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Abstract
In this paper we provide an efficient methodology to compute the credit value 
adjustment of a European contingent claim subject to some default event concerning 
the issuer solvability, when the underlying and the default event are correlated. In 
particular, in a Black and Scholes market/CIR intensity-default model, we consider 
a second order expansion around the origin of a vulnerable call option with respect 
to a correlation parameter � , which may be used to describe the wrong way risk 
of the contract, measuring the dependence between the underlying asset price and 
the option’s issuer default intensity. Numerical implementations of this approach are 
compared with the benchmark Monte Carlo simulations.

Keywords  Credit value adjustment · Vulnerable options · Counterparty credit risk · 
Wrong way risk

1  Introduction

As a consequence of the exponential growth of the over-the-counter (OTC) 
financial market, the valuation of contingent claims subject to possible counter-
party default, named counterparty credit risk (CCR), has gained interest in the 
last decade, after the past global financial crisis, both from the practitioner and 
the academic perspective. Indeed, according to the Basel III Accord (2010), to 
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compensate for those risks a financial institution must charge a premium, gener-
ally known as credit value adjustment (CVA), defined as the (positive) difference 
between the default-free contract value and its value under default risks, or equiv-
alently as the risk-neutral expectation of the residual discounted net present con-
tract value (or expected exposure) at time of default (see e.g. Brigo et al. 2013; 
Gregory 2012). When speaking of options, these are called defaultable (or vul-
nerable), and if the default-free option value can be evaluated in closed or semi-
closed form, an efficient option evaluation is tantamount to efficiently determin-
ing the contract’s CVA.

The two main approaches to CCR are the structural and the reduced-form ones 
which both use the time of default to represent the default event.

Johnson and Stulz (1987) firstly used the structural approach to price a vulner-
able option, and this was later extended by Klein (1996) to more general liability 
structures. In these papers, default could happen only at maturity. More recently, 
Ballotta et al. (2019) proposed a more complex structural approach, based on cor-
related Lèvy processes.

In the structural approach, the default time is typically a stopping time with 
respect to the observable market filtration F  . On the contrary, in the reduced-form 
(or intensity) approach, it is not measurable with respect to F  , to incorporate also 
risk factors exogenous to the market. It is assumed that its distribution conditioned 
to the market filtration is represented by a regular hazard process with stochas-
tic intensity. As a general reference on the topic, we quote the extensive work by 
Bielecki and Rutkowski (2002) and Bielecki et al. (2011) just to mention some. This 
is the framework we are going to use in the present paper.

Although the representation of CVA in terms of a risk-neutral expectation ena-
bles to employ many derivatives valuation techniques (from Monte Carlo to PDE 
based and/or hybrid techniques, see e.g. Goudenège et  al. 2020), the actual CVA 
computation can be challenging when dependence is allowed in the underlying sto-
chastic model. This problem is particularly relevant where statistical correlation 
between the counterparty default event and the investor exposure is possible; that 
is when wrong way risk (WWR) might occur, which means that a decrease in the 
counterparty’s credit quality produces a higher exposure for the derivative’s holder. 
A classic example of WWR (see Zhu and Pykhtin 2007) comes up when a bank (the 
investor I) enters into a swap with an oil producer (the counterparty C), receiving 
the fixed and paying the floating, hence lower oil prices have the double effect of 
worsening the counterparty credit quality, even though increasing the swap value for 
the bank. Another example of WWR is as follows: investor I buys a put option from 
bank C (the counterparty), written on another bank B, whose investment portfolio 
may be highly and negatively affected by defaulting of C (for example, both banks 
belong to the same financial system). Hence the higher the investor’s exposure, the 
greater the probability of failure.

Of course, the opposite effect, known as right way risk (RWR), can also occur 
when exposure is likely to be reduced if the counterparty defaults. Both effects 
are essential from a risk management point of view; neglecting such dependen-
cies between counterparty default and investor exposure leads to overestimation or 
underestimation of the risk and mis-pricing.
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Spurred by these considerations, a wide literature to include RWR/WWR in 
derivative evaluation developed. An extensive presentation of the correlation issues 
concerning Credit Risk can be found in Brigo et al. (2013), Glasserman and Yang 
(2016) discussed bounds on WWR using linear programming techniques. Resam-
pling methods, proposed in Pykthin and Rosen (2011), applied again in Rosen and 
Saunders (2012) and Cherubini (2013), are based on the use of a copula function 
to impose a dependence between exposure and credit, leaving fixed the marginal 
distributions, a method that proved to be particularly appealing to practitioners, for 
its simplicity and computational efficiency. When using the reduced-form approach, 
the hazard (or the intensity) process is typically taken as correlated to the option’s 
underlying, see e.g. Alòs et al. (2021), Antonelli et al. (2021), Baviera et al. (2016), 
Brigo and Vrins (2018), Brigo et al. (2018), Feng and Osterlee (2017) and Hull and 
White (2012).

Following those ideas, we consider a vulnerable European plain vanilla option (or 
equivalently its unilateral CVA) in a Black and Scholes market model and a default 
intensity represented by a Cox–Ingersoll–Ross (CIR) diffusion, with correlated 
driving processes. Even in this very classical model, the presence of WWR makes 
the problem much more complex from a computational point of view. We derive a 
handy approximation formula based on a second-order expansion of the price repre-
sentation formula with respect to the correlation coefficient, as an alternative to the 
benchmark Monte Carlo approach. Monte-Carlo methods (MC) are most commonly 
used in this setting (see e.g. Hull and White 2012; Rosen and Saunders 2012). Our 
method (stemmed from the works Antonelli and Scarlatti 2009; Antonelli et al. 2021 
and extending those results), being analytical, leads to a faster methodology than 
MC simulations, nevertheless exhibiting comparable accuracy. In particular, the cor-
relation expansion presented in Antonelli et al. (2021) involves a representation of 
the coefficients as solutions of a chain of parabolic PDE problems, whose solutions 
are characterized by the Feynman Kaĉ formulas. The procedure implies evaluating 
multiple integrals whose dimension grows with the order of approximation. In the 
current work, we succeed in simplifying the coefficients representation, using inter-
mediate analytic derivative price formulas, obtained by conditioning and change-of-
measure techniques.

Recently, a similar methodology has been applied to deal with CVA in stochastic 
volatility market models (see Alòs et al. 2021, 2022). Along the years, other value 
adjustments have been introduced and an evaluation theory developed, an extension 
of the current method to that context is to be found in Antonelli et al. (2022). We 
remark that this methodology not only provides representation formulas with handy 
approximations (due to expansion coefficients written at correlation zero), but it is 
also easily extendable to include multiple risk factors in the model, as shown in the 
quoted papers. In general, we refer the interested reader to the volume (Glau et al. 
2016) for an updated overview on the topic.

The paper is organized as follows. Section 2 introduces the pricing problem for a 
vulnerable option and the related CVA using the intensity-based approach to write 
a general representation formula. In Sect. 3, we present the market/stochastic inten-
sity model and we specialize the representation formula to this case. In Sect. 4, we 
introduce a second-order approximation for the price of the vulnerable option and 
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its CVA and we propose a method to compute the expansion coefficients. Finally 
we test the efficiency and accuracy of our approximation procedure, comparing the 
results with those obtained by implementing enhanced Monte-Carlo simulations.

2 � CVA: the intensity‑based approach

In this section, we briefly recall the main setting and definition of the intensity 
approach to vulnerable options.

We consider a finite time interval [0,  T] and a complete probability space 
(Ω,F,Q) , endowed with a filtration � = {Ft}t∈[0,T] , augmented with the Q-null sets 
and made right continuous. We assume that all processes have a cádlág version.

The market is described by the money market account denoted by 
D−1(t, s) = er(s−t) , r being the constant risk-free rate, and by a process {Xt}t∈[0,T] rep-
resenting an asset log-price (whose dynamics will be specified later). We assume to 
be in absence of arbitrage and that the given probability Q is a risk neutral measure, 
already selected by some criterion. In this market, a defaultable European option 
paying Φ(XT ) ≥ 0 at maturity, is traded. We denote by � the default time of the 
issuer of the claim and by {Zt}t∈[0,T] a bounded Ft-adapted recovery process. We 
model � by means of the canonical construction of the default time as in Bielecki 
et al. (2011) section 3.2.2, therefore we assume there exists a differentiable adapted 
�-hazard process

for some non negative �-adapted intensity process {�t}t∈[0,T] , and we define

for some uniform random variable U independent of � .
To properly evaluate this type of derivative, we need to include the information 

generated by the default time. Let us define the process

and let ℍ = {Ht}t∈[0,T] be the filtration it generates. For t ∈ [0, T] , we set the pro-
gressively enlarged filtration Gt = Ft ∨Ht , which is the smallest filtration making � 
a stopping time. We uniquely extend the risk neutral probability to � and we keep 
denoting it by Q.

Following the canonical construction, the so-called H-hypothesis (see e.g. 
Bielecki and Rutkowski 2002; Bielecki et  al. 2011) is automatically satisfied 
(Bielecki et al. 2011-Remark 3.2.1) and every �-martingale remains a �-martingale 
under Q, which implies that D(t, s)eXs , for s ≥ t , remains a �-martingale.

In � , for any given time t ∈ [0, T] , the price of a defaultable call is given by no 
arbitrage pricing by

Γt = ∫
t

0

�udu

𝜏 = inf{t > 0 ∶ e−Γt ≤ U}, Γ0 = 0

Ht = 1{�≤t}, t ∈ [0, T] (here 1A denotes the indicator function of a set A),
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while the corresponding default-free value is

Correspondingly the CVA is given by

The two prices are adapted with respect to two different filtrations, where the smaller 
one represents the market information and it is therefore important to understand the 
price dynamics in �  , for instance for hedging purposes. To derive this dynamics, we 
exploit the Key-Lemma (as employed in Antonelli et al. 2021 or in the standard ref-
erences Bielecki et al. 2014; Bielecki and Rutkowski 2002 or Bielecki et al. 2011), 
which implies that for any �-adapted process {Y�

t
}t there exists an �-adapted process 

{Y�

t
}t , such that

We apply this result and we denote by cd(t, T) the �-adapted projection of cd,�(t, T).
Consequently we have an �-adapted CVA projection given by

coinciding with CVA�(t, T) on {𝜏 > t}.
By using the canonical construction, we obtain a more treatable expression of 

cd(t, T) and of CVA(t, T). Indeed, let us introduce

the conditional distribution of the default time � given Ft . Then Ft(𝜔) < 1 a.s. for all 
t > 0 and we have

By the consequences of the Key-Lemma (see again Antonelli et al. 2021), we may 
rewrite (1) on {𝜏 > t} as

recovering formulas (3.1) and (3.3) in Lando (1998). For the sake of exposition 
we shall assume the recovery process to be identically null, leading to the simpler 
expression

and consequently (4) becomes

(1)cd,�(t, T) = �
Q
[
D(t, T)Φ(XT )1{𝜏>T} + D(t, 𝜏)Z

𝜏
1{t<𝜏≤T}||Gt

]
,

(2)c(t, T) = �
Q[D(t, T)Φ(XT )|Ft].

(3)CVA�(t, T) = 1{𝜏>t}[c(t, T) − cd,�(t, T)].

Y�

t
1{𝜏>t} = Y�

t
1{𝜏>t}, ∀t.

(4)CVA(t, T) ∶= c(t, T) − cd(t, T),

(5)Ft = Q(� ≤ t|Ft), ∀ t ≥ 0,

(6)Ft = 1 − e−Γt .

(7)cd(t, T) =�Q

[
e− ∫ T

t
(r+�s)dsΦ(XT ) + �

T

t

Zs�se
− ∫ s

t
(r+�u)duds

|||Ft

]
,

(8)cd(t, T) = e−r(T−t)�Q
[
e− ∫ T

t
�sdsΦ(XT )

|||Ft

]
,
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From now on, we will be working in �  , keeping in mind that all equalities are meant 
on the set {𝜏 > t}.

Remark 1  In case of non zero recovery, the process {Zt}t∈[0,T] in (7) should be 
specified. The two most common choices are either Zt = Rc(t, T) (risk-free close-
out hypothesis) or Zt = Rcd(t, T) (replacement close-out hypothesis) for a constant 
0 ≤ R ≤ 1 . When characterizing the price by means of a Backward Stochastic Dif-
ferential Equation (BSDE), the first choice leads to the expression (see e.g. Antonelli 
et al. 2021)

while the second, solving the equation, gives

implying

or

respectively. Indeed, both cases are straightforward extensions of (8), so considering 
R = 0 is not restrictive.

Remark 2  We recall that introducing the survival process

 and the (deterministic) survival function J(t) = P(𝜏 > t) = �[1{𝜏>t}] = e− ∫ t

0
𝜓(s)ds , 

for some non-negative function � , we have �[St] = J(t),

and it is possible to rewrite

(for details, see Brigo and Vrins 2018). If the intensity process is independent of the 
underlying, the expectation in the CVA factorizes, with �[�t] = 1 , so we simply get

(9)CVA(t, T) = e−r(T−t)�Q
[(

1 − e− ∫ T

t
�sds

)
Φ(XT )

|||Ft

]
.

cd(t, T) = Rc(t, T) + (1 − R)e−r(T−t)�Q
[
e− ∫ T

t
�sdsΦ(XT )

||Ft

]
,

cd(t, T) = e−r(T−t)�Q
[
e−(1−R) ∫ T

t
�sdsΦ(XT )

||Ft

]
,

CVA(t, T) = (1 − R)e−r(T−t)�Q
[(

1 − e− ∫ T

t
�sds

)
Φ(XT )

|||Ft

]

CVA(t, T) = e−r(T−t)�Q
[(

1 − e−(1−R) ∫ T

t
�sds

)
Φ(XT )

|||Ft

]
,

St ∶= 1 − Ft, t ∈ [0, T]

dSt = −�tStdt =
�tSt

�tJ(t)
dJ(t) =∶ �tdJ(t)

(10)CVA(t, T) = −(1 − R)
1

St ∫
T

t

�
[
D(t, u)c(u, T)�u|Ft

]
dJ(u),
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which is the basic representation of the (unilateral) CVA on which the regulatory 
adjustment formula (see Basel III) is built (see Gregory 2010). As a matter of fact, 
when the interest rates follow a deterministic process, by taking t = 0 (hence S0 = 1 ) 
and defining EE(u) = �[c(u,T)|F0] , we have

(having chosen the risk-free close-out hypothesis). Banks with an internal model 
method must compute the CVA according to the following formula

where 0 = t0 < t1 < ⋯ < tN = T  is a given time grid, the sk ’s are the correspond-
ing counterparty credit spreads, and LGDMKT is the market loss-given-default of the 
counterparty, assumed equal to 1 − R.

Since ∫ tk
0
h(u)du ≈

sktk

LGD
 (see Hull 2012), it is immediately seen that the expression 

in (12) is essentially the trapezoidal quadrature rule approximation of the Riemann–
Stieltjes integral (11), and, as such, it converges there when maxk(tk − tk−1) → 0 
(see e.g. Dragomir 2011). According to the Basel Commitee requirements, WWR is 
taken into account by simply multiplying the previous formula by a factor 𝛼 > 1.2.

3 � A representation formula under correlation

In this section, we introduce a representation formula for the price of a vulnerable plain 
vanilla call option, and the related CVA, in the case of correlated risk factors, assuming 
without loss of generality (see Remark 1) R ≡ 0.

The setting here is the same as in Antonelli et al. (2021), but we are going to use a 
different approach to evaluate the expansion coefficients in a handier and more efficient 
way, which allows pushing the expansion up to the second order in a quite straightfor-
ward manner.

We write our market model, in flow notation, for x ∈ ℝ and y > 0 to be

CVAind(t, T) = −(1 − R)
1

St ∫
T

t

�[D(t, u)c(u, T)|Ft]dJ(u),

(11)CVAind(0, T) = −(1 − R)∫
T

0

D(0, u)EE(u)dJ(u),

(12)
CVA

Basel = LGD
MKT

N∑

k=1

max
(
0, e

−sk−1tk−1∕LGDMKT − e
−sktk∕LGDMKT

)

×
1

2

(
EE(t

k−1)D(0, tk−1) + EE(t
k
)D(0, t

k
)
)
,

(13)
Xt,x
s
(�) = x +

�
r −

�
2

2

�
(s − t) + �

�
�

�
B1
s
− B1

t

�
+
√
1 − �2

�
B2
s
− B2

t

��
,

�
t,y
s

= y + ∫
s

t

�(� − �u)du + � ∫
s

t

√
�udB

1
u
,



	 F. Antonelli et al.

1 3

46  Page 8 of 28

where (B1,B2) is a two dimensional standard Brownian motion and the constants 
�, � , �, � ∈ (0,+∞) . We also assume the Feller condition 2𝛾𝜃 > 𝜂

2 to be satisfied, so 
𝜆s > 0, ∀s ∈ [0, T] , Q-almost surely. The pair defining the market is jointly Marko-
vian, thus, from (8), the price of a defaultable call option with maturity T and strike 
price e� can be rewritten as a deterministic function of the state variables at time t, 
on the event {𝜏 > t} , as

for Xt,x
t = x and �t

t,y
= y . The intensity is a Markov process also individually and 

since it is an affine process (see e.g. Alfonsi 2015 for an overview on affine pro-
cesses), bond pricing theory implies that the expected survival process, given by 
P(y, t, T) ∶= �

Q(e− ∫ T

t
�
t,y
s ds) can be written as

the latter being a continuous positive function.
Correlation in the dynamical model (13) induces a dependence between the 

derivative contract’s value and the counterparty default probability. Indeed, for 
a call option, a growth of the underlying asset price increases the contract value. 
When correlation is positive, the corresponding increase in the intensity �t raises 
the probability of default.

Employing a CIR process meets the desirable requirement that the intensity be 
positive, but it makes quite impossible to compute cd(x, y, t, T;�) in closed form, 
when � ≠ 0 . Therefore, we aim at developing a handy representation to construct 
an approximation formula of polynomial order by power series expansion in � 
around 0, if enough regularity is achieved.

Without loss of generality, for ease of exposition, we set t = 0 , r = 0 and 
we simplify the notation of �0,ys  , P(y,  0, T) and cd(x, y, 0,T;�) to �s , P(0, T) and 
cd(x, y,T;�).

Conditioning internally with respect to F1
T
= �({B1

u
∶ 0 ≤ u ≤ T}) , we have

But XT (�)|F1
T
∼ N

(
x −

�
2

2
T + ��B1

T
, (1 − �

2)�2T
)
 , where N  denotes the Gaussian 

distribution, so the inner expectation gives a conditioned Black & Scholes formula

(14)cd(x, y, t, T;�) = e−r(T−t)�Q

[
e− ∫ T

t
�
t,y
s ds

(
eX

t,x

T − e�
)+

]
,

(15)P(y, t, T) =a(t, T)e−yb(t,T),

(16)a(t, T) =

(
2�e(�+�)(T−t)∕2

2� + (� + �)(e�(T−t) − 1)

)2��∕�2

(17)b(t, T) =
2(e�(T−t) − 1)

2� + (� + �)(e�(T−t) − 1)
, � =

√
�2 + 2�2,

(18)
cd(x, y,T;�) = �

Q
[
e− ∫ T

0
�sds

(
eXT (�) − e�

)+]

= �
Q
[
e− ∫ T

0
�sds�

[(
eXT (�) − e�

)+||F
1
T

]]
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N(⋅) being the standard normal distribution function, where for i = 1, 2 , we have 
denoted the random variables

Hence, from (19), we obtain

where

The above representation can be made a little more explicit by an appropriate change 
of Numéraire. Introducing the F -adapted Q-martingale

to define the T-forward measure QT (A) ∶= �
Q[LT1A] (see Bjork 2009 for the 

method), we have

We notice here that the martingale which defines the new measure is different from 
the one proposed in Brigo and Vrins (2018), allowing a factorization of each expec-
tation in (22) different from the factorization in Brigo and Vrins (2018) (see Sect. 5 
for more details).

By Girsanov theorem, we know that the process

(19)�
Q
[(
eXT (�) − e�

)+|F1
T

]
= ex+��B

1
T
−

(��)2T

2 N(D1(x, T , �)) − e�N(D2(x, T , �)),

(20)

Di(x, T , �) = �(T , �)B1
T
+ �i(x, T , �) ∼ N

�
�i(x, T , �),

�
2

1 − �2

�
,

�(T , �) =
�

(1 − �2)1∕2
√
T
,

�i(x, T , �) =
x − � −

�
2

2
T + �

2(2 − i)(1 − �
2)T

�(1 − �2)1∕2
√
T

.

(21)cd(x, y,T;�) = exe−
�
2
�
2T

2 F(�) − e�G(�),

(22)
F(�) = �

Q
[
e− ∫ T

0
�sdse��B

1
TN(D1(x, T , �))

]
,

G(�) = �
Q
[
e− ∫ T

0
�sdsN(D2(x, T , �))

]
.

Lu ∶=
�
Q
[
e− ∫ T

0
�sds||Fu

]

P(0, T)
, u ∈ [0, T],

(23)
F(�) = P(0, T)�QT

[
e��B

1
TN

(
D1(x, T , �)

)]

G(�) = P(0,T)�QT [
N
(
D2(x, T , �)

)]
.

(24)B̄1
s
= B1

s
+ 𝜂𝜉s, 𝜉s = ∫

s

0

√
𝜆ub(u, T)du
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is a QT-Brownian motion, and consequently we rewrite the representation formula 
for the price of the vulnerable option under the T-forward measure

We remark that for � = 0 , the above formulas simplify and setting

we have FT (0) = P(0, T)N(d1),G
T (0) = P(0, T)N(d2) , hence

where cBS(x, T) denotes the Call option Black and Scholes pricing function.

4 � The second order approximation

In this section, we compute a second order approximation for (25) and later we com-
pare its accuracy with a benchmark Monte Carlo estimates of the prices given by 
(14). The first order expansion was already considered in Antonelli et  al. (2021), 
where the change-of-numéraire technique was not employed. As shown before, this 
allows to isolate a bond-like expression coming from the default intensity and con-
sequently a simpler handling of each term.

First, we remark that (25) shows that cd is a regular function in � and we may 
approximate it by a Taylor polynomial around 0 of any order and estimate, at least 
numerically, the error. As we are going to see, the coefficients computations are 
a bit involved, hence we focus on a second-order approximation formula, which 
gives very satisfying results in terms of efficiency and accuracy. This represents 
an improvement with respect to the first order approximation obtained in Antonelli 
et al. (2021), as it catches better the price behavior with respect to the correlation 
parameter � , as we will comment later in the numerical section. Also, this extension 
keeps the advantage of being rather simple to implement and computationally fast 
compared to any Monte Carlo approach.

Thus, for k ≥ 1 , we set

(25)

cd(x, y,T;𝜌) = P(0, T)
[
exe−

𝜎
2
𝜌
2T

2 FT (𝜌) − e𝜅GT (𝜌)
]
,

FT (𝜌) = �
QT
[
e𝜎𝜌(B̄

1
T
−𝜂𝜉T )N(D̄1(x, T , 𝜌))

]
,

GT (𝜌) = �
QT [

N(D̄2(x, T , 𝜌))
]

D̄i(x, T , 𝜌) = 𝛼i(x, T , 𝜌) + 𝛽(T , 𝜌)
(
B̄1
T
− 𝜂𝜉T

)
, i = 1, 2.

(26)D̄1,2(x, T , 0) = D1,2(x, T , 0) =∶ d1,2(x) =
x − 𝜅 ±

𝜎
2

2
T

𝜎

√
T

,

cd(x, y,T;0) = P(0, T)cBS(x, T),

g1,k(x, y,T) ∶=
�
ke−

�
2
�
2T

2 FT (�)

��k
|
�=0, g2,k(x, y,T) ∶=

�
kGT (�)

��k
|
�=0,



1 3

Wrong Way Risk corrections to CVA in CIR reduced‑form models﻿	 Page 11 of 28  46

and, by recalling that cBS(x, T) = exFT (0) − e�GT (0) , we aim at computing the fol-
lowing second order approximation of the vulnerable option price

Correspondingly, we have the second order expansion for the CVA (see (3)):

In (28), we immediately recognize that the first contribution cBS(x, T)(1 − P(0, T)) 
corresponds to the CVA under independence. The remaining terms are therefore the 
correction due to RWR/WWR.

By differentiating and taking � = 0 , after some lengthy calculations (see “Appen-
dix 1”), we arrive at (by virtue of (26))

where

To make the previous approximation implementable, it remains to compute m(T, y) 
and s2(T , y).

(27)
cd,(2)(x, y,T;�) = P(0, T)

[
cBS(x, T) + �

[
exg1,1(x, y,T) − e�g2,1(x, y,T)

]

+
�
2

2

[
exg1,2(x, y,T) − e�g2,2(x, y,T)

]]
.

(28)

CVA(2)(0, T;�) = cBS(x, T)
[
1 − P(0, T)

]

− �P(0, T)
[
exg1,1(x, y,T) − e�g2,1(x, y,T)

]

−
�
2

2
P(0, T)

[
exg1,2(x, y,T) − e�g2,2(x, y,T)

]
.

(29)g1,1(x, y,T) = −�

�
�N(d1(x)) +

1
√
T
N�(d1(x))

�
m(T , y)

(30)g2,1(x, y,T) = −�
1

√
T
N�(d2(x))m(T , y)

(31)
g1,2(x, y,T) =

��
�
2N(d1(x)) + 2�

N�(d1(x))√
T

+
N��(d1(x))

T

�
s2(T , y)

+ d��
1
(x)N�(d1(x)) − �

2TN(d1(x))
�

(32)g2,2(x, y,T) = d��
2
(x)N�(d2(x)) +

1

T
N��(d2(x))s

2(T , y),

m(T , y) = �
QT

[𝜉T ] = ∫
T

0

�
QT �√

𝜆u

�
b(u, T)du,

s2(T , y) = �
QT
��
B̄1
T
+ 𝜂𝜉T

�2�
= T + 2𝜂�QT �

B̄1
T
𝜉T

�
+ 𝜂

2
�
QT �

𝜉
2
T

�
.
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Approximation of m(T,  y). In Grzelak and Oosterlee (2011), it is given the 
following efficient approximation for the standard CIR model:

with Λ =

√

�e−� + �(1 − e−� ) +
�(1 − e−� )

2[�e−� + �(1 − e−� )]
−

�2

4�
(1 − e−� ).

Since the dynamic of the process �s under the new measure QT is

where h(s) = 1 +
�
2

�
b(s, T) , we consider the approximation (33) with modified 

parameters: 𝛾 ⇝ 𝛾̃ ∶= 𝛾(1 +
𝜂
2

𝛾
b̄) and 𝜃 ⇝ 𝜃 ∶= 𝜃∕(1 +

𝜂
2

𝛾
b̄) , where 

b̄ =
1

T
∫ T

0
b(s, T)ds . Consequently

We tested the quality of the approximation (35) by comparing it with the direct 
application of Δ-method and the Monte Carlo estimation, for several parameter 
choices. Results are reported in “Appendix 2”.

Approximation of s2(T , y) . By Itô’s integration by parts ( � is a continuous, 
square integrable, finite variation process), we have

Since d(
√
𝜆s) =

4𝛾[𝜃 − 𝜆sh(s)] − 𝜂
2

8
√
𝜆s

ds +
𝜂

2
dB̄1

s
, (under the Feller’s condition the 

drift term is well-defined), again by Itô’s integration by parts we get

Thus,

and by approximating the process �s by its expectation, �QT

[�s] , the second term 
gives zero contribution and we obtain the approximation

(33)

�
Q
�√

𝜆t

�
≈ C1 + C2e

−C3t ∶= Λ̃(t),

C1 =

�

𝜃 −
𝜂2

8𝛾
, C2 =

√
𝜆 − C1, C3 = − log

�
Λ − C1

C2

�
,

(34)d𝜆s = 𝛾(𝜃 − 𝜆sh(s))ds + 𝜂

√
𝜆sdB̄

1
s
,

(35)m(T , y) ≈ ∫
T

0

Λ̃(t)b(t, T)dt ∶= m̂(T , y).

B̄1
T
𝜉T = ∫

T

0

B̄1
t

√
𝜆tb(t, T)dt + ∫

T

0

𝜉tdB̄
1
t
⇒ �

QT �
B̄1
T
𝜉T

�
= ∫

T

0

�
QT
�
B̄1
t

√
𝜆t

�
b(t, T)dt.

B̄1
t

√
𝜆t = ∫

t

0

B̄1
s

4𝛾(𝜃 − 𝜆sh(s)) − 𝜂
2

8
√
𝜆s

ds +
𝜂

2 ∫
t

0

B̄1
s
dB̄1

s
+ ∫

t

0

√
𝜆sdB̄

1
s
+

𝜂

2
t.

�
QT
�
B̄1
t

√
𝜆t

�
=

𝜂

2
t + ∫

t

0

�
QT

�
B̄1
s

4𝛾(𝜃 − 𝜆sh(s)) − 𝜂
2

8
√
𝜆s

�
ds,
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Finally, we approximate �QT

[(�T )
2] ≈ m(T , y)2 , and we conclude

We tested the quality of the approximations (35) and (36) on a randomly chosen sets 
of CIR model parameters: results are reported in “Appendix 2”.

Remark 3  A theoretical estimation of the error made by stopping the Taylor expan-
sion at the second order can be done by taking the third derivative of (25) with 
respect to � and trying to bound it uniformly in [0, 1).

This is not possible since that derivative will contain terms of the type 
�
n

(1 − �2)
2m+1

2

 , for n,m = 0, 1, 2,… , which can be bounded uniformly only in an inter-

val [0, �0] for some 𝜌0 < 1.
If such an interval is fixed, then exploiting that a CIR process has bounded 

moments of any order, that the process � is positive and so is � , the moment generat-
ing function of the Gaussian random variable B̄1

T
 and the derivatives of the Gaussian 

density, one may prove that

Remark 4  Once the representation (25) is obtained, it is reasonable trying to determine 
a hedging strategy, which is not straightforward since we are in an incomplete market. 
As discussed in Antonelli et al. (2022), if the market is rich enough, a hedging strategy 
might be devised by investing on the underlying (delta hedging) and on a bond that has 
� as its rate of return, by taking derivatives of the approximation formula with respect to 
those two assets. Nevertheless, this hedging will not be perfect, leaving out a component 
in the price represented by a martingale orthogonal to the space generated by the two 
assets (underlying and bond). This martingale will depend on the risk neutral probability 
determining the price, which is not unique and that needs being selected by some cri-
terion. What criterion to use (minimal martingale measure, minimal variance, etc.) is a 
delicate issue and it deserves a careful analysis that goes beyond the aim of the present 
paper and that we hope to address in future work.

5 � The Brigo–Vrins approach

In a recent paper, Brigo and Vrins (2018) consider a general methodology based 
on a change of measures to address the problem of computing CVA under WWR 
in a stochastic-intensity default setup. Their starting point is formula (10) applied 

�
QT
�
B̄1
t

√
𝜆t

�
≈

𝜂

2
t, which implies �

QT �
B̄1
T
𝜉T

�
≈

𝜂

2 ∫
T

0

tb(t, T)dt.

(36)s2(T , y) ≈ T + 𝜂
2 ∫

T

0

tb(t, T)dt + 𝜂
2m̂(T , y)2 ∶= ŝ2(T , y).

|||c
d(x, y,T;�) − cd,(2)(x, y,T;�)

||| ≤ C

(1 − �0)
7

2

�
3
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to a general portfolio price process Vt . In such a framework, the EPE (expected 
positive exposure) under WWR is the function (see Remark 2 for notation)

and Girsanov theorem is used to factorize the EPE. Indeed, they define an equivalent 
martingale measure QCF,t

∼ Q according to

from which they prove that

The so defined measure QCF,t is called wrong-way measure and it is associated with 
the numéraire CF,t

⋅

= D(0, ⋅)Mt
⋅

.
Hence, the dynamics of Vt under the measure QCF,t has to be obtained to com-

pute the previous expression. Assuming Vt to be a diffusion under Q, the change 
of measure results in a drift adjustment (see Brigo and Vrins 2018 for the full 
details).

In Brigo et al. (2018), this result was applied to compute CVA for a call option 
under WWR in the market model described by (13). Since the risk free rate is 
assumed to be constant, we have �[D(0, t)�t] = −e−rt . Moreover, the explicit expres-
sion of the new drift is

with the functions a(⋅, ⋅) and b(⋅, ⋅) given respectively by (16) and (17). To compute 
the expectations in (37), it is necessary to replace the process {�t}{t∈[0,T]} with a 
deterministic proxy {�(t)}{t∈[0,T]} in (38), so that (37) can be evaluated analytically 
leading to the approximation (see Brigo et al. 2018):

where

Two proxies are considered for �(t) , �[�t] and �CF,t

[�t] : while the first is analytically 
known, the second requires a further approximation step (see Brigo et  al. 2018). 
CVA under WWR is then obtained through a numerical integration procedure by 

EPE(t) = �[D(0, t)V+
t
�t].

Zt
s
∶=

dQCF,t

dQ
=

Mt
s

Mt
0

, Mt
s
= �[D(0, t)�tSt|Fs], s ∈ [0, t],

(37)�[D(0, t)V+
t
�t] = �

CF,t

[V+
t
]�[D(0, t)�t].

(38)�
s
t
≡ �

s
t
(�t) = ��

√
�t

�
a(s, t)�tb(s, t)

a(s, t)�tb(s, t)�t − �ta(s, t)
− b(s, t)

�
,

(39)ex0+𝜎Θ(t)N

�
𝛼̂(t) + 𝛽(t)𝜎

√
t

√
1 + 𝛽2(t)

�
− e𝜅−rTN

�
𝛼̂(t) − 𝜎

√
T − t

√
1 + 𝛽2(t)

�
,

Θ(t) =∫
t

0

𝜃(u, t)du, 𝜃(u, t) = 𝜃
t
u
(𝜆(u)), 𝛼̂(t) = 𝛼(t) +

Θ(t)
√
T − t

𝛼(t) =
1

𝜎

√
T − t

�
x0 − 𝜅 +

�
r +

𝜎
2

2

�
T − 𝜎

2t

�
, 𝛽(t) =

�
t

T − t
.
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inserting (39) in (10), specialized for the CIR intensity process, that is by taking 
J(t) = P(y, 0, t) (see (15)).

6 � Numerical results

In this section, we aim at assessing the performance of the second-order approxima-
tion obtained by inserting the approximations (35) and (36) in (28), that we finally 
denote with

where

and

ĝi,j being the coefficients evaluated with m̂ , ŝ2 . Furthermore, we intend to size the 
contribution to CVA due to the correlation � . We recall that Wrong Way Risk cor-
responds to 𝜌 > 0 : the asset value and the probability of default move in the same 
direction.

We choose the intensity process parameters (Table 1) as in Brigo et al. (2018), 
Brigo and Alfonsi (2005): in particular, Set a was exogeneously given and it cor-
responds to the scenario with the highest (1 year) default probability; Set b and Set 
c come from a calibration process on CDS market quotes. In the first set of experi-
ments, the strike price was fixed to K = e� = 100 and we considered three maturi-
ties, T = 0.5 , T = 1 and T = 5 : the underlying volatility was � = 10% and without 
loss of generality we also set the risk-free rate r = 0 and t = 0 . The log-asset was set 
to 4.6052. All the algorithms were implemented in MatLab© (R2019b), and ran on 
an Intel Core i7 2.40 GHZ with 8 GB RAM.

The benchmark Monte Carlo method was implemented by using the Euler discre-
tization scheme with full truncation for the intensity process {�t}{t∈[0,T]} (see Lord 
et  al. 2010) and the exact simulation of the Brownian motion for the underlying 
{Xt}{t∈[0,T]} . In order to reduce the variance of the estimator, a control variates tech-
nique was considered, by using the default-free price as control: in the considered 

(40)ĈVA
(2)
(T , �) = cBS(x, T)

[
1 − P(0, T)

]
− �h1(T) −

�
2

2
h2(T),

h1(T) ∶= P(0, T)
[
exĝ1,1(x, y,T) − e𝜅 ĝ2,1(x, y,T)

]

h2(T) ∶= P(0, T)
[
exĝ1,2(x, y,T) − e𝜅 ĝ2,2(x, y,T)

]
,

Table 1   Parameter sets for the 
CIR default intensity

The 1-year survival probability for Set a and Set b is 96.9% , 98.7% 
and 98.5% , respectively

�0 � � �

Set a 0.0300 0.0200 0.1610 0.0800
Set b 0.0100 0.8000 0.0200 0.2000
Set c 0.0181 0.3542 0.0012 0.0238
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cases, this reduced the length of the confidence interval by at least one order of mag-
nitude. In our numerical experiments we generated M = 106 sample paths with a 
time step discretization equal to 1.0e−03 for all the maturities. The length of the 
95% confidence interval varies between 1.0e−03 and 1.0e−04. The implemented 
algorithm took about 52 s for the computation of each CVA value, ĈVA

(MC)
(T , �).

The results of the numerical implementation are reported in Figs. 1, 2 and 3 and 
they show the quality of the proposed second order approximation. We also observed 
that the use of the different approximations of m(T, y), as reported in “Appendix 2”, 
does not particularly significantly impact the quality of the estimator (40). A com-
parison with the first order approximation, i.e.

and the Brigo-Vrins (BV) method are also displayed (see Sect. 5). In particular, the 
latter required to evaluate numerically the integral (10) and the integral defining 
the function Θ(t) for the computation of EPE(t), 0 < t ≤ T  . Both integrations were 
implemented by using a trapezoidal routine: notice that the function Θ(t) must be 
computed for every value of the correlation parameter � . The implemented proce-
dure takes approximately 4.5e−02 s to calculate each CVA value, ĈVA

(BV)
(T , �).

As it can be seen from Tables 2, 3 and 4, the absolute relative error with respect 
to the benchmark Monte Carlo estimation as a function of the correlation parameter 
� , | ĈVA

(⋅)
(T ,�)−ĈVA

(MC)
(T ,�)

ĈVA
(MC)

(T ,�)
| , worsens for increasing maturity. The first and second-order 

approximations behave similarly for small � , while for larger values, the second 
order is constantly better, especially in the most extended maturity scenario. We 
observe that the first-order approximation and the BV method produce in many 

ĈVA
(1)
(T , �) = cBS(x, T)

[
1 − P(0, T)

]
− �h1(T),

Fig. 1   CVA approximations for the Set a: blue circles are MC estimates, magenta diamonds and red stars 
are the first and second order approximations, respectively, and green squares are the results of the BV 
method (color figure online)
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instances similar relative error patterns, except for the parameter Set b, where the 
BV method seems to get worse for small T, as correlation decreases, although the 
error remains in the order of 1.0e−03. In contrast, the second-order approximation is 
systematically better at the cost of a minimal increase in computational complexity. 
As a matter of fact, we stress that it is sufficient to calculate the (approximated) coef-
ficients ĝi,j only once to obtain an entire CVA curve as a function of � , unlike the 

Fig. 2   CVA approximations for the Set b: blue circles are MC estimates, magenta diamonds and red stars 
are the first and second order approximations, respectively, and green squares are the results of the BV 
method (color figure online)

Fig. 3   CVA approximations for the Set c: blue circles are MC estimates, magenta diamonds and red stars 
are the first and second order approximations, respectively, and green squares are the results of the BV 
method (color figure online)
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Table 2   Set a: the absolute relative error with respect to the Monte Carlo estimate

� T = 0.5 T = 1 T = 5

1st ord 2nd ord BV 1st ord 2nd ord BV 1st ord 2nd ord BV

0.1 1.48e−05 1.05e−04 1.79e−03 9.53e−06 1.85e−04 5.06e−04 1.24e−03 1.53e−03 2.41e−03
0.2 5.54e−05 2.98e−04 1.30e−03 2.07e−04 4.75e−04 4.33e−04 1.35e−03 2.43e−03 6.10e−03
0.3 6.53e−04 1.25e−04 1.02e−03 1.21e−03 2.85e−04 1.18e−03 3.65e−04 1.94e−03 9.88e−03
0.4 1.13e−03 2.25e−04 3.14e−04 2.13e−03 4.49e−04 2.56e−03 2.29e−03 1.61e−03 1.51e−02
0.5 2.08e−03 2.43e−06 2.06e−04 3.77e−03 1.60e−04 3.73e−03 5.83e−03 2.33e−05 2.02e−02
0.6 2.70e−03 2.35e−04 1.32e−03 4.95e−03 5.60e−04 5.81e−03 8.56e−03 5.57e−04 2.73e−02
0.7 4.19e−03 2.74e−04 1.82e−03 7.45e−03 1.37e−04 7.01e−03 1.40e−02 3.61e−03 3.27e−02
0.8 4.30e−03 7.33e−04 3.95e−03 8.04e−03 1.28e−03 1.05e−02 1.62e−02 3.16e−03 4.24e−02
0.9 5.85e−03 3.99e−04 4.84e−03 1.06e−02 8.63e−04 1.24e−02 2.19e−02 6.05e−03 4.93e−02

Table 3   Set b: the absolute relative error with respect to the Monte Carlo estimate

� T = 0.5 T = 1 T = 5

1st ord 2nd ord BV 1st ord 2nd ord BV 1st ord 2nd ord BV

0.1 1.70e−03 3.96e−04 2.72e−03 4.77e−03 2.61e−03 6.72e−03 1.03e−02 7.74e−03 7.13e−03
0.2 4.85e−03 3.81e−05 9.10e−03 1.09e−02 2.86e−03 1.64e−02 1.81e−02 8.36e−03 1.91e−02
0.3 1.07e−02 4.16e−04 1.50e−02 2.05e−02 3.63e−03 2.49e−02 2.97e−02 9.12e−03 2.87e−02
0.4 1.70e−02 2.54e−04 2.23e−02 3.04e−02 2.35e−03 3.50e−02 4.07e−02 6.40e−03 4.00e−02
0.5 2.55e−02 7.24e−05 2.88e−02 4.26e−02 1.76e−03 4.38e−02 5.44e−02 4.16e−03 4.93e−02
0.6 3.27e−02 1.86e−03 3.77e−02 5.32e−02 2.02e−03 5.53e−02 6.58e−02 2.36e−03 6.18e−02
0.7 4.37e−02 7.12e−04 4.33e−02 6.82e−02 2.12e−03 6.24e−02 8.19e−02 5.17e−03 6.92e−02
0.8 5.03e−02 4.82e−03 5.43e−02 7.81e−02 8.61e−03 7.57e−02 9.37e−02 1.37e−02 8.18e−02
0.9 6.14e−02 4.64e−03 6.07e−02 9.29e−02 1.02e−02 8.31e−02 1.10e−01 1.84e−02 8.93e−02

Table 4   Set c: the absolute relative error with respect to the Monte Carlo estimate

� T = 0.5 T = 1 T = 5

1st ord 2nd ord BV 1st ord 2nd ord BV 1st ord 2nd ord BV

0.1 2.84e−05 4.28e−05 1.78e−03 4.91e−05 7.96e−05 7.22e−04 6.64e−04 7.58e−04 9.08e−04
0.2 5.63e−05 9.36e−05 1.68e−03 5.56e−05 1.76e−04 5.34e−04 5.22e−04 8.87e−04 1.67e−03
0.3 9.03e−05 3.76e−05 1.69e−03 1.92e−04 7.68e−05 4.89e−04 2.23e−04 5.81e−04 2.40e−03
0.4 1.52e−04 7.32e−05 1.57e−03 3.44e−04 1.28e−04 2.41e−04 1.01e−03 3.88e−04 3.62e−03
0.5 3.67e−04 1.72e−05 1.55e−03 7.26e−04 2.84e−06 1.21e−04 2.46e−03 3.24e−04 4.67e−03
0.6 4.40e−04 6.00e−05 1.34e−03 9.08e−04 1.31e−04 3.01e−04 3.45e−03 4.46e−04 6.65e−03
0.7 8.11e−04 1.36e−04 1.37e−03 1.55e−03 1.49e−04 3.62e−04 5.76e−03 1.76e−03 7.75e−03
0.8 6.12e−04 2.63e−04 7.89e−04 1.38e−03 4.28e−04 1.33e−03 6.35e−03 1.24e−03 1.10e−02
0.9 9.71e−04 1.28e−04 7.16e−04 2.01e−03 2.50e−04 1.58e−03 8.72e−03 2.39e−03 1.28e−02
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Monte Carlo and the BV methods, which require a new run of simulations and com-
putations for each choice of the correlation parameter. The computation of the first 
and second order coefficients h1 and h2 in our implementation took about 5.0e−04 
and 4.0e−03 s, respectively: the overall evaluation of the our second order approxi-
mation formula took approximately 2.0e−03 s. The quality of ĈVA

(2)
 is particularly 

appreciable in the case of Set b, where the convexity of the CVA figure seems most 
evident (see Fig. 2).

We further remark that the first-order approximation ĈVA
(1)

 yields results compa-
rable to that proposed in Antonelli et al. (2021). The coefficient of this approxima-
tion in the Taylor expansion is, in fact, the same but it has a more explicit represen-
tation in the present paper.

In the second set of experiments, we report the values of the (approximated) coef-
ficients of the second-order expansion, i.e. the credit value adjustment under inde-
pendence, CVAind ∶= cBS(x, T)

[
1 − P(0, T)

]
 , and the terms h1 and h2 (see (40)), in 

Tables 5, 6 and 7 referring to Set a, Set b and Set c, respectively.
The coefficients hi, i = 1, 2 in formula (40) are found to be negative. This result is 

widely expected since it can be supposed that the Credit Value Adjustment (CVA) 
would increase when the parameter � is positive. This is because, with a positive � , 
the probability of the counterparty defaulting increases as the value of the contract 
increases. As a result, a higher credit adjustment is required to account for this risk.

Moreover, h2 is found to be typically one or two times smaller than h1 , except in 
Set b, where it is often comparable (or even larger) in magnitude to h1 . This finding 
is consistent with the first onset of experiments (see Fig.  2) where it is observed 
that the dependence of the CVA on the parameter � exhibits non-negligible con-
vexity, which is reflected in the magnitude of the corresponding coefficient. Con-
sequently, the coefficient introduces a non-negligible correction term, and it high-
lights the importance of considering the impact of parameter dependencies on CVA 
calculations.

Overall, these findings emphasize the significance of the parameter � involved in 
CVA calculations to account for WWR/RWR, and they suggest the need for a com-
prehensive analysis of their impact on the resulting derivative values.

7 � Conclusions

This paper addresses the issue of estimating CVA within the framework of intensity 
models, while accounting for wrong-way risk (WWR), which refers to the presence 
of a correlation between the derivative contract’s value and the counterparty’s default 
probability. We propose a technique based on approximating the CVA value as a func-
tion of the correlation parameter using first or second-order Taylor polynomials. The 
coefficients of this approximation are obtained using a change-of-numeraire approach. 
We demonstrate the effectiveness of our method in approximating the coefficient of the 
Taylor polynomials for a plain vanilla call option, where the underlying follows a GBM 
dynamic and the intensity of default is a correlated CIR process. Our approach proves 
to be both accurate and efficient, as shown by a series of numerical experiments com-
pared with the results obtained by Monte Carlo estimations and the method in Brigo 
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et al. (2018). Additionally, our technique enucleates the WWR contribution of negative 
correlation providing a quantitative measure for the impact of such a risk.

The approach in the present paper opens to further research in several directions. 
Firstly, it could be extended to consider other risk drivers, such as stochastic interest 
rates, which can significantly affect CVA estimates. Secondly, the method could be 
applied to other types of underlying/intensity models, including those with jumps or 
mean-reverting features. Lastly, it could be worth trying to apply it on other types of 
derivatives, such as forward starting options or path-dependent products, which are 
more complex and can pose greater challenges for CVA estimation. These extensions 
could help to further validate the proposed method and broaden its applicability in 
practical settings.

Appendix 1: The approximation coefficients

In this section, we justify the calculations that lead to formulas (29), (30),(31) and (32). 
We start by recalling that

where

and that, for k ≥ 1 , we set

By setting k = 1 , we have

having denoted di(x) ∶= D̄i(x, T , 0), i = 1, 2 . From (42) we get ��(T , 0) = 1√
T
 and 

�
�
2
(x, T , 0) = 0 , therefore we obtain

(41)

FT (𝜌) = �
QT
[
e𝜎𝜌(B̄

1
T
−𝜂𝜉T )N(D̄1(x, T , 𝜌)

]
,

GT (𝜌) = �
QT [

N(D̄2(x, T , 𝜌))
]

D̄i(x, T , 𝜌) = 𝛼i(x, T , 𝜌) + 𝛽(T , 𝜌)
(
B̄1
T
− 𝜂𝜉T

)
, i = 1, 2,

(42)

�(T , �) =
�

(1 − �2)1∕2
√
T
,

�i(x, T , �) =
x − � −

�
2

2
T + �

2(2 − i)(1 − �
2)T

�(1 − �2)1∕2
√
T

,

g1,k(x, y,T) ∶=
�
ke−

�
2
�
2T

2 FT (�)

��k

|||�=0, g2,k(x, y,T) ∶=
�
kGT (�)

��k

|||�=0.

g2,1(x, y,T) = �
QT

[
𝜕

𝜕𝜌

(
N(D̄2(x, T , 𝜌))

)|||𝜌=0

]
= N�(d2(x))�

QT

[
𝜕D̄2(x, T , 𝜌)

𝜕𝜌

|||𝜌=0

]
,
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Hence for g2,1(x, y,T) we have the simple formula:

with m(T , y) = �
QT

[�T ] = ∫ T

0
�
QT

[
√
�u]b(u, T)du . The computation of g1,1(x, y,T) 

requires the same steps. Indeed we have

but 𝜕D̄1(x,T ,𝜌)

𝜕𝜌

|||𝜌=0 =
𝜕D̄2(x,T ,𝜌)

𝜕𝜌

|||𝜌=0 , whence

We now proceed to compute the second derivatives,

and

straightforward calculations give

where d��
1
(x) = (x − � − 3�2T∕2)∕(�

√
T) and d��

2
(x) = (x − � − �

2T∕2)∕(�
√
T).

𝜕D̄2(x, T , 𝜌)

𝜕𝜌
�
𝜌=0 =

𝜂
√
T
𝜉T +

B̄1
T√
T
.

g2,1(x, y,T) = N�(d2(x))
�

√
T

m(T , y),

g1,1(x, y,T) = �
QT

[
𝜕

𝜕𝜌

(
e𝜎𝜌B

1
TN(D̄1(x, T , 𝜌))

)|||𝜌=0

]

= �
QT

[
(𝜎𝜂𝜉T + 𝜎B̄1

T
)N(d1(x)) +

𝜕D̄1(x, T , 𝜌)

𝜕𝜌

|||𝜌=0 N
�(d1(x))

]

= 𝜎𝜂 m(T , y)N(d1(x)) + N�(d1(x))�
QT

[
𝜕D̄1(x, T , 𝜌)

𝜕𝜌

|||𝜌=0

]
,

g1,1(x, y,T) = �� m(T , y)N(d1(x)) + N�(d1(x))
�

√
T

m(T , y).

g1,2(x, y,T) = �
QT

[
𝜕
2

𝜕𝜌2

(
N(D̄2(x, T , 𝜌))

)|||𝜌=0

]

g2,2(x, y,T) = �
QT

[
𝜕
2

𝜕𝜌2

(
e𝜎𝜌B

1
TN(D̄1(x, T , 𝜌))
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;

(43)

g1,2(x, y,T) = �
QT �

(B̄1
T
+ 𝜂𝜉T )

2
��
𝜎
2N(d1(x)) + 2

𝜎N�(d1(x))√
T

+
N��(d1(x))

T

�

− 𝜎
2TN(d1(x)) + N�(d1(x))d

��
1
(x)

g2,2(x, y,T) =N
�(d2(x))d

��
2
(x) + �
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[(B̄1
T
+ 𝜂𝜉T )

2]
N��(d2(x))

T
,
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Appendix 2: 1‑method: results

Assuming that a function �(⋅) is sufficiently smooth, from the first-order Taylor expan-
sion we get �(X) ≈ �(�[X]) + �

�(�[X])(X − �[X]) , from which

By applying the approximation to the function �(x) =
√
x , evaluated in the process 

�t , and recalling that var(
√
X) = �[X] − �[

√
X]2 , we get

(see Grzelak and Oosterlee 2011). The error of this approximation is entirely due 
to the approximation (44). In particular, we assume that the first-order terms in the 
Taylor expansion around the expectation give an accurate representation. Further 
remarks on the conditions for the Δ-method to perform well can be found in Oehlert 
(1992).

In our framework the dynamic of the intensity default process under the QT measure 
is given by

where h(s) = 1 +
�
2

�
b(s, T) . By setting K(t) ∶= ∫ t

0
h(s)ds , we have that

from which we get

and, by Itô isometry,

From the definition of the function b(t, T) = 2(e�(T−t) − 1)

2� + (� + �)(e�(T−t) − 1)
 , where 

� =
√
�2 + 2�2 , we have

(44)var(�(X)) ≈
(
�
�(�[X])

)2
var(X).

(45)�
QT

[
√
�t] =

�
�QT

[�t] − varQ
T
(
√
�t) ≈

�

�QT
[�t] −

varQ
T
(�t)

4�QT
[�t]

∶= Λ(t)

(46)d𝜆s = 𝛾(𝜃 − 𝜆sh(s))ds + 𝜂

√
𝜆sdB̄

1
s

(47)𝜆t = 𝜆0e
−𝜃K(t) + 𝛾𝜃e−𝜃K(t) ∫

t

0

e−𝜃K(s)ds + 𝜂e−𝜃K(t) ∫
t

0

e−𝜃K(s)
√
𝜆sdB̄

1
s
,

(48)�
QT

[�t] = �0e
−�K(t) + ��e−�K(t) ∫

t

0

e−�K(s)ds,

varQ
T

(�t) = �
QT

[�2
t
] −

(
�
QT

[�t]
)2

= �
2e−2�K(t) ∫

t

0

e−2�K(s)�QT

[�s]ds

= �0�
2e−2�K(t) ∫

t

0

e−2�K(s)ds + �
2
��e−2�K(t) ∫

t

0

e−�K(s) ∫
s

0

e−�K(r)drds.

∫
(
1+

�
2

�
b(t, T)

)
dt = t−

�
2

�

(
2t

� − �
+

4 ln
(
� − � + �e�(T−t) + �e�(T−t)

)

�2 − �2

)
+ C.
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Hence, �QT

[�t] and varQT

(�t) can be easily computed to get Λ(t) , and therefore

by using numerical integration routines.
Besides approximation (45), in Grzelak and Oosterlee (2011) Grzelak and 

Oosterlee proposed to use, for the CIR model, the following function

where the coefficients C1,C2 and C3 are set to fit as much as possible to the function 
Λ(t) (see Sect. 4). We tested the quality of the Δ-method approximation of �QT

[
√
�t] 

(45) and its functional approximation (49) for a set of parameters � , �, � and �0 : 
some results are displayed in Fig. 4, where they are compared with a Monte Carlo 
approximation, obtained from simulation of the process (46) through the Euler dis-
cretization scheme with full truncation, with time step 1.0e−03, and 1.0e+05 trajec-
tories (Fig. 5).

m(T , y) ≈ ∫
T

0

Λ(t)b(t, T)dt,

(49)�
Q[
√
𝜆t] ≈ C1 + C2e

−C3t ∶= Λ̃(t)

Fig. 4   Approximation of �QT

[
√
�t] . The dotted lines represent the Monte Carlo estimation, the squared 

dash-dotted and the star dash-dotted are the Δ and its functional approximation, respectively
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