t

[

∫
T

t

e−r(s−t)Ri,sΓ
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]

+

2∑
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�j

2
�t

[

∫
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t
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√
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We look now at the error of approximating each term I.i and II.i.

Error of Term I.i

Let be ait =
√
Vit(T − t) for i = 1, 2 and at =

√
Vt(T − t). It is clear that

This fact will come in handy for the calculations below.
We have

and

(10)max(a1t, a2t) ≤ at.
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Hence, we have

and

which simplifies to

Applying Lemma 4 again we find that
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and using the fact that

it follows that

where C(�1, �2, �1, �2) is a constant that depends only on �1, �2, �1, �2.

Error of Term II.i
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Then,

and
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and hence we have

and

Lastly,
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Appendix 2: Second order approximation

The terms

and

are of order 2 and need to be expanded further to obtain a higher order of precision. 
Following similarly as before we find that:

The fact that Qi,t has a term �2
i
 , dMj,t a term �j and dQi,t a term �3

i
 guarantees that

is of order �3 where � ∶= max{�1, �2}.

On the other hand,
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Note that from the independence of W1 and W2 , d[Ml,UiUj]s is equal to U2,sd[M1,U1]s 
if l = 1 and equal to U1,sd[M2,U2]s if l = 2 and similarly for d[Wl,UiUj]s.

As before, here Ui has a coefficient �i , dUi coefficient �2
i
, and dMi a coefficient 

�i. Therefore, all terms are of order �3 where � ∶= max{�1, �2}.
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