
Vol.:(0123456789)

Computational Management Science (2023) 20:44
https://doi.org/10.1007/s10287-023-00478-8

1 3

ORIGINAL PAPER

An ALNS‑based matheuristic algorithm for a multi‑product
many‑to‑many maritime inventory routing problem

Nooshin Heidari1 · Ahmad Hemmati1

Received: 30 May 2022 / Accepted: 25 August 2023 / Published online: 30 September 2023
© The Author(s) 2023

Abstract
In this paper, we propose an adaptive large neighborhood search-based matheuristic
algorithm to solve a multi-product many-to-many maritime inventory routing prob-
lem. The problem addresses a short sea inventory routing problem that aims to find
the best route and distribution plan for multiple products with a heterogeneous fleet
of vessels through a network including several producers and customers. Each port
can be visited a given number of times during the planning horizon, and the stock
level for each product should lie within the predefined bound limits. The problem
was introduced by Hemmati et al. (Eur J Oper Res 252:775–788, 2016). They devel-
oped a mixed integer programming formulation and proposed a matheuristic algo-
rithm to solve the problem. Although their proposed algorithm worked well in terms
of running time, it suffers from disregarding a part of the solution space. In this
study, we propose a new matheuristic algorithm to find better solutions by exploring
the entire solution space for the same problem. In our solution methodology, we split
the variables into routing and non-routing variables. Then in an iterative process, we
determine the values of the routing variables with an adaptive large neighborhood
search algorithm, and we pass them as input to a penalized model which is a relaxed
and modified version of the mathematical model introduced in Hemmati et al.
(2016). The information from solving the penalized model, including the values of
the non-routing variables, is then passed to the adaptive large neighborhood search
algorithm for the next iteration. Several problem-dependent operators are defined.
The operators use the information they get from the penalized model and focus on
decreasing the penalty values. Computational results show up to 26% improvement
in the quality of the solutions for the group of instances with a large feasible solu-
tion space. We get the optimal value for the remaining instances matched with the
reported results.

Keywords Maritime inventory routing problem · Many-to-many distribution
network · Adaptive large neighborhood search · Matheuristic algorithm

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-023-00478-8&domain=pdf
http://orcid.org/0000-0003-0464-4551

 N. Heidari, A. Hemmati

1 3

44 Page 2 of 23

1 Introduction

The Inventory Routing Problem (IRP) addresses two main logistic activities,
inventory management, and vehicle routing, and is a well-studied problem in
the context of vendor-managed inventory. In the IRP, the goal is to manage the
flow of products across different producers and consumers to satisfy customer
demands and minimize transportation costs. In IRPs, the decisions are to deter-
mine the quantity of products required to be handled at each location, the time of
visiting each location, and the vehicle routes to serve different customers (Coelho
et al. 2013). Various types of inventory routing problems have been studied in the
literature for different modes of transportation. Two surveys by Andersson et al.
(2010) and Coelho et al. (2013) have explored different aspects and variants of
IRPs.

The problem we are addressing is a Short Sea Inventory Routing Problem
(SSIRP), which was introduced by Hemmati et al. (2016). The problem is a
multi-product, many-to-many Maritime Inventory Routing Problem (MIRP) in a
continuous time framework. In this study, we propose a new method to find bet-
ter solutions for the same problem. We use the same realistic-sized instances and
compare the quality of the solutions with the results of the Hybrid Cargo Gener-
ating and Routing algorithm (HCGR) proposed by Hemmati et al. (2016).

Our focus here is to review different solution approaches that have been applied
to similar maritime inventory routing problems. According to the literature, dif-
ferent mathematical models were developed to formulate MIRPs, and various
commercial solvers were applied to solve the problem. (Al-Khayyal and Hwang
2007; Diz et al. 2017; Agra et al. 2017), and (Misra et al. 2020). Moreover, differ-
ent exact algorithms, including but not limited to branch-and-bound (Christiansen
1999) and (Agra et al. 2013), branch-and-price (Hewitt et al. 2013), and branch-
price-and-cut (Engineer et al. 2012) have been studied in the past.

Among the relevant literature, Christiansen (1999) solved a single-product
MIRP with time windows by applying a branch-and-bound algorithm and using
the Dantzig-Wolf decomposition approach. They decomposed the overall prob-
lem into ship routing and inventory management sub-problems. Later, Agra et al.
(2013) applied a branch-and-bound approach to solve a single-product MIRP.
They proposed two discrete time formulations with valid inequalities. Moreover,
Engineer et al. (2012) implemented a branch-price-and-cut algorithm to solve a
practical-sized single-product MIRP in an oil company. They used different cuts,
including capacity cuts and other special cuts targeting fractional solutions, to
find the optimal solution. Furthermore, Hewitt et al. (2013) proposed a branch-
and-price algorithm to solve a MIRP and mentioned that their results are near-to-
optimal. They reduced the required time for finding good solutions by developing
local search schemes.

However, in addition to the aforementioned exact methods, various heuristics,
metaheuristics, and matheuristics were developed to solve MIRPs. For example,

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 3 of 23 44

Christiansen et al. (2011) studied a multi-product MIRP in the cement industry
where they proposed a constructive heuristic embedded in a Genetic Algorithm
to solve realistic-sized instances within a reasonable time. Moreover, Song and
Furman (2013) presented a Large Neighborhood Search (LNS) through a sim-
ple algorithmic framework to solve MIRP. Later, Agra et al. (2016) developed
a local search heuristic for the stochastic MIRP. Recently, Friske and Buriol
(2020) developed a solution approach including two metaheuristics: a multi-start
algorithm and a large neighborhood search. They used a commercial solver to
solve the reduced mixed integer problem with the solutions obtained by LNS.
In addition, Friske et al. (2022) studied the use of Relax-and-Fix and Fix-and-
Optimize metaheuristics over two discrete-time formulations. They evaluated the
contribution of different components of the formulations to the performance of
the algorithm.

As an extension of the LNS algorithm, Adaptive Large Neighborhood Search
(ALNS) is known as an efficient heuristic to deal with vehicle routing problems.
(Ropke and Pisinger 2006; Pisinger and Ropke 2007; Ribeiro and Laporte 2012;
François et al. 2019; Yu et al. 2020; Chen et al. 2021). The effectiveness of ALNS
in maritime routing problems has also been shown by different researchers. (Lianes
et al. 2021; Brekkå et al. 2022).

Several published studies are relevant to our problem setting, which are discussed
in more detail as follows. Christiansen (1999) formulated a MIRP in which a hetero-
geneous fleet of ships was planned to transport a single product through a network
including producers and customers. Each port could be visited a given number of
times during the planning horizon. They assumed a time window limitation for start-
ing service at each port and the possibility of serving multiple ships at the same
time. The problem was solved using branch-and-bound and applying the Dantzig-
Wolf decomposition approach. In each instance, a maximum of 5 vessels, 16 ports,
and 36 days as the planning horizon were considered. Later, Al-Khayyal and Hwang
(2007) formulated the same problem of transporting several products on a many-to-
many distribution network. The model assumed dedicated compartments for each
product in each ship without time window limitations. The small-size instances were
solved using a commercial solver. They mentioned the impact of the number of port
visits on the solution time and the need for particular algorithms to take advantage
of the structure of the model. They considered up to 3 products, 4 vessels, 4 ports,
and 10 days for the planning horizon.

A few years later, Siswanto et al. (2011) proposed a set of heuristics with four
groups of rules to solve the same problem with undedicated compartments. The
vessels had different numbers of compartments that were not dedicated to a spe-
cific product. They provided high-quality solutions for the set of instances with at
most 2 products, 3 vessels, 4 ports, and 15 days as the planning horizon. Following
that, Agra et al. (2014) proposed a tightened model with valid inequalities for the
problem described by Al-Khayyal and Hwang (2007). Given the continuous-time

 N. Heidari, A. Hemmati

1 3

44 Page 4 of 23

formulation, they presented three heuristics: rolling horizon, feasibility pump, and
local branching. They proposed heuristics to solve real instances with a maximum
of 4 products, 2 vessels, 7 ports, and 15 days for the planning horizon. According
to their results, the quality of solutions improved by combining all three heuristics.

Later, Hemmati et al. (2016) proposed the HCGR algorithm to solve the multi-
product SSIRP in a continuous time framework. A heterogeneous fleet of vessels was
assumed to distribute multiple products within a many-to-many distribution network.
They assumed different compatibility between vessels, ports, and products. There was
no limitation on the compartment and no possibility of serving multiple vessels at the
same time in their problem setting. They converted the IRP into a routing and schedul-
ing problem to solve realistic-size instances. They considered up to 3 products, 10 ves-
sels, 16 ports, and 60 days for the planning horizon. First, they solved two mathemati-
cal models, including transportation and time window models, to find the number of
products picked up and delivered from/to each port and the corresponding time sched-
uling. In this step, the pair of producer and customer and the time of pickup and deliv-
ery operations became fixed based on the direct transportation and operational costs. In
the next step, based on the best scheduling plan, the routing problem was solved using
an ALNS. The algorithm disregarded some parts of the solution space because of mak-
ing a fixed pair of producers and customers. The proposed algorithm worked well in
terms of running time.

Following that, Agra et al. (2017) presented discrete-time and continuous-time for-
mulations and different valid inequalities for the problem introduced by Al-Khayyal
and Hwang (2007). They defined different production/consumption rates in the dis-
crete-time formulation for various periods. The rates were fixed during the whole plan-
ning horizon in the continuous-time formulation. They compared different proposed
formulations in terms of their size, running time, and integrality gap for both discrete
and continuous time. Using a commercial solver, they reported the computational
results for real test instances. They found the optimal solutions for the cases with a
maximum of 4 products, 2 vessels, 7 ports, and a fifteen-day planning horizon.

As mentioned earlier, the SSIRP proposed by Hemmati et al. (2016) was to find
the best route and distribution plan for multiple products through a network with
several producers and customers. They studied two groups of instances with dif-
ferent compatibility between vessels, ports, and products. The size of the instances
was considerably larger compared to the literature. However, their proposed solution
method could not find high-quality solutions for the instances where all the vessels
were fully compatible with the ports and the products. In this paper, we propose a
new solution approach to find better solutions for the problem introduced by Hem-
mati et al. (2016). To this end, we develop an ALNS-based Matheuristic algorithm
(ALNSM) in which an ALNS algorithm determines routing variables. Moreover,
the non-routing variables are taken care of by a Mixed Integer Programming (MIP)
solver, given the value of routing variables. We compare our results on the test
instances in Hemmati et al. (2016) and analyze the quality of the results accordingly.

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 5 of 23 44

The rest of the paper is organized as follows: problem characteristics are
explained in Sect. 2, the proposed ALNSM algorithm is described in Sect. 3, and
computational results are reported in Sect. 4, followed by the conclusion in Sect. 5.

2 Problem description

The problem introduced by Hemmati et al. (2016) addresses the distribution man-
agement of different products within a many-to-many distribution structure, includ-
ing several producers and customers. It is assumed that a heterogeneous fleet of ves-
sels is planned to transport products through the network. The vessels differ in terms
of capacities, compatibility with ports and products, and transportation cost and
time. There is a limitation on the number of visits for each port during the planning
horizon. Furthermore, the stock level of each product should lie within the prede-
fined minimum and maximum levels. The initial stock level and production or con-
sumption rates for each product at each port are given. The quantity of the products
to be handled at each port is limited, and the handling operation time at each port for
each product is predefined. The problem is to minimize transportation and opera-
tional costs, including fixed and variable handling costs.

The following mathematical model is presented by Hemmati et al. (2016). How-
ever, for the sake of a better explanation of our solution approach, their mathemati-
cal formulation is given as follows: Ports are indexed by i and j, and vessels, prod-
ucts, and ports visit numbers are represented by v, k, and m/n, respectively. The mth
visit of port i is denoted by (i, m), and direct travel from port visit (i, m) to port visit
(j, n) is represented by (i, m, j, n). N, V, and K are defined as the set of ports, the set
of vessels, and the set of products, respectively. Moreover, the set of ports that vessel
v can visit and the set of products k that can be transported with vessel v are denoted
by Nv and Kv . Also, the set of all possible port visits, the set of possible port visits
for vessel v, and the set of all possible direct travels for vessel v are represented by
SA , SA

v
 , and SX

v
 , respectively.

2.1 Mathematical formulation

Parameters and variables of the model are listed below:
Parameters

Jik: 1/-1 if product k is produced/consumed at port i and 0 if it is not pro-
duced nor consumed at port i.

Cv: Capacity of vessel v

Q
ik

 , Qik: Minimum and maximum amount of product k that is allowed to be han-
dled at port i

 N. Heidari, A. Hemmati

1 3

44 Page 6 of 23

T
Q

ik
: Required amount of time for handling one unit of product k at port i

TO
iv

: Transportation time from vessel v’s origin to port i

Tijv: Transportation time between port i and port j with vessel v

T: Duration of the planning horizon

Mi: Maximum allowed number of visits at port i

SO
ik

: Opening stock for product k at port i at the beginning of the planning
horizon

Rik: Production or consumption rate for product k at port i

S
ik
, Sik: Lower and upper bound for the stock level of product k at port i

ST
ik
, S

T

ik
: Lower and upper bound for the stock level of product k at port i at the end

of the planning horizon

C
Q

ik
: Operational cost for each unit of product k at port i

CT
ijv

: Transportation cost from port i to port j with vessel v

CTO
iv

: Transportation cost from vessel v’s origin to port i

CO
ik

: Fixed operational cost for product k at port i

Variables

ximjnv: 1 if there is a direct movement from port visit (i, m) to port visit (j, n) with
vessel v and 0 otherwise.

xO
imv

: 1 if there is a movement from the vessel v’s origin to port visit (i, m) and 0
otherwise.

zimv: 1 if the operation of vessel v ends at port visit (i, m) and 0 otherwise.

zO
v
: 1 if vessel v is not used and 0 otherwise.

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 7 of 23 44

wimv: 1 if vessel v meets mth visit of port i and 0 otherwise

yim: 1 if mth visit of port i is done and 0 otherwise.

oimvk: 1 if product k is loaded/unloaded at port visit (i, m) with vessel v and 0
otherwise

limvk: Onboard quantity of product k on vessel v after port visit (i, m)

qimvk: Loaded/unloaded amount of product k at port visit (i, m) with vessel v

tim: Start time of handling operation at port visit (i, m)

tE
im

: End time of handling operation at port visit (i, m)

simk: Level of inventory for product k at the start of handling operation at port
visit (i, m)

sE
imk

: Level of inventory of product k at the end of handling operation at port visit
(i, m)

The mathematical model is defined as follows:
Objective function:

Subject to
Routing constraints:

(1)

Min Z =
∑

v∈V

∑

(i,m,j,n)∈SX
v

CT
ijv
ximjnv +

∑

v∈V

∑

(i,m)∈SA
v

CTO
iv
xO
imv

+
∑

v∈V

∑

(i,m)∈SA
v

∑

k∈Kv

(CO
ik
oimvk + C

Q

ik
qimvk)

(2)
∑

(i,m)∈SA
v

xO
imv

+ zO
v
= 1, v ∈ V

(3)xO
imv

+
∑

(j,n,i,m)∈SX
v

xjnimv − wimv = 0 v ∈ V , (i,m) ∈ SA
v

(4)wimv −
∑

(i,m,j,n)∈SX
v

ximjnv − zimv = 0 v ∈ V , (i,m) ∈ SA
v

(5)
∑

v∈V∶(i,m)∈SA
v

wimv = yim (i,m) ∈ SA

 N. Heidari, A. Hemmati

1 3

44 Page 8 of 23

Loading and unloading constraints

Time constraints

(6)yi(m−1) − yim ≥ 0 (i,m) ∈ SA ∶ m ≥ 2

(7)xO
imv

,wimv, zimv ∈ {0, 1} v ∈ V , (i,m) ∈ SA
v

(8)ximjnv ∈ {0, 1} v ∈ V , (i,m, j, n) ∈ SX
v

(9)yim ∈ {0, 1} (i,m) ∈ SA

(10)zO
v
∈ {0, 1} v ∈ V

(11)ximjnv(limvk + Jjkqjnvk − ljnvk) = 0 v ∈ V , (i,m, j, n) ∈ SX
v
, k ∈ Kv

(12)xO
imv

(Jikqimvk − limvk) = 0 v ∈ V , (i,m) ∈ SA
v
, k ∈ Kv

(13)
∑

k∈Kv

limvk ≤ Cv

∑

(j,n)∈SA
v

ximjnv v ∈ V , (i,m) ∈ SA
v

(14)Q
ik
oimvk ≤ qimvk ≤ Qikoimvk v ∈ V , (i,m) ∈ SA

v
, k ∈ Kv

(15)
∑

k∈Kv

oimvk ≥ wimv v ∈ V , (i,m) ∈ SA
v

(16)oimvk ≤ wimv v ∈ V , (i,m) ∈ SA
v
, k ∈ Kv

(17)limvk, qimvk ≥ 0 v ∈ V , (i,m) ∈ SA
v
, k ∈ Kv

(18)oimvk ∈ {0, 1} v ∈ V , (i,m) ∈ SA
v
, k ∈ Kv

(19)tE
im

≥ tim +
∑

v∈V

∑

k∈Kv

T
Q

ik
qimvk (i,m) ∈ SA

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 9 of 23 44

Inventory constraints

The objective function (1) aims to minimize the total transportation and operational
costs. Equations (2) determine whether vessel v is used or not. In (3), the previous
location of each port visit is defined, which can be either the origin of vessel v or
another port visit of that vessel (j, n). Equations (4) state that each vessel can either
end its route at a port visit (i, m) or continue to another port visit (j, n). Constraints
(5) ensure that each port visit (i, m) is carried out by one of the available vessels, and
equations (6) ensure that the port visits are conducted successively. Constraints (7)-
(10) define binary variables while constraints (11) and (12) determine the onboard
quantity of each product after each port visit. Equations (13) describe the capac-
ity constraint for the vessels. In (14), the number of products allowed to be loaded/
unloaded is limited. Equations (15) and (16) define the possibility of loading and

(20)tim − tE
i(m−1)

≥ 0 (i,m) ∈ SA,m ≥ 2

(21)ximjnv(t
E
im
+ Tijv − tjn) ≤ 0 (i,m, j, n) ∈ SX

v
, v ∈ V

(22)
∑

v∈V

TO
iv
xO
imv

≤ tim (i,m) ∈ SA

(23)tim, t
E
im

≥ 0 (i,m) ∈ SA

(24)si1k =S
O
ik
+ JikRikti1 i ∈ N, k ∈ K

(25)

sE
imk

=simk −
∑

v∈V∶(i,m)∈SA
v
,k∈Kv

Jikqimvk + JikRik(t
E
im
− tim) (i,m) ∈ SA, k ∈ K

(26)simk =s
E
i(m−1)k

+ JikRik(tim − tE
i(m−1)

) (i,m) ∈ SA ∶ m ≥ 2, k ∈ K

(27)S
ik
≤ simk, s

E
imk

≤ Sik (i,m) ∈ SA, k ∈ K

(28)ST
ik
≤ sE

iMik
+ JikRik(T − tE

iMi

)) ≤ S
T

ik
i ∈ N, k ∈ K

(29)simk, s
E
imk

≥ 0 (i,m) ∈ SA, k ∈ K

 N. Heidari, A. Hemmati

1 3

44 Page 10 of 23

unloading operations with the required port visits. Constraints (17) and (18) intro-
duce loading variables.

Constraints (19) determine the end-time operation at port visit (i, m) based on
the number of products loaded/unloaded. Equations (20) state that the operation
at port i cannot start before ending its previous port visit. Constraints (21) and
(22) relate the beginning operation time at each port visit with the transportation
time from the last port visit and its prior ending operation time. Equations (23)
define time variables.

Constraints (24) determine the stock level of each product at each port at its first
visit. Equations (25) and (26) define the inventory level of each product at the begin-
ning and end of each port visit. Constraints (27) and (28) ensure that each product’s
stock level lies within the predefined maximum and minimum levels at each port
visit and at the end of the planning horizon. Constraints (29) define stock variables.

3 ALNS‑based matheuristic algorithm

We propose a matheuristic algorithm to solve a multi-product many-to-many
inventory routing problem. In our algorithm, we take advantage of the power of
metaheuristics to search the discrete domain and the capabilities of MIP solvers to
deal with continuous variables.

In the proposed algorithm, called Adaptive Large Neighborhood Search-based
Matheuristic (ALNSM), all variables in the mathematical model are divided into
two main groups: routing and non-routing variables. The routing variables are
taken care of by a metaheuristic algorithm known as Adaptive Large Neighborhood
Search. Following that, the non-routing variables are determined by the MIP solver,
given the values of the routing variables.

Considering the difficulty of generating feasible solutions for the problem, we
define a penalized model where the inventory constraints are relaxed, and instead,
penalty functions for the violated constraints are added to the objective function.
As finding a feasible solution for the penalized model is still difficult, we initiate
our algorithm with a sub-model that offers a more relaxed version of the penalized
model. This sub-model, explained in Sect. 3.2, is called only once at the beginning
of the algorithm to generate a feasible initial solution.

In each iteration of the ALNSM algorithm, a new solution is generated using a
group of designed operators to determine routing variables. To this end, we design
different operators for the penalized and the original problems. Once the search
reaches the solution space of the original problem, i.e., the penalty variables become
zero, it continues using operators designed solely for the original problem.

Next, the routing variables are passed to the MIP solver to calculate the objective
function, determine the values of the non-routing and penalty variables, and check

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 11 of 23 44

the feasibility of the solution. The ALNSM algorithm proceeds with searching the
solution space until it meets the stop-criterion. In order to escape from local optima,
an escape-algorithm is applied which is described in Sect. 3.4. Ultimately, the best-
found solution is reported. The main steps of the algorithm are summarized in Algo-
rithm 1. The proposed penalized model and initial solution are described in Sects.
3.1 and 3.2, respectively, followed by the ALNS algorithm in Sect. 3.3.

3.1 Penalized model

Taking the complexity of the problem into account for finding a feasible solution, a
set of constraints in the mathematical model, i.e., inventory constraints, are relaxed,
and the corresponding penalties for the violated constraints are added to the objec-
tive function. We define the stock penalty variables as follows:

gimk: The amount of stock shortage for product k at port visit (i, m) at the begin-
ning of handling operation compared to the lower bound for the stock level,
S
ik

.

 N. Heidari, A. Hemmati

1 3

44 Page 12 of 23

gE
imk

: The amount of stock shortage for product k at port visit (i, m) at the end “E”
of handling operation compared to the lower bound for the stock level, S

ik
.

eimk: The excess amount of stock for product k at port visit (i, m) at the beginning
of handling operation compared to the upper bound for the stock level, Sik.

eE
imk

: The excess amount of stock for product k at port visit (i, m) at the end “E” of
handling operation compared to the upper bound for the stock level, Sik.

gT
ik

: The amount of stock shortage for product k at port i at the end of planning
horizon “T” compared to the lower bound for the stock level at the end of
planning horizon, ST

ik
.

eT
ik

: The excess amount of stock for product k at port i at the end of planning hori-
zon “T” compared to the upper bound for the stock level at the end of plan-
ning horizon, S

T

ik
.

With the new variables defined above, the inventory constraints (27, 28) are relaxed
as follows:

Moreover, we define “P” as a sufficiently big number, and we update the objective
function by adding the following penalty function:

The main challenge here is to minimize the penalty function and find a feasible solu-
tion for the original problem. To this end, we design a set of operators to focus on
this purpose described in Sect. 3.3.2.

3.2 Initial solution

Although the stock constraints in the penalized model are relaxed, the routing, load-
ing/unloading, and time constraints should be satisfied to start with a feasible initial
solution.

(30)S
ik
− gimk ≤ simk ≤ Sik + eimk (i,m) ∈ SA, k ∈ K

(31)S
ik
− gE

imk
≤ sE

imk
≤ Sik + eE

imk
(i,m) ∈ SA, k ∈ K

(32)ST
ik
− gT

ik
≤ sE

iMik
+ JikRik(T − tE

iMi

) ≤ S
T

ik
+ eT

ik
i ∈ N, k ∈ K

∑

v∈V

∑

(i,m)∈SA
v

∑

k∈Kv

P(gimk + eimk + gE
imk

+ eE
imk

) +
∑

i∈N

∑

k∈K

P(gT
ik
+ eT

ik
)

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 13 of 23 44

To make it easier to find a feasible initial solution, we start the algorithm with a
solution in which each port is visited only once, and a set of constraints are satisfied.
To this end, the sub-model includes routing constraints (2)–(5) and (7)–(10), loading
and unloading constraints (11)–(18), and the following constraints:

Constraints (33) and (34) ensure that each port is visited only once. Equations (35)-
(38) along with the other mentioned constraints determine one feasible route for
each used vessel.

3.3 Adaptive large neighborhood search algorithm

The core of our proposed ALNS-based matheuristic algorithm is based on an adap-
tive large neighborhood search framework inspired by Ropke and Pisinger (2006).
In this framework, as an efficient heuristic for vehicle routing problems, different
operators are defined to create new solutions. In the selection procedure, initially,
all the operators have the same chance to be selected to generate new solutions.
After a number of iterations called a segment, the probability of choosing different
operators is updated based on their performance in the previous iterations. There-
fore, the more efficient operators have a higher chance of being selected in the next
iterations. The algorithm selects the operators using a roulette wheel selection
principle.

Algorithm 2 presents the framework of the ALNS algorithm. The acceptance
method that we used in the following framework (lines 7–12) is based on the well-
known simulated annealing algorithm’s acceptance criteria (Kirkpatrick et al.
1983).

(33)yi1 =1 i ∈ N

(34)yim =0 i ∈ N,m ≥ 2

(35)
∑

v∈V

∑

j∈N∶(i,1,j,1,v)∈SX
v

xi1j1v +
∑

v∈V

zi1v = 1 i ∈ N

(36)
∑

v∈V

∑

i∈N∶(i,1,j,1,v)∈SX
v

xi1j1v +
∑

v∈V

xO
j1v

= 1 j ∈ N

(37)kui1v + 1 − kuj1v ≤ |N|(1 − xi1j1v) v ∈ V , (i, 1, j, 1, v) ∈ SX
v

(38)kui1v ≥ 0 v ∈ V , i ∈ N ∶ (i, 1) ∈ SA
v

 N. Heidari, A. Hemmati

1 3

44 Page 14 of 23

3.3.1 Solution representation

The solution is represented with a two-dimensional vector defined as follows: in
the first dimension, the sequence of port visits for different vessels is defined, and
in the second dimension, the corresponding visit counter for each port is speci-
fied. For example, suppose that the number of ports is 6, the number of vessels is
3, and the maximum number of visits for each port is 2. Therefore, one possible
solution can be represented as follows:

1 3 0 1 2 6 0 5 3 4
2 1 0 1 1 1 0 1 2 1
The solution depicts that the first vessel makes the second port visit of port 1,

and the first port visit of port 3. The second vessel makes the first port visits of
ports 1, 2, and 6, and the third vessel makes the first port visit of port 5, the sec-
ond port visit of port 3, and the first port visit of port 4. In this solution represen-
tation, vessels and their routes are separated by (0, 0).

3.3.2 Operators

To find the best routing plan for the fleet of vessels, we design different operators
to focus on the sequence of visits performed by vessels. The main challenge is
moving from the penalized model’s feasible solution space to the original feasible
region. To achieve this, in the first part of the algorithm, we design several opera-
tors to focus on decreasing the penalty function and moving toward the feasible
region of the original problem. Once the algorithm reaches the original feasible
solution space, the other operators are applied to find the best solution to the orig-
inal problem. The following three principles are used in all designed operators:

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 15 of 23 44

1. Each used vessel should start its route by visiting one producer and end it with
one customer.

2. If a given port is producing only one specific product and there is only one cus-
tomer for that product, both the producer and the corresponding customer must
be visited by the same vessel.

3. Changing the position of ports in a solution may result in rearranging port visit
counters accordingly.

Among the following operators, the first two are specifically designed to decrease
the penalty function, while the rest of them are applied to search the solution
space for both penalized and original problems.

• Stock-Balanced: The Stock-Balanced operator removes one port visit with a
positive stock penalty value and inserts it in a possible place in a route. Posi-
tive gimk and gE

imk
 indicate that the corresponding vessel arrives late at the port

visit (i, m). Moreover, positive gT
ik

 denotes that the last visit to port i is per-
formed early so that the stock level of product k at the end of the planning
horizon is less than the minimum required level. Similarly, the positive values
for eimk/eEimk and eT

ik
 indicate a high stock level of product k at the port visit

(i, m), and port i at the end of the planning horizon, respectively. The Stock-
Balanced operator removes one of the port visits with a positive stock penalty
value. Ports with higher penalty values have more chances to be removed. If
gimk , gEimk , eimk , and eE

imk
 are positive, the removed port visit will not be inserted

at any place in a route of its allocated vessel later than its present point.
Instead, it can be done earlier or assigned to another compatible vessel. How-
ever, positive gT

ik
 and eT

ik
 represent that the last visit to port i should be done

later so that the stock level of product k at port i remains in a range of prede-
fined bound limits at the end of the planning horizon. In this case, the last port
visit to port i should not be done earlier than its present time. Therefore, either
it can be done later or moved to another compatible vessel.

• Random-Worst-Remove-Random-Insert (RWRR): Compared to the Stock-
Balanced operator, the RWRR operator selects more than one port visit with
positive penalty values and inserts them in random possible places in a route.
The maximum number of port visits to remove from each route is limited such
that each route includes at least one producer and one customer. Among port
visits with positive values, the number of possible port visits to remove is
determined randomly, defining at most four. Port visits with higher penalty
values get more chances to be selected and removed. Next, selected port visits
with their connected ports (based on the second principle described above) are
removed and inserted in a random possible place in a solution, considering the
compatibility of ports and vessels. Since more than one port visit is selected
to be removed, the insertion rule in the Stock-Balanced operator is not fol-
lowed by this operator. Changing the position of several port visits may affect
the status of other removed port visits.

 N. Heidari, A. Hemmati

1 3

44 Page 16 of 23

• Random-Remove-Random-Insert (RRR): Unlike the RWRR, which is applied
to the penalized model, RRR is used for both penalized and original prob-
lems. Herein, at most, four port visits are selected randomly to remove. Ensur-
ing that at least one producer and one customer are assigned to each vessel,
selected port visits are removed and inserted in a random possible place in a
route.

• Random-Remove-First-Improvement-Insert (RRFI): Here, one port visit in a
solution is selected randomly, ensuring that it does not belong to a vessel with
only one producer and one customer. Next, the removed port visit is inserted in
a place where the first improvement is found, i.e., a point in a solution in which
the new solution is still feasible, and the objective value is less than its present
value. To calculate the objective value and check the feasibility of the solution,
the solver is called for each step of insertion. If there is no better possible place
for insertion, the removed port visit remains in its current place in a solution.

• Swap: To diversify the search, we change the position of two port visits in a
solution with a swap operator. It is necessary to make sure that selected ports are
compatible with their newly assigned vessels, the logic of starting a route with
one producer and ending it with one customer being satisfied, and each used ves-
sel contains at least one producer and one customer after the swap operation.

• Route-Add: To generate solutions with fewer idle vessels, one producer and one
customer are selected and successively inserted in one possible place in a solu-
tion. It is required to make sure that a common compatible vessel is used to carry
a product for a producer and its customer. Therefore, it is possible to use more
vessels for the transportation plan, which may create more and better feasible
solutions.

• Vessel-Change: Compared to the Route-Add operator, the Vessel-Change opera-
tor generates new solutions where one used vessel is discarded, and its allocated
route is assigned to the other compatible vessels. This operator helps to escape
from local optima when it is necessary to reduce the number of used vessels.

• Visit-Add: In case we are allowed to visit each port more than once, the Visit-
Add operator is applied. The minimum required number of visits for each port
is calculated based on the initial inventory of each product at each port, the pro-
duction and consumption rates of each product at each port, the stock bounds at
each port for each product, and the maximum amount of each product allowed to
be handled at each port. It is necessary to ensure that each port is visited at least
to its minimum required number of visits. In the Visit-Add operator, extra port
visits are added to the current solution to check if more port visits could lead to a
better solution at a lower cost.

• Visit-Remove: Similar to the Visit-Add operator, the minimum required number
of visits for each port is calculated. In this operator, the extra port visits com-
pared to its minimum required number of visits (if any) are removed from the
current solution to check the possibility of making a better new feasible solution.

• Vessel-Swap: In this operator, the routes of two vessels with common character-
istics but different transportation costs are changed. The Vessel-Swap operator
helps to create better feasible solutions where compatible vessels are strictly lim-
ited, and the transportation costs for compatible vessels are considerably different.

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 17 of 23 44

• Farthest-Remove-Nearest-Insert (FRN): The FRN operator is designed to gener-
ate solutions with shorter distances among port visits in one single route. First,
one port visit with the longest distance from its subsequent port visit is selected
randomly. Port visits are arranged based on their distance in descending order to

Table 1 Computational results for ALNSM and HCGR

HCGR ALNSM ALNSM-HCGR

Inst. no. |N| |V| |P| Best Obj Avg. Obj Best Obj Avg. Secs Gap (%)

1 4 2 1 327,037 327,037 327,037 75 0.00
2 4 2 1 367,408 367,408 367,408 73 0.00
3 4 2 1 396,685 396,685 396,685 74 0.00
4 4 2 1 412,060 412,060 412,060 72 0.00
5 4 2 1 328,049 328,049 328,049 78 0.00
6 4 2 1 210,031 210,031 210,031 75 0.00
7 8 4 2 694,445 694,445 694,445 96 0.00
8 8 4 2 723,722 723,722 723,722 96 0.00
9 8 4 2 739,097 739,097 739,097 94 0.00
10 8 4 2 655,086 655,086 655,086 98 0.00
11 8 4 2 695,457 695,457 695,457 97 0.00
12 12 6 3 949,128 949,128 949,128 206 0.00
13 12 6 3 865,117 865,117 865,117 211 0.00
14 12 6 3 989,499 989,499 989,499 212 0.00
15 12 6 3 905,488 905,488 905,488 212 0.00
16 12 6 3 1,018,776 1,018,780 1,018,780 217 0.00
17 16 8 4 1,232,525 1,264,001 1,232,525 428 0.00
18 16 8 4 1,261,802 1,272,718 1,261,802 434 0.00
19 16 8 4 1,277,177 1,314,488 1,277,180 438 0.00
20 16 8 4 1,302,173 1,302,173 1,302,173 419 0.00
21 16 8 4 1,317,548 1,346,456 1,317,550 429 0.00
22 16 10 2 197,919 185,711 179,914 319 − 9.10
23 16 10 2 245,719 242,720 236,664 435 − 3.69
24 16 10 2 279,574 266,440 249,627 463 − 10.71
25 16 10 3 208,413 206,450 192,347 605 − 7.71
26 16 10 3 243,845 235,165 212,571 797 − 12.83
27 16 10 3 362,039 293,634 276,851 863 − 23.53
28 16 10 3 418,542 339,261 311,447 1053 − 25.59
29 20 10 5 1,831,239 1,870,533 1,831,239 724 0.00
30 20 10 5 1,713,221 1,732,888 1,713,221 745 0.00
31 20 10 5 1,629,210 1,695,540 1,629,210 754 0.00
32 20 10 5 1,644,585 1,701,483 1,644,585 709 0.00
33 20 10 5 1,714,233 1,792,897 1,714,233 711 0.00

 N. Heidari, A. Hemmati

1 3

44 Page 18 of 23

avoid choosing the same port visit in successive iterations. Port visits with longer
distances have more chances to be selected to remove. Finally, the removed port
visit is inserted into a solution next to its nearest possible place.

3.4 Escape‑algorithm

Although the ALNSM algorithm benefits from diversifying components, includ-
ing the simulated annealing and randomness inside the operators, we also exploit
the escape-algorithm to escape from local optima. In Algorithm 1, if there is no
improvement after a number of iterations (m), we activate the escape-algorithm. In
this iterative algorithm, two operators are randomly selected to diversify the search.
The new solution in each iteration is accepted regardless of its quality. The algo-
rithm stops once a better solution than the best-found solution is found. Otherwise,
the algorithm continues until it meets the stopping criterion, which is reaching a
certain number of iterations.

4 Computational result

A set of realistic-sized instances, as defined by Hemmati et al. (2016), is used to
evaluate the performance of the ALNSM algorithm. The instances are categorized
into two groups. In the first group, instances are deliberately designed to allow for
problem segmentation into smaller sub-problems, enabling the reporting of opti-
mal solutions. Conversely, the instances in the second group, indexed as 22–28 in
Table 1, cannot be partitioned into smaller sub-problems, thus preventing the report-
ing of optimal solutions. The instances are characterized based on the number of
producers and customers, the number of vessels, and the number of products for a
fixed planning horizon. Furthermore, the test instances are divided into two groups
based on their compatibility: with full compatibility and with limited compatibility
between vessels, ports, and products. It is assumed that there is limited compatibil-
ity between vessels, ports, and products for all instances except for those indexed
22–28. In the group of instances with limited compatibility, we can only visit each

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 19 of 23 44

port and carry each product with a few compatible vessels, while in the cases with
full compatibility, all vessels, ports, and products are compatible.

Gurobi is used as the MIP solver in our proposed algorithm. In the ALNS algo-
rithm, the number of iterations in each segment is 50. Moreover, in the escape-algo-
rithm, m is defined as 100, and the stop-criterion is set at 20 iterations. The two
selected operators in the escape-algorithm include swap and RRR. The ALNSM
algorithm stops after 6000 iterations.

Table 1 illustrates the computational results achieved by the ALNSM and its
comparison with the HCGR presented by Hemmati et al. (2016). The first four
columns of Table 1 specify the instance index, the number of ports, the num-
ber of vessels, and the number of products, respectively. The next column shows
the best-found solutions by the HCGR. The following three columns illustrate the

Fig. 1 With full compatibility between vessels, ports, and products

Fig. 2 With limited compatibility between vessels, ports, and products

 N. Heidari, A. Hemmati

1 3

44 Page 20 of 23

average objective values, the best-found solution, and the average running time
(in seconds) achieved by running the ALNSM 10 times on each instance. The
last column shows the gap between the ALNSM and the HCGR. Bold values are
reported as the optimal solutions by Hemmati et al. (2016).

As the results show, our proposed algorithm finds the optimal solution for all
instances with limited compatibility between vessels, ports, and products. How-
ever, for the remaining cases, our proposed algorithm outperforms the HCGR.
Specifically, for instances with full compatibility, the gap between the results of
the ALNSM and the HCGR is improved by up to 26%, respectively.

The ALNSM and the HCGR algorithms are tackling the problem differently. The
HCGR algorithm is initiated by specifying the minimum required quantity to be
loaded/unloaded from each port. This is calculated based on the given production/
consumption rates, initial stocks, and the minimum and maximum bounds of stock
levels. Then, the best amount of products to be loaded/unloaded from each port and
the relevant time windows are determined. Here, the HCGR algorithm specifies the
fixed pair of pickup and delivery ports based on their direct transportation costs and
operational costs. Next, the best route of fixed pickup and delivery ports is deter-
mined using adaptive large neighborhood search. The main drawback of the HCGR
algorithm is disregarding some parts of the feasible solution space and considering
only the immediate impact of decisions. For example, consider a network with six
ports, where ports 1 and 5 act as producers for one product, and ports 2, 3, 4, and
6 are customers. Assume that the minimum required quantities to be loaded from
ports 1 and 5 are 660 and 220 units, respectively, and each customer demands a
minimum of 220 units. The HCGR algorithm yields the following fixed pickup and
delivery pairs:

(1, 2) with 440 units of products to be loaded from port 1 and unloaded at port 2
(1, 3) with 220 units of products to be loaded from port 1 and unloaded at port 3
(5, 4) with 220 units of products to be loaded from port 5 and unloaded at port 4
(5, 6) with 220 units of products to be loaded from port 5 and unloaded at port 6.
The above solution is obtained due to the consideration of direct transportation

costs between the paired pickup and delivery ports. However, a feasible and more
improved solution is possible by keeping products onboard the vessels and unload-
ing them later. Therefore, a better feasible solution is the route of 1-2-3-4 with the
loading of 660 units at port 1, unloading 220 units at ports 2, 3, and 4, and the route
of 5-6 with the loading of 220 units at port 5, and unloading 220 units at port 6. Our
proposed algorithm can achieve this by determining different load/unload quantities
with no limitation in searching the entire solution space. In the ALNSM, routes are
defined using an adaptive large neighborhood search algorithm, and a MIP solver is
utilized to obtain optimal values of non-routing variables, subject to the specified
routing variables. This process continues until the stop-criterion is met, reporting
the best-found feasible solution.

Two groups of instances are analyzed separately to highlight the effect of prob-
lem characteristics on the running time. Figures 1 and 2 depict the relationship
between the running time and problem characteristics for the first and second groups
of instances, respectively.

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 21 of 23 44

In this context, the problem characteristic is defined as the multiplication of the
number of ports, the number of vessels, and the number of products. As the results
show, the required time to solve different instances is affected by the problem char-
acteristics. Moreover, according to Fig. 1, within the group of instances with identi-
cal problem characteristics, the number of active producers and customers affects
the running time. Active producers and customers handle different product types in
their stock. Increasing the number of inventories in a problem leads to a correspond-
ing increase in the running time.

5 Conclusion

In this study, we proposed an ALNS-based matheuristic algorithm to solve the
multi-product many-to-many inventory routing problem introduced by Hemmati
et al. (2016). The proposed ALNSM follows an iterative process where routing vari-
ables are determined using an adaptive large neighborhood search algorithm, while a
MIP solver is employed to determine the optimal values of stock and time variables
based on the obtained routing values. Comparing the performance of the ALNSM
with the HCGR algorithm reveals that the ALNSM significantly outperforms the
HCGR on different sets of realistic instances. Particularly, our algorithm excels in
improving solution quality when there is full compatibility between vessels, ports,
and products. In such instances, the feasible solution space is larger, necessitating
more exploration to find better solutions. The ALNSM’s approach of emphasizing
finding optimal values for non-routing variables for each specific vessel routs allows
for a more comprehensive search compared to the HCGR, where some areas of the
solution space are not even explored. Our results demonstrate notable improvements
of up to 26% in solution quality for this group of instances. Furthermore, for the
other group of instances with limited compatibility, the ALNSM achieves the opti-
mal solutions reported by Hemmati et al. (2016).

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).

Declarations

Conflict of interest None of the authors have any financial or non-financial interests that are directly or
indirectly related to this work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 N. Heidari, A. Hemmati

1 3

44 Page 22 of 23

References

Agra A, Andersson H, Christiansen M, Wolsey L (2013) A maritime inventory routing problem: discrete
time formulations and valid inequalities. Networks 62(4):297–314

Agra A, Christiansen M, Delgado A, Simonetti L (2014) Hybrid heuristics for a short sea inventory rout-
ing problem. Eur J Oper Res 236(3):924–935

Agra A, Christiansen M, Hvattum LM, Rodrigues F (2016) A MIP based local search heuristic for a sto-
chastic maritime inventory routing problem. In International conference on computational logistics,
pp 18–34. Springer

Agra A, Christiansen M, Delgado A (2017) Discrete time and continuous time formulations for a short
sea inventory routing problem. Optim Eng 18(1):269–297

Al-Khayyal F, Hwang S-J (2007) Inventory constrained maritime routing and scheduling for multi-com-
modity liquid bulk, part I: applications and model. Eur J Oper Res 176(1):106–130

Andersson H, Hoff A, Christiansen M, Hasle G, Løkketangen A (2010) Industrial aspects and literature
survey: combined inventory management and routing. Comput Oper Res 37(9):1515–1536

Brekkå I, Randøy S, Fagerholt K, Thun K, Vadseth ST (2022) The fish feed production routing problem.
Comput Oper Res 144:105806

Chen C, Demir E, Huang Y (2021) An adaptive large neighborhood search heuristic for the vehicle rout-
ing problem with time windows and delivery robots. Eur J Oper Res 294(3):1164–1180

Christiansen M (1999) Decomposition of a combined inventory and time constrained ship routing prob-
lem. Transp Sci 33(1):3–16

Christiansen M, Fagerholt K, Flatberg T, Haugen Ø, Kloster O, Lund EH (2011) Maritime inventory
routing with multiple products: a case study from the cement industry. Eur J Oper Res 208(1):86–94

Coelho LC, Cordeau J-F, Laporte G (2013) Thirty years of inventory routing. Transp Sci 48(1):1–19
Diz GSdS, Oliveira F, Hamacher S (2017) Improving maritime inventory routing: application to a Brazil-

ian petroleum case. Marit Policy Manag 44(1):42–61
Engineer FG, Furman KC, Nemhauser GL, Savelsbergh MW, Song J-H (2012) A branch-price-and-cut

algorithm for single-product maritime inventory routing. Oper Res 60(1):106–122
François V, Arda Y, Crama Y (2019) Adaptive large neighborhood search for multitrip vehicle routing

with time windows. Transp Sci 53(6):1706–1730
Friske MW, Buriol LS (2020) A multi-start algorithm and a large neighborhood search for a maritimein-

ventory routing problem. In: 2020 IEEE congress on evolutionary computation (CEC), pp 1–8.
IEEE

Friske MW, Buriol LS, Camponogara E (2022) A relax-and-fix and fix-and-optimize algorithm for a mar-
itime inventory routing problem. Comput Oper Res 137:105520

Hemmati A, Hvattum LM, Christiansen M, Laporte G (2016) An iterative two-phase hybrid matheuristic
for a multi-product short sea inventory-routing problem. Eur J Oper Res 252(3):775–788

Hewitt M, Nemhauser G, Savelsbergh M, Song J-H (2013) A branch-and-price guided search approach to
maritime inventory routing. Comput Oper Res 40(5):1410–1419

Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science
220(4598):671–680

Lianes IM, Noreng MT, Fagerholt K, Slette HT, Meisel F (2021) The aquaculture service vessel rout-
ing problem with time dependent travel times and synchronization constraints. Comput Oper Res
134:105316

Misra S, Kapadi M, Gudi RD (2020) Hybrid time-based framework for maritime inventory routing prob-
lem. Ind Eng Chem Res 59(46):20394–20409

Pisinger D, Ropke S (2007) A general heuristic for vehicle routing problems. Comput Oper Res
34(8):2403–2435

Ribeiro GM, Laporte G (2012) An adaptive large neighborhood search heuristic for the cumulative
capacitated vehicle routing problem. Comput Oper Res 39(3):728–735

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Transp Sci 40(4):455–472

Siswanto N, Essam D, Sarker R (2011) Solving the ship inventory routing and scheduling problem with
undedicated compartments. Comput Ind Eng 61(2):289–299

1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 23 of 23 44

Song J-H, Furman KC (2013) A maritime inventory routing problem: practical approach. Comput Oper
Res 40(3):657–665

Yu Z, Zhang P, Yu Y, Sun W, Huang M (2020) An adaptive large neighborhood search for the larger-scale
instances of green vehicle routing problem with time windows. Complexity 1–14:2020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Nooshin Heidari1 · Ahmad Hemmati1

 * Nooshin Heidari
 Nooshin.Heidari@uib.no

 Ahmad Hemmati
 Ahmad.Hemmati@uib.no

1 Department of Informatics, University of Bergen, Bergen, Norway

http://orcid.org/0000-0003-0464-4551

	An ALNS-based matheuristic algorithm for a multi-product many-to-many maritime inventory routing problem
	Abstract
	1 Introduction
	2 Problem description
	2.1 Mathematical formulation

	3 ALNS-based matheuristic algorithm
	3.1 Penalized model
	3.2 Initial solution
	3.3 Adaptive large neighborhood search algorithm
	3.3.1 Solution representation
	3.3.2 Operators

	3.4 Escape-algorithm

	4 Computational result
	5 Conclusion
	References

