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Abstract
We study large-scale portfolio optimization problems in which the aim is to maxi-
mize a multi-moment performance measure extending the Sharpe ratio. More spe-
cifically, we consider the adjusted for skewness Sharpe ratio, which incorporates the 
third moment of the returns distribution, and the adjusted for skewness and kurtosis 
Sharpe ratio, which exploits in addition the fourth moment. Further, we account for 
two types of real-world trading constraints. On the one hand, we impose stock mar-
ket restrictions through cardinality, buy-in thresholds, and budget constraints. On the 
other hand, a turnover threshold restricts the total allowed amount of trades in the 
rebalancing phases. To deal with these asset allocation models, we embed a novel 
hybrid constraint-handling procedure into an improved dynamic level-based learn-
ing swarm optimizer. A repair operator maps candidate solutions onto the set char-
acterized by the first type of constraints. Then, an adaptive �

1
-exact penalty function 

manages turnover violations. The focus of the paper is to highlight the importance 
of including higher-order moments in the performance measures for long-run invest-
ments, in particular when the market is turbulent. We carry out empirical tests on 
two worldwide sets of assets to illustrate the scalability and effectiveness of the pro-
posed strategies, and to evaluate the performance of our investments compared to 
the strategy maximizing the Sharpe ratio.
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1  Introduction

In the portfolio selection problem, two phases are usually involved. The first one 
is devoted to the selection of promising assets, the second one focuses on the allo-
cation of capital among them. In the modern portfolio theory, the so-called mean-
variance analysis developed by Markowitz (1952) represents a milestone paper, and 
it has gained widespread acceptance as a practical tool for portfolio optimization 
among researchers and practitioners (Guerard 2009). In this model the mean return 
of a portfolio represents the profit measure, while the portfolio variance is the risk. 
Accordingly, a portfolio is efficient if it provides the maximum return for a given 
level of risk or, equivalently, if it has the minimum risk for a given level of return. 
The set of optimal mean-variance tradeoffs in the risk-return space forms the effi-
cient frontier. To guide the choice of an investor among these efficient portfolios, 
Sharpe (1994) has introduced a performance measure defined as the ratio between 
the excess return of an investment with respect to a risk-free asset and its stand-
ard deviation. Sharpe ratios with higher values correspond to more promising alter-
natives. In this manner, only the first two moments of the returns distribution are 
involved in the portfolio selection problem. However, the issue of whether higher 
moments should be considered to properly represent the investors’ behaviour has 
been widely debated in literature and it is still open. The pioneering studies by 
Arditti (1967) and Samuelson (1970) have pointed out the importance of the third-
order central moment of the returns distribution in the portfolio allocation process. 
In the same direction, Scott and Horvath (1980) have observed that a positive prefer-
ence for skewness and a negative preference for kurtosis, known as prudence and 
temperance respectively (Kimball 1990), properly explain the behaviour of inves-
tors. Thus, to take advantage of the potential upside return represented by positive 
skewness and the possible benefit given by small kurtosis, in the mean-variance 
framework, two novel performance measures have been recently proposed in litera-
ture, namely the adjusted for skewness Sharpe ratio (Zakamuline and Koekebakker 
2009) and the adjusted for skewness and kurtosis Sharpe ratio (Pézier and White 
2008). The former multiplies the classical Sharpe index by a factor linked to the 
portfolio skewness, while the latter extends the Sharpe ratio by including a factor 
that incorporates both skewness and kurtosis.

These two Sharpe ratio-based performance measures have been used for stock 
performance evaluation (Nagy and Benedek 2021) but, to the best of our knowledge, 
they have not been applied as objective functions into the portfolio optimization pro-
cess. Therefore, we propose portfolio selection strategies which maximize the afore-
mentioned performance measures, considering four types of real-world constraints. 
A cardinality constraint is used to manage the portfolio size, buy-in threshold con-
straints ensure that all the available capital is invested. To characterize the invest-
ment profile, we introduce a set of bound constraints and a turnover threshold. In 
this manner, thanks to the former constraints, we avoid both the concentration of 
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money in a few assets and its splitting into too many assets. Further, due to the turn-
over bound, we limit the possibility of portfolio changes over time. The proposed 
asset allocation problem is analyzed from the perspective of an institutional inves-
tor who operates in equity markets with hundreds or thousands of constituents and 
selects a restricted pool of stocks to build up an active portfolio.

The introduction of cardinality constraints in the portfolio design leads to optimi-
zation problems for which finding optimal solutions becomes computationally chal-
lenging (Moral-Escudero et al. 2006). For this reason, in recent years, swarm opti-
mization algorithms, inspired by the self-organizing interaction among agents, have 
become popular for this topic. In particular, the particle swarm optimization (PSO) 
algorithm has shown a good capability in solving small and mid-size portfolio allo-
cation models (Cura 2009; Zhu et al. 2011; Kaucic et al. 2020; Corazza et al. 2021). 
This algorithm, mimicking the swarm behaviour of social animals such as bird 
flocking, gathers the information about good solutions through the swarm, and floats 
in the whole search space to find the global solution of the problem (Wang et  al. 
2018). However, PSO does not work efficiently in solving high-dimensional optimi-
zation problems, due to the so-called curse of dimensionality (Gilli and Schumann 
2012; Oldewage et al. 2020). To overcome this issue, Yang et al. (2018) have devel-
oped a variant of the level-based learning swarm optimizer (LLSO), which exhibits 
superiority in achieving higher quality solutions with respect to other competitors in 
the literature for large scale optimization problems. The algorithm is based on the 
teaching paradigm where individuals are divided into levels according to their fit-
ness and they are treated differently. The most performing candidates are stored in 
higher levels and guide the learning of the other particles in the swarm.

In this paper, we adopt a dynamic variant of the LLSO algorithm to solve our 
portfolio optimization problems, with a specific clamping and reversing procedure 
for the particles update rule, to improve the exploration efficiency. Moreover, since 
the LLSO is blind to the constraints, we equip it with a novel hybrid constraint-han-
dling technique which works as follows. In order to deal with the cardinality con-
straint we use a projection operator, that selects the largest components of the candi-
date solutions and sets equal to zero the remaining ones. With this technique, we can 
relax the cardinality equality condition proposed in Kaucic and Piccotto (2022) as 
an inequality, assuming that the number of stocks included in the portfolio is lower 
than or equal to a fixed threshold. Furthermore, through this process, we transform 
the original mixed-integer optimization problem into a problem involving only real 
variables. Then, buy-in thresholds and budget constraints are handled using the 
repair operator proposed in Meghwani and Thakur (2017). Finally, to control the 
turnover constraint, a �1-exact penalty function method is adopted, as in Corazza 
et al. (2021).

Summing up, the contribution of this work to the current literature is threefold. 
On the one hand, it is the first time that the adjusted for skewness Sharpe ratio and 
the adjusted for skewness and kurtosis Sharpe ratio measures are employed in the 
portfolio optimization problem. On the other hand, regarding the algorithmic nov-
elties, we propose an improved variant of the LLSO equipped with a novel ad-hoc 
constraint-handling procedure which involves a repair operator as well as an �1-exact 
penalty function strategy. Moreover, from a practical point of view, we study the 
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robustness of the proposed multi-moment strategies by comparing their profitability 
in a long-run setting, with almost 14 years of observations, involving also the recent 
phases of large market fluctuation due to the COVID-19 pandemic and the Ukrain-
ian crisis.

The remainder of the paper is organized as follows. In the next section we review 
some literature related to our work. In Sect. 3 we introduce the investment frame-
work and the objective functions involved. Section 4 presents the improved LLSO 
algorithm with the novel hybrid constraint-handling technique. Section 5 is devoted 
to the experimental analysis while the conclusions and future works are reported in 
Sect. 6.

2 � Related works

In this section, we first survey the foremost contributions appeared in literature 
on the multi-moment formulations of the portfolio optimization problem. Since a 
complete review of the most recent population-based heuristics for large-scale 
optimization problem can be found in Omidvar et  al. (2022a) and Omidvar et  al. 
(2022b), we focus solely on the papers related to our study and concerning the PSO 
improvements.

2.1 � Multi‑moment portfolio optimization models

In order to highlight the critical effects of prudence and temperance on investment 
decisions, and to provide a more complete characterization of investor preferences, 
many authors have revised the mean-variance framework by incorporating the third 
and fourth moments when constructing a portfolio (see Jurczenko and Maillet 2006 
and references therein). Lai (1991) has introduced a new term in the objective func-
tion for including skewness into the asset allocation problem. Konno et al. (1993) 
have developed a model in which they maximize the third-order moment given a 
threshold for portfolio expected return and for the variance. In addition, Liu et al. 
(2003) have employed also a transaction costs constraint. Lai et al. (2006) have pro-
posed a multi-objective portfolio optimization problem which involves the first four 
central moments of the portfolio return distributions.

The direct optimization of the third and the fourth moment terms in the problem 
formulation has been shown to be computationally demanding, due to the difficulty 
in obtaining reliable estimators for the co-skewness and co-kurtosis matrices, as 
highlighted in Kim et al. (2014). In some recent contributions, Chaigneau and Eeck-
houdt (2020) and Gao et al. (2022) have extended the mean-variance framework by 
considering alternative measures which incorporate prudence and temperance in 
risk exposure. Finally, several experimental investigations in the field of behavioural 
finance have been carried out in the last years, pointing out the importance of pru-
dence, temperance, and higher-order preferences on the investors’ behaviour (see, 
among others, Colasante and Riccetti 2020, 2021).
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2.2 � PSO enhancements for large‑scale optimization

In literature, there are two major algorithmic approaches to solve the curse of 
dimensionality for PSO, namely decomposition-based and non decomposition-
based approaches. The first type of procedures separate a high-dimensional prob-
lem into several small-dimensional instances using a divide-and-conquer strategy 
to reduce the dimensionality. In this direction, Van der Bergh and Engelbrecht 
(2004) and Li and Yao (2012) have proposed cooperative co-evolutionary par-
ticle swarm optimization algorithm, which randomly divides the decision vari-
ables into subgroups and then uses PSO to optimize each subgroup separately. 
The second type of algorithms directly optimizes all the variables at the same 
time, employing a learning mechanism to properly balance diversity and conver-
gence. In this context, several learning strategies have been proposed recently. 
For instance, the competitive swarm optimizer (CSO, Cheng and Jin 2015a) com-
pares two randomly chosen particles, and then the superior particle guides the 
update of the inferior one. Inspired by social animal behaviors, Cheng and Jin 
(2015b) have proposed the social learning particle swarm optimizer (SL-PSO) 
which first sorts particles by fitness and then worse individuals learn from the 
better ones. Following the teaching concept that teachers should treat students in 
accordance with their abilities, Yang et  al. (2018) have developed the so-called 
level-based learning swarm optimizer (LLSO). The optimal compromise between 
exploration and exploitation of this learning technique guarantees more accu-
rate solutions than the above cited CSO and SL-PSO. For this reason, several 
extensions of LLSO have been developed. The dynamic LLSO (Yang et al. 2018) 
dynamically adjusts the number of groups in which the particle swarm is divided 
based on the performance of the algorithm over time. Due to the oversensitivity 
of the standard LLSO to the parameter setting, Song et al. (2021) have proposed 
an adaptive variant in which the evolution state of the swarm is adjusted on the 
information given by the swarm aggregation indicator. Similarly, the reinforce-
ment learning level-based particle swarm optimization algorithm by Wang et al. 
(2022) introduces a reinforcement learning strategy to control the number of lev-
els and to improve the search efficiency.

3 � Investment framework

In this study, we consider a frictionless market where short selling is not 
allowed and all investors act as price takers. The investable universe is repre-
sented by n risky assets. A portfolio is denoted by the vector of its assets weights 
x = (x1,… , xn) ∈ ℝ

n . In our dynamic setting, portfolio weights are periodically 
rebalanced, with an investment horizon of length h. We observe the market over 
a time window T = {0, 1,… , T} and we adopt the following two-steps scheme for 
the investment strategy: 
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1.	 at time T the optimal portfolio composition is determined using a scenario-based 
approach;

2.	 the same portfolio composition is retained until time T + h , assuming that the 
stocks selected are still available at T + h.

The prices of the n risky assets are available for the time window T  . Then, we define 
the observed price of asset i at time t, t ∈ T  and i = 1,… n with pi,t , and the realized 
rate of return at time t, with t ≥ 1 , as ri,t =

pi,t

pi,t−1
− 1 . Based on this information, we 

aim to identify the optimal allocation at time T that guarantees the best performance 
at time T + h.

Let now (Ω,F,P) be the probability space on which we assume the random vari-
ables are defined. We denote by:

•	 R
(h)

i
 the random variable representing the rate of return of asset i at future time 

T + h , with expected value �i;
•	 R

(h)
x =

∑n

i=1
xiR

(h)

i
 the random variable that expresses the rate of return of portfo-

lio x at future time T + h.

We repeat this investment procedure over time, updating the observation window T  
by eliminating the h oldest observations and adding the most recent ones. For sem-
plicity of notation, we will indicate the random rate of return of portfolio x at T + h , 
R
(h)
x  , by R

x
.

3.1 � Sharpe ratio‑based performance measures

In this section, we will introduce the three performance measures that we will con-
sider in our portfolio optimization problems.

3.1.1 � Sharpe ratio

In the asset allocation problem proposed by Markowitz (1952), portfolio risk is rep-
resented by the volatility, given by �(R

x
) =

�∑n

i=1

∑n

j=1
cijxixj , where (C)ij = cij is 

the covariance between stocks i and j, with i, j = 1,… , n . In this model, the portfolio 
choice is made solely with respect to the expected rate of return � of the portfolio x 
and its risk, where a large portfolio volatility is perceived as damaging by the inves-
tors. As mentioned in the introduction, the Sharpe ratio is then defined as

where rf  is a risk-free rate. This performance measure can be interpreted as the com-
pensation earned by the investor per unit of risk. Thus, higher values of SR indicate 
more promising portfolios and are preferred by rational investors.

Even if it has an easy interpretation, the Sharpe ratio presents some pitfalls. The 
first is the choice of the risk-free rate used to define the excess rate of return. The 

(1)SR(x) =
� − rf

�(R
x
)
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debate among scholars and practitioners is still open. For instance, Hitaj and Zam-
bruno (2016) consider rf = 0 as a reasonable value. Similarly, Amédée-Manesme 
and Barthélémy (2022) set exogenously rf = 2% . Alternatively, Deguest et al. (2022) 
suggest the use of 1 month or 3 month maturity US Treasury Bills. Since these sov-
ereign bonds exhibited values close to zero during a large part of the investment 
period analyzed in this paper, in the empirical part we follow Hitaj and Zambruno 
(2016) and set rf = 0.

Another problem related to this indicator is its incoherence with preference rela-
tions in periods of market downturns, when the expected excess return of the port-
folio is negative. In these cases, a Sharpe ratio-oriented agent could select portfolios 
with higher volatility. To overcome this issue, we consider only the first moment, 
that means we prefer, among two portfolios with negative expected excess rate of 
return, the one with the less expected loss.

3.1.2 � Adjusted for skewness Sharpe ratio

As observed in the introduction, a possible drawback of the Sharpe ratio is that it 
uses only the first two moments of the portfolio returns distribution, and does not 
consider the potential upside return represented by positive skewness. For this rea-
son, Zakamuline and Koekebakker (2009) have derived an adjustment to the Sharpe 
ratio for skewness, which depends on the investor’s utility function.

The proposed alternative performance measure is called adjusted for skewness 
Sharpe ratio (ASSR), and is given by

where b expresses the individual’s relative preference to the third moment of the 

returns distribution, and S3(Rx
) is the skewness, defined by E

[(
Rx−�

�(Rx)

)3
]
.

The properties of this performance measure have been investigated by Cheridito 
and Kromer (2013). In particular, we can note that the ASSRb preserves the standard 
Sharpe ratio for zero skewness, while it is higher if the skewness is positive. How-
ever, in order to compute the ASSRb one needs to determinate the value of b, which 
depends on the choice of the utility function. Thus, this performance measure is not 
unique for all investors, but it is rather an individual performance measure. In this 
work, we will set b = 1 , meaning that we consider an investor with exponential util-
ity, and we will indicate the above quoted performance measure by ASSR.

3.1.3 � Adjusted for skewness and kurtosis Sharpe ratio

In order to account for both skewness and kurtosis, Pézier and White (2008) have 
proposed the so-called adjusted for skewness and kurtosis Sharpe ratio (AKSR), that 
is

(2)ASSRb(x) = SR(x)

√
1 + b

S3(Rx
)

3
SR(x)
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where K4(Rx
) is the kurtosis, defined by E

[(
Rx−�

�(Rx)

)4
]
.

According to this performance measure, an investor prefers portfolios with higher 
skewness and dislikes portfolios with kurtosis values higher than 3, meaning that 
leptokurtic portfolio distributions are penalized in order to avoid extreme events.

3.2 � Portfolio optimization model

Now, we introduce the family of constraints used to define the set of admissible 
portfolios. 

1)	 Budget constraint. We require that all the available capital is invested. In terms 
of portfolio weights this translates into 

2)	 Cardinality constraint. We assume that the portfolio includes up to K stocks out 
of the n available, where K < n is a predefined number. To model the inclusion or 
the exclusion of the i-th asset in the portfolio, an auxiliary variable �i is defined 
as follows 

 for i = 1,… , n.
	   The resulting vector of selected assets is � = (�1,… , �n) . We can write the 

cardinality constraint as 

3)	 Box constraints. To avoid extreme positions and foster diversification, we intro-
duce a maximum and a minimum limit for the wealth allocation in the i-th stock 
included in the portfolio. Let li and ui be respectively the lower and the upper 
bound for the weight of the i-th asset, with 0 < li < ui ≤ 1 , then we can write the 
box constraints as 

 Note that if an asset is not included in the portfolio, no capital is invested on it.
4)	 Turnover constraint. In every rebalancing phase, the portfolio composition used in 

the previous investment window, denoted by x0 , is updated. Let x be the vector of 

(3)AKSR(x) = SR(x)

[
1 +

S3(Rx
)

3!
SR(x) −

(
K4(Rx

) − 3

4!

)
SR(x)2

]

(4)
n∑
i=1

xi = 1.

�i =

{
1, if asset i is included

0, otherwise

(5)
n∑
i=1

�i ≤ K.

(6)�ili ≤ xi ≤ �iui, i = 1,… , n .
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weights in the rebalanced portfolio and x̃0 be the vector of re-normalized weights 
associated to x0 (see Shen et al. 2014), which is calculated component-wise as 

 and ri , i = 1,… , n is the rate of return of the i-th stock in the portfolio at the 
moment of the rebalancing phase. Then, the portfolio turnover constraint is 
given by 

 where TR denotes the maximum turnover rate, which lies between 0 and 1. It 
can be noted that if TR = 0 rebalancing is not allowed, and as TR increases more 
trades are allowed.

We indicate with X  the feasible set comprising the pairs (�, x) that satisfy (4), (5), 
(6) and (7).

Summing up, our asset allocation model can be written as

where Φ(x) is one of the three Sharpe ratio-based performance measures introduced 
in Sect.  3.1. As it is customary in the programming literature, we transform this 
maximization problem into the equivalent minimization instance

where f (x) = −Φ(x).

3.2.1 � Scenario generation technique

To solve the optimization problem (8), we use the following scenario-based genera-
tion technique. To estimate the values of the considered performance measures for 
a given portfolio x , we need to simulate the distribution of the h-step ahead rate 
of return R

x
 . To this end, we consider the historical rates of return of the n risky 

assets realized on the time window [0, T]. We assume that historical observations 
are good proxies for the future rates of return. Then, we define a scenario as the set 
of the joint realizations of the rates of return for the n assets in a given time period. 
Due to the good performance of block bootstrapping techniques to preserve correla-
tions between time series (see, for instance, Guastaroba et al. 2009), we adopt the 
so-called stationary bootstrap (Politis and Romano 1994). This technique considers 
a random block size, that is a set of consecutive scenarios with variable length, in 
order to bring some robustness with respect to the standard block bootstrap, which 
uses fixed block size. The procedure works as follows. First, we select the optimal 

x̃0,i =
x0,i(ri + 1)∑n

j=1
x0,j(rj + 1)

(7)
n∑
i=1

|xi − x̃0,i| ≤ TR

max Φ(x)

s.t. (�, x) ∈ X

(8)
min f (x)

s.t. (�, x) ∈ X



	 M. Kaucic et al.

1 3

    6   Page 10 of 29

average block size B∗ by the procedure developed in Politis and White (2004). Then, 
we extract randomly from the observed data frame a block of length B∗ . We repeat 
this exercise until the extracted sample reaches the desired size h, adjusting the last 
block length if the procedure exceeds the desired number of periods.

After having a bootstrap sample of h rates of return for each asset i, denoted as 
R̂i,t′ , with i = 1,… , n and t� = 1,… , h , we calculate the simulated h-step ahead rate 
of return of the i-th asset as R̂i =

∏h

t�=1

�
1 + R̂i,t�

�
 and the simulated h-step ahead 

rate of return of portfolio x as R̂
x
=
∑n

i=1
xiR̂i . We repeat this procedure S times to 

have an estimate of the empirical distribution of R
x
 . With an abuse of notation, let 

R̂
x
(s) be the s-th simulation of the h-step ahead rate of return of portfolio x . We can 

then calculate all the quantities used to evaluate the Sharpe ratio-based performance 
measures. Indeed, the sample mean of the empirical distribution is given by

and the sample standard deviation is

Similarly, we estimate the skewness and kurtosis as follows

and

4 � Optimization algorithm

After introducing the LLSO paradigm, we present the dynamic LLSO with the pro-
posed improvements as well as the hybrid constraint handling technique.

4.1 � Level‑based learning swarm optimizer

The LLSO algorithm, developed by Yang et al. (2018), evolves a swarm P of NP 
candidate solutions using the so-called level-based population strategy. This process 
operates in accordance with the following two steps. 

�̂ =
1

S

S∑
s=1

R̂
x
(s)

�̂ =

√√√√ 1

S − 1

S∑
s=1

(R̂
x
(s) − �̂)2 .

Ŝ3(Rx
) =

1

S − 1

S∑
s=1

(
R̂
x
(s) − �̂

�̂

)3

K̂4(Rx
) =

1

S − 1

S∑
s=1

(
R̂
x
(s) − �̂

�̂

)4

.
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1.	 First, at each generation g the individuals in P are sorted ascending based on their 
fitness and grouped into NLg levels. Each level contains LPg = ⌊ NP

NLg
⌋ particles and 

in the last one, there are ⌊ NP

NLg
⌋ + NP%NLg candidate solutions.1 Better individuals 

belong to higher levels, and a higher level corresponds to a smaller level index. 
Therefore, we denote with L1 the best level and with LNL the worst one.

2.	 Individuals belonging to the first level L1 are not updated and directly enter into 
the next generation, because they represent the most valuable information con-
veyed in the swarm at the current generation. On the contrary, the p-th particle in 
level Ll , denoted by xl,p(g) , where l = 3,… ,NLg and p = 1,… , LPg , is allowed 
to learn from two particles xl1,p1 (g) and xl2,p2 (g) . These two individuals are ran-
domly extracted from two different higher levels Ll1 and Ll2 , with l1 < l2 , and p1 , 
p2 randomly chosen from {1,… , LPg} . For l = 2 , we sample two particles from 
L1 in such a way that xl1,p1 (g) is better than xl1,p2 (g) in terms of fitness function. 
Thus, the update rule for particle xl,p(g) is given by 

 for i = 1,… , n , where vl,p(g) is the so-called velocity of particle p in level Ll 
at generation g, and r1 , r2 , r3 are three real numbers randomly generated within 
[0, 1]. The initial velocities, at generation 0, are all set equal to the zero vector, 
that is vl,p(0) = 0 . The parameter � ∈ [0, 1] controls the influence of the less 
performing exemplar xl2,p2 (g) on vl,p(g + 1).

The algorithm repeats these two steps until a maximum number of generations, 
MAXGEN , is reached.

4.1.1 � Dynamic LLSO with clamping and reversion

Following the suggestions in Yang et al. (2018), we adopt a dynamic setting for the 
number of levels NLg by designing a pool S = {l1,… , ls} containing s different can-
didate integers. Then, at each generation g, the algorithm selects one of the elements 
of S based on their probabilities. At the end of the generation, the performance of 
the algorithm with the current level number is recorded, in order to update the prob-
ability of this level number for the next generation selection. To compute the prob-
abilities of the elements of S, a record list Υs = {�1,… �s} is defined. Initially, each 
�i is set equal to 1. Then, the element �i corresponding to the level number li in the 
current generation is updated as follows

(9)v
l,p(g + 1) = r1v

l,p(g) + r2(x
l1,p1 (g) − x

l,p(g)) + �r3(x
l2,p2 (g) − x

l,p(g))

(10)x
l,p(g + 1) = x

l,p(g) + v
l,p(g + 1)

(11)𝛾i =
|F − F̃|
|F|

1  We denote by ⌊z⌋ the floor of z and by z%y the rest of the division of z by y.
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where F is the global best fitness of the last generation, and F̃ is the global best 
fitness of the current generation. Then, the i-th element of the probability vector 
Ps = {p1,… , ps} is computed as

with i = 1,… , s . At each generation, based on Ps , an integer from the pool S is 
selected as the level number following a roulette wheel scheme.

From now on, we will remove the dependency on the generation g if it will be clear 
from context.

Based on the results of a preliminary analysis, we introduce a “clamping and rever-
sion" procedure to increase the exploration capability of the LLSO. The clamping 
mechanism is applied component-wise to the velocity vector in (9) as follows

where vmin

i
 and vmax

i
 are the minimum and the maximum velocity allowed for compo-

nent i, with i = 1,… , n . In the experimental part, recalling (6), we set the maximum 
velocity as vmax

i
= ui and the minimum velocity as vmin

i
= −vmax

i
 . Moreover, when vl,p

i
 

and xl,p
i

 are both negative, we reverse and scale vl,p
i

 as follows:

where r4 is a random number uniformly generated in [0, 1].

4.2 � Hybrid constraint‑handling procedure

In the so-called construction phase, admissible portfolios have to satisfy cardinality, 
buy-in threshold, budget and turnover constraints. However, the LLSO update proce-
dure is blind to these constraints. To overcome this issue, we equip the solver with a 
hybrid constraint-handling procedure.

First, in order to assure the cardinality requirement, for each candidate solution xp , 
the K largest components enter the corresponding portfolio, while zero weights are 
assigned to the remaining n − K . In this manner, we implicitly remove the binary vari-
ables from problem (8).

To guarantee the feasibility with respect to the bound constraints (6), we consider 
the following projection

where p = 1,… ,NP and i ∈ I
p

K
=
{
i = 1,… , n ∶ x

p

i
> 0

}
 . Note that |Ip

K
| ≤ K . Then, 

we use the repair transformations developed in Meghwani and Thakur (2017) to also 
satisfy the budget constraint (4). More precisely, for each p = 1,… ,NP , assuming 
that li and ui are such that 

∑
i∈I

p

K

li < 1 and 
∑

i∈I
p

K

ui > 1 , we adjust the candidate solu-
tion xp component-wise:

(12)pi =
e7⋅�i∑s

j=1
e7⋅�j

(13)v
l,p

i
= min{max{v

l,p

i
, vmin

i
}, vmax

i
}

(14)v
l,p

i
= −r4 ⋅ v

l,p

i

(15)x
p

i
= min

{
max

{
x
p

i
, li
}
, ui

}
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for all i ∈ I
p

K
 . As proved in Meghwani and Thakur (2017), solutions transformed 

through (16) fulfill at the same time budget and box constraints.
Finally, to handle the turnover constraint, we use the �1-exact penalty function 

approach as in Corazza et al. (2021). In particular, we define the constraint violation 
of (7) as

Then, we introduce the �1-exact penalty function

where �0 and �1 are two positive real numbers, defined adaptively at each genera-
tion g. Initially, �0(0) = 10−4 and �1(0) = 1 in order to privilege feasible solutions. 
This parameters are then updated by checking the decrease of the objective function 
f (x) and the violation of the constraints. More precisely, every 5 iterations �0(g) is 
updated according to the rule

while, every 10 iterations, �1(g) is updated following the scheme

With this strategy, we privilege optimality of solutions possibly at the expenses 
of their feasibility, due to the fact that �0(g + 1) in (19) is increasing in 
F
�1
(x, �0(g + 1), �1(g + 1)) when the function value f (x(g)) increases. Moreover, 

to favour feasibility of solutions possibly at the expenses of their optimality, the 

(16)x
p

i
=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

li +
(x

p

i
− li)∑

j∈I
p

K

(x
p

j
− lj)

⎛
⎜⎜⎝
1 −

�
j∈I

p

K

lj

⎞
⎟⎟⎠
, if

�
j∈I

p

K

x
p

j
> 1

x
p

i
, if

�
j∈I

p

K

x
p

j
= 1

ui −
(ui − x

p

i
)∑

j∈I
p

K

(uj − x
p

j
)

⎛⎜⎜⎝
�
j∈I

p

K

uj − 1

⎞⎟⎟⎠
, if

�
j∈I

p

K

x
p

j
< 1

(17)CV = max

{
n∑
i=1

|xi − x̃0,i| − TR, 0

}
.

(18)F
�1
(x, �0(g), �1(g)) = f (x) +

�1(g)

�0(g)
CV

(19)𝜀0(g + 1) =

⎧⎪⎨⎪⎩

min{3 ⋅ 𝜀0(g), 1} if f (x(g)) ≥ f (x(g − 1))

max{0.6 ⋅ 𝜀0(g), 10
−15} if f (x(g)) < 0.9 ⋅ f (x(g − 1))

𝜀0(g) otherwise

(20)𝜀1(g + 1) =

⎧⎪⎨⎪⎩

min{2 ⋅ 𝜀1(g), 10
4} if CV(g) > 0.95 ⋅ CV(g − 1)

max{0.5 ⋅ 𝜀1(g), 10
−4} if CV(g) < 0.9 ⋅ CV(g − 1)

𝜀1(g) otherwise.
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penalty parameter �1(g + 1) in (20) increases when the relative constraint violation 
in the g-th generation increases with respect to the previous one.

Using the penalty approach, the constrained optimization problem (8) reduces 
to an unconstrained one, in which we minimize F

�1
 and thus it can be solved by 

the proposed LLSO variant.

4.3 � Initialisation strategy

Due to the complexity of the problem and to the fact that the search space grows 
exponentially with the dimension, the common strategies of seeking a search 
space coverage by initializing the particles uniformly throughout the space are 
inefficient (see van Zyl and Engelbrecht 2015). In particular, for our portfolio 
optimization problems, the presence of the turnover constraint exacerbates even 
more the initialization phase. To address this issue, we directly initialize the can-
didate solutions in a neighbourhood of x0 as proposed by Kaucic et al. (2023). A 
brief description of the procedure follows. Let dmin

i
 and dmax

i
 be the minimum and 

the maximum allowed weight changes for x0, i respectively, with i = 1,… , n . Let 
Dp denote the total portfolio weight allowed to be re-allocated in x0 for defining 
the p-th candidate solution xp(0) at generation 0, with p = 1,… ,NP . Then, for 
each p, 

1.	 we randomly select Dp within 
[
0,

TR

2

]
;

2.	 we select a subset J− of K′ assets from the assets with positive weight in x0 , so 
that 

 where dj is randomly sampled in 
[
dmin
j

, dmax
j

]
 in such a way that 

∑
j∈J− dj = Dp , 

and xp
j
(0) = 0 or lj ≤ x

p

j
(0) ≤ uj;

3.	 we select a subset J+ of K′′ assets from the assets with zero weight in x0 , with 
K′′ ≤ K′ , so that 

 where dj is randomly sampled in 
[
dmin, dmax

]
 in such a way that 

∑
j∈J+ dj = Dp , 

and lj ≤ x
p

j
(0) ≤ uj;

4.	 for j ∈ I ⧵
(
J− ∪ J+

)
 , we set xp

j
(0) = x0, j.

The portfolios assembled using this scheme satisfy cardinality, buy-in threshold 
and turnover constraints. This initialization strategy encourages the swarm to 
focus on exploitation rather than exploration, and allows to identify promising 
solutions, even in problems with high dimension and small feasible regions.

x
p

j
(0) = x0, j − dj, for j ∈ J−

x
p

j
(0) = x0, j + dj, for j ∈ J+
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5 � Computational analysis

5.1 � Data description and portfolio parameters

We select two equity investment universes that differ for the number of constituents 
and for the geographic area, to highlight the scalability of the proposed portfolio 
strategies. The first data set, called Pacific, consists of 323 assets selected among 
the constituents of the MSCI Pacific Index at 28/07/2022. For the second data set, 
called shortly World, we consider 1229 assets listed in the MSCI World Index at 
28/07/2022.

We obtain the daily rates of return and the market values for each asset from 
Bloomberg, covering the period 01/01/2008 to 28/07/2022 for a total of 3803 obser-
vations. For comparison purposes, we build up an auxiliary market value-weighted 
benchmark for each data set.

Table 1 reports a preliminary analysis concerning normality assumption for the 
time series of rates of return in the two data sets. In both cases, the number of assets 
exhibiting high skewness is around 20%, while those with large kurtosis is close to 
90%. The Jarque-Bera (J-B) test rejects the null hypothesis of normality at the 5% 
significance level in almost half of both samples.

The goal of our computational analysis is twofold. On the one hand, we aim at 
pointing out the capabilities of the proposed dynamic LLSO algorithm in compari-
son to a state-of-the-art solver, which has been ad-hoc developed to solve cardinal-
ity-constrained portfolio optimization problems (see Corazza et  al. 2021). On the 
other hand, we study the profitability of the proposed investment strategies focusing 
on the impact of both portfolio size and amount of trades.

To this end, we consider an investment plan with monthly portfolio rebalanc-
ing. The out-of-sample window is given by 126 months, covering the period from 
02/01/2012 to 28/07/2022. For each month in the out-of-sample window, we gener-
ate 1000 scenarios of monthly rates of return for the assets in each data set by using 
the stationary bootstrap technique introduced above. The procedure employs an in-
sample window of 1000 days, which is updated monthly by including the daily rates 
of return of the last month and by removing the information about the oldest month.

For the analysis, we set the buy-in thresholds li and ui equal to 0.001 and 0.2 
respectively, according to Kaucic and Piccotto (2022). We express the cardinality 
parameter K as a fraction K% of the number of assets in a given data set, that is 

Table 1   Preliminary analysis on 
the normality assumption of the 
assets in the two data sets

The first column reports the name of the data set considered, while 
the corresponding percentage of assets with high skewness and large 
kurtosis is given in the second and third columns, respectively. The 
last column displays the rejections percentage of the null hypothesis 
of normality for the Jarque–Bera (J–B) test at 5% significance level

Data set name |S
3
| > 0.5 K

4
> 3 J–B rejections

Pacific 19% 88% 46%
World 22% 89% 53%
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K = ⌊K% ⋅ n⌋ , and pick up K% in the set {15%, 30%, 50%} . The turnover rate TR is 
in {10%, 20%, 40%} . For each data set and each out-of-sample month, an instance 
of Problem (8) is then obtained by fixing one of the three Sharpe-based performance 
measures, a value of K% and TR, for a total of 27 alternative investment schemes.

Finally, the role of the trades is analyzed ex-post through the cost function intro-
duced in Beraldi et al. (2021), with an initial wealth W0 = 10, 000, 000$.

5.2 � Algorithm performance evaluation

In this subsection, we compare the performance of the proposed dynamic LLSO 
algorithm with respect to the PSO developed by Corazza et al. (2021). The latter has 
been showed to tackle efficiently non-smooth portfolio optimization problems with 
real-world constraints.

For each data set, the test suite consists of the 27 instances of Problem (8) pre-
viously introduced and specified at three dates randomly drawn from the out-of-
sample window. For each sampled date and each portfolio optimization problem, we 
compute the initial portfolio without including the turnover constraint. The next out-
of-sample month, we optimize the portfolio weights, accounting for the rebalancing 
constraint. It is worth noticing that we select three different dates for the evaluations 
in order to avoid the possible time dependence of the results.

The parameter settings for the considered algorithms follow the suggestions in 
the reference papers. More specifically, for the dynamic LLSO we set � = 0.4 and 
the set of candidate level numbers S = {4, 6, 8, 10, 20, 50} , as in Yang et al. (2018). 
For the PSO variant by Corazza et al. (2021), we consider �min = 0.4 , �max = 0.9 , 
c1,min = c2,min = 0.5 , and c1,max = c2,max = 2.5 . To guarantee a fair comparison, we 
set for both solvers the maximum number of generations MAXGEN = 1000 , and the 
swarm size NP equal to 300 for the Pacific data set and 500 for the World one. To 
obtain more robust results, we run 30 times each test instance. The analysis have 
been implemented in MATLAB 2023a and carried out on a 3.3 GHz Intel Core 
i9-7900X workstation with 16 GB of RAM. To prove the efficiency of the proposed 
algorithm, comparisons are made in terms of run time, capability to identify opti-
mal solutions which satisfy the constraints, and accuracy in solving the optimization 
problems.

Due to the negligible impact of the turnover rate levels on the results, in the fol-
lowing we show only the findings related to TR = 20% . Tables 2 and 3 display the 
average computational time on 30 runs for the dynamic LLSO and the PSO. For 
both methods, we can observe that the results remain relatively stable when tran-
sitioning from one date to another, regardless of the cardinality threshold. How-
ever, the outcomes depend on the employed objective function and the number of 
involved decision variables. In our analysis the PSO exhibit a slightly lower aver-
age computational time. This difference can be attributed to the proposed hybrid 
constraint-handling technique.

Tables 4 and 5 show the average percentage of feasible solutions provided by the 
two solvers over the 30 runs at the final generation. Analyzing the results of the 
Pacific data set, it is evident that our LLSO is able to identify feasible solutions 
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in almost all the cases. Conversely, the PSO algorithm struggles to properly handle 
constraints in the first test date, performing accurately in the other ones. Further-
more, the PSO is heavily influenced by the complexity of the objective function and 
the increase of portfolio size. As the number of decision variables increases, moving 
to the World case, the difference between the algorithms becomes even more pro-
nounced. Specifically, for the cardinality threshold of 50% , the dynamic LLSO con-
sistently finds optimal solutions, while the PSO fails to identify feasible portfolios in 
any of the 30 runs.

Moreover, we validate the capabilities of the proposed LLSO over the PSO in 
solving our test problems through a non-parametric statistical test. In particular, we 
focus on the average of the best values of the �1-exact penalty function (18), and we 
conduct a Wilcoxon signed-rank test to determine if there is a significant difference 
in the distributions of the values obtained by the two algorithms (Derrac et al. 2011). 

Table 2   Average computational time in seconds on 30 runs for the two compared algorithms, for the 
Pacific data set and the three ex-post dates, with TR = 20% and increasing values of K%

Date 1 Date 2 Date 3

Pacific data set - LLSO
K% SR ASSR AKSR SR ASSR AKSR SR ASSR AKSR
15% 97.98 162.23 233.07 103.16 164.91 237.26 94.77 148.86 214.20
30% 100.62 165.15 236.22 103.96 168.93 239.78 91.26 151.94 217.56
50% 100.83 165.83 235.90 104.14 168.95 240.60 91.52 152.00 217.91
Pacific data set - PSO
K% SR ASSR AKSR SR ASSR AKSR SR ASSR AKSR
15% 80.51 125.99 193.27 82.882 127.37 195.91 79.041 119.62 181.70
30% 80.54 126.89 195.39 81.827 128.40 197.57 78.70 119.83 182.73
50% 80.55 127.40 195.57 81.604 127.90 196.56 79.08 120.50 182.88

Table 3   Average computational time in seconds on 30 runs for the two compared algorithms, for the 
World data set and the three ex-post dates, with TR = 20% and increasing values of K%

Date 1 Date 2 Date 3

K% SR ASSR AKSR SR ASSR AKSR SR ASSR AKSR

World data set - LLSO
15% 307.78 357.05 418.34 305.47 361.52 421.76 284.03 334.24 387.68
30% 307.32 363.84 424.71 307.87 365.03 426.48 285.68 337.22 391.22
50% 307.52 365.38 424.22 308.85 365.99 426.91 286.77 337.59 392.12
World data set - PSO
K% SR ASSR AKSR SR ASSR AKSR SR ASSR AKSR
15% 281.87 314.34 357.79 278.45 305.44 345.67 278.90 310.53 348.13
30% 281.39 315.74 358.73 273.24 304.48 345.08 278.90 310.73 355.27
50% 282.65 314.61 356.33 273.07 304.66 345.48 277.97 309.80 347.59
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The results are given in Table 6, where R+ is the sum of ranks for the problems in 
which LLSO outperformed PSO, and R− denotes the sum of the ranks for the oppo-
site. Based on the p-values reported on the last column of this table, we conclude 
that our dynamic LLSO outperforms its competitor at the 5% significance level in all 
the case studies.

5.3 � Long‑run sensitivity analysis

5.3.1 � Ex‑post performance metrics

In this subsection, we present the ex-post performance measures that we will use 
to assess the profitability of the proposed investment strategies. Let rout

p,t
 be the 

Table 4   Percentage of optimal solutions that satisfy all the constraints, over the 30 runs for the two com-
pared algorithms for the Pacific data set and for the three ex-post dates, with TR = 20% and increasing 
values of K%

Date 1 Date 2 Date 3

K% SR ASSR AKSR SR ASSR AKSR SR ASSR AKSR

Percentage of feasible solutions found (%) - Pacific data set - LLSO
15% 100 100 100 100 98.89 98.89 98.89 97.778 100
30% 100 100 100 100 98.89 100 98.89 100 98.89
50% 100 100 100 100 100 100 100 97.78 98.89
Percentage of feasible solutions found (%) - Pacific data set - PSO
K% SR ASSR AKSR SR ASSR AKSR SR ASSR AKSR
15% 33.33 33.33 0 100 100 100 100 100 100
30% 33.33 33.33 0 98.89 96.67 96.67 96.67 93.33 86.67
50% 0 0 0 96.67 96.67 95.56 61.11 64.44 55.56

Table 5   Percentage of optimal solutions that satisfy all the constraints, over the 30 runs for the two com-
pared algorithms for the World data set and for the three ex-post dates, with TR = 20% and increasing 
values of K%

Date 1 Date 2 Date 3

K% SR ASSR AKSR SR ASSR AKSR SR ASSR AKSR

Percentage of feasible solutions found (%) - World data set - LLSO
15% 98.89 100 98.89 98.89 95.56 98.89 97.78 100 98.89
30% 100 100 100 97.78 96.67 93.33 98.89 96.67 96.67
50% 100 100 100 100 100 96.67 100 100 98.89
Percentage of feasible solutions found (%) - World data set - PSO
K% SR ASSR AKSR SR ASSR AKSR SR ASSR AKSR
15% 64.44 33.33 32.22 66.67 33.33 62.22 65.56 61.11 56.67
30% 33.33 33.33 0 33.33 33.33 32.22 0 0 0
50% 0 0 0 0 0 0 0 0 0
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ex-post portfolio rate of return at the month of the out-of-sample window. We 
compute the net wealth at time t as

where ct represents the transaction costs associated to the rebalancing at time t. 
Given the optimal portfolio at time t, xt , and the re-normalized portfolio at time 
t − 1 , x̃t−1 , we define the portfolio cost as the sum of the trading costs of each con-
stituent, that is

where tsi,t = Wt−1|xt,i − x̃t−1,i| is the so-called trade segment for asset i at time t, with 
i = 1,… , n and t = 1,… , 126 , and c(⋅) is given by

According to (22), we divide the traded monetary amount into non-overlapping 
intervals and apply a different cost percentage on the interval in which the traded 
capital lies. This transaction costs structure reflects the main configurations pro-
posed nowadays by financial brokers (Beraldi et al. 2021).

Next, we evaluate the attractiveness of the proposed asset allocation strategies 
through the so-called compound annual growth rate (shortly CAGR​), which is cal-
culated as

(21)Wt = (Wt−1 − ct)
(
1 + rout

p,t

)

ct =

n∑
i=1

c(tsi,t)

(22)c(tsi,t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 tsi,t = 0

40 0 < tsi,t < 8000

0.05 × tsi,t 8000 ≤ tsi,t < 50, 000

0.04 × tsi,t 50, 000 ≤ tsi,t < 100, 000

0.025 × tsi,t 100, 000 ≤ tsi,t < 200, 000

400 tsi,t ≥ 200, 000 .

Table 6   Wilcoxon signed-rank 
test results for the two data sets 
at different dates

The null hypothesis assumes that the distributions of the best val-
ues of the dynamic LLSO and the PSO by Corazza et al. (2021) are 
equal, meaning there is no significant difference between the solvers’ 
performance. The alternative hypothesis suggests that the dynamic 
LLSO consistently outperforms the compared algorithm

Data set Ex-post date R
+

R
− p-value

Pacific Date 1 378 0 2.97 ⋅ 10
−6

Pacific Date 2 378 0 2.97 ⋅ 10
−6

Pacific Date 3 273 105 0.0224
World Date 1 357 21 2.85 ⋅ 10

−5

World Date 2 375 3 4.16 ⋅ 10
−6

World Date 3 376 2 3.72 ⋅ 10
−6
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where Tout denotes the length of the out-of-sample window, while W0 and WTout
 

represent the initial wealth and the wealth at the end of the investment period, 
respectively.

We also compute the monthly ex-post average rate of return and the ex-post standard 
deviation

Furthermore, to analyze more precisely the distribution of the ex-post returns, we 
calculate the ex-post skewness and kurtosis

To evaluate the capability of a strategy to avoid high losses, we introduce the draw-
down measure, which is defined as follows (Chekhlov et al. 2005)

where Wpeak is the maximum amount of wealth reached by the strategy until time t. 
Particularly, we focus on the mean, standard deviation, and maximum value of the 
drawdown measure over time.

Finally, we measure the effect of the costs on the available capital in the out-of-sam-
ple period as in Kaucic et al. (2020) by

(23)CAGR =

(
WTout

W0

) 12

Tout

− 1

(24)�out =
1

Tout

Tout∑
t=1

rout
p,t

(25)�out =

√√√√ 1

Tout − 1

Tout∑
t=1

(routp,t − �out)2 .

(26)Sout
3

=
1

Tout − 1

Tout∑
t=1

(
rout
p,t

− �out

�out

)3

(27)Kout
4

=
1

Tout − 1

Tout∑
t=1

(
rout
p,t

− �out

�out

)4

.

(28)DDt = min

{
0,

Wt −Wpeak

Wpeak

}
t = 1,… , Tout

(29)Λ% =
1

Tout

Tout∑
t=1

ct

Wt−1

⋅ 100 .
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5.3.2 � Results for the two data sets

In this subsection we present the results of the ex-post analysis. We start by high-
lighting the relation between portfolio size, allowed trades in the rebalancing phases, 
and the ex-post performance. Tables 7 and 8 report the findings for the three pro-
posed portfolio models employing the Pacific and the World data sets, respectively. 
In the last row, we also include the results for the associated market value-weighted 
benchmark. Overall, we can observe that the impact of costs, expressed as percent-
age of the total wealth, does not exceed 0.057% for the Pacific data set, whereas it 
attains 0.15% in the World case study. Therefore, the influence of transaction costs 
seems relatively marginal for the smaller data set and becomes more pronounced for 
the larger data set. Furthermore, it is worth noting that increasing the cardinality and 
turnover thresholds leads to an expected rise in costs. Instead, if we fix TR and vary 
K% , we can notice the quasi-linear growth of costs. On the contrary, with K% fixed, 
the cost increase is not proportional to the twofold increase of the turnover levels. 
This is coherent with the transaction cost structure defined in (22).

Regarding the Pacific data set, the ASSR and AKSR-based investment plans 
show similar results in the ex-post analysis for all the choices of K% and TR, with the 
AKSR-based strategy with K% = 15% and TR = 10% which outperforms the other 
tested alternatives.

For the World data set, maximizing the ASSR with K% = 15% and TR = 10% 
gives promising results in terms of ex-post returns, CAGR, and drawdown meas-
ures. However, this investment strategy lacks of robustness, as it underperforms sig-
nificantly in all other parameter configurations compared to both the AKSR and SR 
strategies. As in the Pacific case, the AKSR-based model appears to be the most 
resilient and viable choice for the long-term investments.

Summing up, the optimal combination of the parameters is K% = 15% as cardi-
nality threshold and TR = 10% as turnover rate. The comparison with the buy-and-
hold strategy with the auxiliary benchmarks points out that the proposed models, in 
both the investable universes, outperform the benchmark in terms of profits, generat-
ing a higher ex-post net wealth on the long-run. In addition, the multi-moment strat-
egies show less volatility and lower drawdown than the benchmark for the Pacific 
data set. However, for the World data set, the ASSR and AKSR-based investments 
present higher standard deviations and drawdowns.

5.3.3 � Pre‑ and post‑COVID analysis

Figure 1 reports the evolution of the net wealth for the best three Sharpe ratio-based 
portfolio strategies in each data set. The plot confirms the insights previously evi-
denced. All these investment strategies perform better than the auxiliary bench-
marks. In the Pacific case study, we can observe that the SR investment plan is the 
one with the best performance until February 2020, date of the pandemic outbreak, 
at which it realizes a very large drawdown. After this period, only the AKSR strat-
egy seems to be able to gain a great advantage of the market fluctuations in the 
last years. Similarly, in the World data set, the three models have a comparable net 
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wealth evolution until February 2020. Then, the two multi-moment strategies per-
form better than the SR one, with the ASSR being the most profitable.

In Table 9 we highlight the different behaviours of the auxiliary markets and 
the proposed strategies before the above quoted date, namely pre-COVID period, 

Table 7   Results of the long-run sensitivity analysis for the three Sharpe ratio-based optimization strate-
gies with the Pacific data set

In the first two columns we report the value of the fraction K% of assets making up the portfolio and the 
value of the turnover rate, TR, respectively. The other columns show the results of the ex-post metrics 
presented in Sect. 5.3.1

Pacific data set

K% TR �out �out
S
out

3
K

out

4
Mean DD

t
std DD

t
Max DD

t
CAGR (%) Λ%

Sharpe ratio

15% 10% 0.0155 0.0524 −0.3363 3.8968 −0.0401 0.0604 −0.3221 18.1213 0.0168
15% 20% 0.0130 0.0510 −0.4092 3.9483 −0.0464 0.0630 −0.3312 14.6364 0.0246
15% 40% 0.0129 0.0527 −0.2663 4.2228 −0.0469 0.0660 −0.3500 14.2350 0.0364
30% 10% 0.0144 0.0511 −0.3447 4.0604 −0.0413 0.0615 −0.3402 16.5397 0.0258
30% 20% 0.0126 0.0495 −0.6337 3.8347 −0.0456 0.0688 −0.3646 14.0217 0.0346
30% 40% 0.0123 0.0509 −0.3258 3.6120 −0.0520 0.0697 −0.3407 13.4481 0.0482
50% 10% 0.0141 0.0517 −0.3131 4.3767 −0.0401 0.0632 −0.3462 15.9818 0.0362
50% 20% 0.0132 0.0508 −0.3919 3.6058 −0.0470 0.0655 −0.3339 14.5913 0.0448
50% 40% 0.0140 0.0521 −0.3356 3.8593 −0.0498 0.0705 −0.3556 15.4638 0.0576
Adjusted for skewness Sharpe ratio
15% 10% 0.0151 0.0530 −0.2048 4.1423 −0.0413 0.0605 −0.3186 17.4500 0.0173
15% 20% 0.0147 0.0526 −0.3414 3.6750 −0.0438 0.0602 −0.3200 16.8631 0.0227
15% 40% 0.0135 0.0526 −0.2439 4.2715 −0.0451 0.0660 −0.3476 15.0479 0.0350
30% 10% 0.0151 0.0523 −0.2658 3.8936 −0.0398 0.0596 −0.3309 17.5081 0.0245
30% 20% 0.0136 0.0505 −0.5488 3.6586 −0.0450 0.0648 −0.3387 15.4300 0.0324
30% 40% 0.0124 0.0513 −0.4045 3.6817 −0.0508 0.0697 −0.3527 13.4513 0.0466
50% 10% 0.0150 0.0532 −0.1995 4.3461 −0.0397 0.0618 −0.3391 17.1096 0.0351
50% 20% 0.0137 0.0522 −0.3742 3.7466 −0.0469 0.0673 −0.3503 15.2951 0.0422
50% 40% 0.0140 0.0532 −0.2455 4.0119 −0.0515 0.0709 −0.3538 15.3767 0.0569
Adjusted for skewness and kurtosis Sharpe ratio
15% 10% 0.0159 0.0531 −0.1289 4.2466 −0.0391 0.0581 −0.3081 18.6239 0.0170
15% 20% 0.0143 0.0526 −0.3342 3.6512 −0.0437 0.0608 −0.3180 16.3558 0.0231
15% 40% 0.0141 0.0526 −0.3061 4.1253 −0.0440 0.0653 −0.3433 15.9187 0.0343
30% 10% 0.0153 0.0525 −0.2646 4.0030 −0.0406 0.0607 −0.3351 17.6604 0.0248
30% 20% 0.0139 0.0504 −0.5317 3.6388 −0.0442 0.0645 −0.3407 15.7871 0.0324
30% 40% 0.0131 0.0520 −0.4019 3.6642 −0.0524 0.0721 −0.3573 14.4739 0.0449
50% 10% 0.0151 0.0526 −0.2434 4.2324 −0.0403 0.0626 −0.3423 17.2423 0.0346
50% 20% 0.0140 0.0517 −0.4260 3.7441 −0.0467 0.0677 −0.3502 15.6687 0.0416
50% 40% 0.0148 0.0535 −0.2355 3.9622 −0.0508 0.0705 −0.3521 16.5384 0.0544
Benchmark
– – 0.0074 0.0541 −0.1912 8.7070 −0.0794 0.0817 −0.3261 7.3157 –



1 3

A constrained swarm optimization algorithm for large‑scale… Page 23 of 29      6 

and after that date, namely post-COVID period. For both data sets, the distribu-
tions of the rates of return in the pre-COVID period have a negative skewness 
while post-COVID rates of return show symmetric distributions and positive 
skewness. Conversely, regarding the benchmarks, the distribution of the rates of 

Table 8   Results of the long-run sensitivity analysis for the three Sharpe ratio-based optimization strate-
gies with the World data set. In the first two columns we report the value of the fraction K% of assets 
making up the portfolio and the value of the turnover rate, TR, respectively. The other columns show the 
results of the ex-post metrics presented in Sect. 5.3.1

World data set

K% TR �out �out
S
out

3
K

out

4
Mean DD

t
std DD

t
Max DD

t
CAGR (%) Λ%

Sharpe ratio

15% 10% 0.0161 0.0466 −0.2773 4.9703 −0.0291 0.0551 −0.2912 18.9178 0.0425
15% 20% 0.0140 0.0430 −0.7310 4.6233 −0.0285 0.0511 −0.2584 16.1381 0.0553
15% 40% 0.0148 0.0438 −0.3794 4.9213 −0.0291 0.0516 −0.2557 16.8147 0.0751
30% 10% 0.0150 0.0451 −0.4116 5.0116 −0.0285 0.0564 −0.3093 17.0248 0.0762
30% 20% 0.0142 0.0442 −0.5375 5.0115 −0.0280 0.0529 −0.2722 15.8571 0.0870
30% 40% 0.0153 0.0446 −0.2956 4.4928 −0.0264 0.0474 −0.2501 17.2135 0.1003
50% 10% 0.0156 0.0463 −0.2359 5.5967 −0.0272 0.0575 −0.3195 17.1385 0.1194
50% 20% 0.0155 0.0453 −0.1842 5.2368 −0.0258 0.0505 −0.2742 17.0534 0.1247
50% 40% 0.0145 0.0449 −0.1576 5.0796 −0.0281 0.0505 −0.2673 15.4072 0.1454
Adjusted for skewness Sharpe ratio
15% 10% 0.0177 0.0497 −0.1205 4.7322 −0.0290 0.0534 −0.2791 21.0693 0.0402
15% 20% 0.0138 0.0439 −0.4892 4.3779 −0.0306 0.0509 −0.2521 15.7652 0.0556
15% 40% 0.0149 0.0460 −0.1817 4.9571 −0.0302 0.0524 −0.2579 16.9092 0.0712
30% 10% 0.0156 0.0467 −0.4320 4.8426 −0.0297 0.0575 −0.3079 17.7964 0.0746
30% 20% 0.0142 0.0452 −0.4714 4.7642 −0.0294 0.0539 −0.2745 15.8234 0.0828
30% 40% 0.0152 0.0453 −0.2490 4.5258 −0.0264 0.0468 −0.2472 16.9971 0.0959
50% 10% 0.0154 0.0469 −0.1386 5.3080 −0.0279 0.0566 −0.3129 16.7302 0.1260
50% 20% 0.0152 0.0467 −0.0542 5.3984 −0.0267 0.0524 −0.2905 16.5561 0.1274
50% 40% 0.0138 0.0464 −0.0221 5.2357 −0.0290 0.0513 −0.2788 14.3094 0.1490
Adjusted for skewness and kurtosis Sharpe ratio
15% 10% 0.0167 0.0497 −0.2142 4.8412 −0.0305 0.0575 −0.3090 19.6955 0.0406
15% 20% 0.0146 0.0455 −0.5668 4.9556 −0.0318 0.0556 −0.2766 16.8653 0.0525
15% 40% 0.0151 0.0472 −0.1642 5.1791 −0.0316 0.0539 −0.2549 17.1044 0.0726
30% 10% 0.0159 0.0465 −0.3997 4.8263 −0.0297 0.0570 −0.3009 18.2756 0.0750
30% 20% 0.0154 0.0471 −0.2610 5.0832 −0.0290 0.0537 −0.2740 17.4193 0.0804
30% 40% 0.0160 0.0474 −0.0953 4.8810 −0.0269 0.0490 −0.2624 18.0243 0.0957
50% 10% 0.0151 0.0462 −0.2559 5.2358 −0.0276 0.0570 −0.3136 16.5143 0.1228
50% 20% 0.0154 0.0473 −0.0451 5.1902 −0.0276 0.0549 −0.3064 16.7104 0.1298
50% 40% 0.0149 0.0475 −0.0182 5.3073 −0.0287 0.0536 −0.2936 15.8154 0.1449
Benchmark
– – 0.0108 0.0381 −0.6071 3.8057 −0.0273 −0.2626 0.0541 12.8355 –
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return presents a lower mean with negative skewness in both market phases. We 
summarize the results in Figs. 2 and 3 in which, in both data sets, we can detect 
a positive value for the ex-post mean of the rates of return with a reduced disper-
sion in the pre-COVID period, while in the post-COVID epoch we can discover 
a lower ex-post mean of the rates of return with more dispersion and fat-tails.

These findings substantiate that extending the Sharpe ratio model by incorpo-
rating higher-order moments can yield financial performance benefits, particu-
larly during periods characterized by market instability.

Fig. 1   Evolution of the net wealth for the best three Sharpe ratio-based portfolio strategies ( K% = 15% 
and TR = 10% ) in comparison to the market value weighted benchmark using the assets in the two data 
sets

Table 9   Out-of-sample statistics for the distribution of the ex-post rates of return of the three compared 
strategies with K% = 15% and TR = 10% and the benchmark for the two data sets

Results refer to the period before and after 28 February 2020, the watershed date for the COVID-19 pan-
demic outburst

Pre-COVID Post-COVID

Strategy �out �out
S
out

3
K

out

4
�out �out

S
out

3
K

out

4

Pacific data set
SR 0.0177 0.0439 −0.8178 3.2845 0.0083 0.0749 0.2446 3.3132
ASSR 0.0165 0.0437 −0.7641 3.1747 0.0103 0.0773 0.3176 3.4553
AKSR 0.0170 0.0435 −0.7728 3.2698 0.0122 0.0780 0.3933 3.4518
Benchmark 0.0095 0.0526 −0.0977 11.7410 0.0004 0.0602 −0.3545 3.5086
World data set
SR 0.0174 0.0367 −0.7443 3.5505 0.0116 0.0711 0.1419 3.6941
ASSR 0.0183 0.0388 −0.6842 3.4463 0.0155 0.0766 0.2310 3.3632
AKSR 0.0177 0.0380 −0.6780 3.3421 0.0134 0.0780 0.1222 3.2992
Benchmark 0.0100 0.0324 −0.4454 3.6395 0.0135 0.0542 −0.7804 3.0798
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6 � Conclusions and future works

In this study, we have proposed a comparison of three long-run investment strategies 
based on Sharpe ratio type performance measures on large-scale global market indi-
ces. In particular, we have considered the standard Sharpe ratio and two extensions 
which involve higher-order moments of the returns distribution. Furthermore, we 

Fig. 2   Density functions of the ex-post rates of return of the three strategies proposed in Sect. 3.1 for the 
Pacific data set in the pre-COVID period (in the first row) and post-COVID epoch (in the second row). 
The vertical blue line represents the median of the distribution (colour figure online)

Fig. 3   Density functions of the ex-post rates of return of the three strategies proposed in Sect. 3.1 for the 
World data set in the pre-COVID period (in the first row) and post-COVID epoch (in the second row). 
The vertical blue line represents the median of the distribution (colour figure online)
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have included four real-world constraints, namely the cardinality, buy-in threshold, 
budget and turnover constraints, in order to provide a complete control on the port-
folio composition. To solve this family of optimization problems, we have developed 
a novel swarm optimization algorithm equipped with an ad-hoc constraint handling 
technique combining the global convergence properties of the �1-exact penalty func-
tions with a repair operator.

The empirical findings are obtained on two large-scale data sets of the Pacific and 
World areas, which include several hundreds of stocks, covering the last 14 years. 
We have performed a sensitivity analysis for the portfolio size and for the limit of 
the trades magnitude, in order to identify the best combination of these parameters 
in terms of ex-post performance and management cost. Results show that portfolios 
with a reduced number of constituents ( 15% of the investment pool) and with a two-
sided turnover up to 10% provide, on both data sets, better profits which are stable 
over time.

A more detailed analysis reveals that the inclusion of higher-order moments in 
the performance measures produces superior results in terms of net wealth with 
respect to the benchmark and to the portfolio optimized through the standard Sharpe 
ratio. This is more evident after the pandemic outbreak of 2020, where more market 
fluctuations are present.

In the future works, on the one hand, we plan to extend the above experimental 
analysis to other markets and, on the other hand, we are interested in the possibility 
to introduce similar multi-moment performance measures in a passive investment 
framework.
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