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Abstract
In this paper, we propose an adaptive large neighborhood search-based matheuristic 
algorithm to solve a multi-product many-to-many maritime inventory routing prob-
lem. The problem addresses a short sea inventory routing problem that aims to find 
the best route and distribution plan for multiple products with a heterogeneous fleet 
of vessels through a network including several producers and customers. Each port 
can be visited a given number of times during the planning horizon, and the stock 
level for each product should lie within the predefined bound limits. The problem 
was introduced by Hemmati et al. (Eur J Oper Res 252:775–788, 2016). They devel-
oped a mixed integer programming formulation and proposed a matheuristic algo-
rithm to solve the problem. Although their proposed algorithm worked well in terms 
of running time, it suffers from disregarding a part of the solution space. In this 
study, we propose a new matheuristic algorithm to find better solutions by exploring 
the entire solution space for the same problem. In our solution methodology, we split 
the variables into routing and non-routing variables. Then in an iterative process, we 
determine the values of the routing variables with an adaptive large neighborhood 
search algorithm, and we pass them as input to a penalized model which is a relaxed 
and modified version of the mathematical model introduced in Hemmati et  al. 
(2016). The information from solving the penalized model, including the values of 
the non-routing variables, is then passed to the adaptive large neighborhood search 
algorithm for the next iteration. Several problem-dependent operators are defined. 
The operators use the information they get from the penalized model and focus on 
decreasing the penalty values. Computational results show up to 26% improvement 
in the quality of the solutions for the group of instances with a large feasible solu-
tion space. We get the optimal value for the remaining instances matched with the 
reported results.
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1 Introduction

The Inventory Routing Problem (IRP) addresses two main logistic activities, 
inventory management, and vehicle routing, and is a well-studied problem in 
the context of vendor-managed inventory. In the IRP, the goal is to manage the 
flow of products across different producers and consumers to satisfy customer 
demands and minimize transportation costs. In IRPs, the decisions are to deter-
mine the quantity of products required to be handled at each location, the time of 
visiting each location, and the vehicle routes to serve different customers (Coelho 
et al. 2013). Various types of inventory routing problems have been studied in the 
literature for different modes of transportation. Two surveys by Andersson et al. 
(2010) and Coelho et  al. (2013) have explored different aspects and variants of 
IRPs.

The problem we are addressing is a Short Sea Inventory Routing Problem 
(SSIRP), which was introduced by Hemmati et  al. (2016). The problem is a 
multi-product, many-to-many Maritime Inventory Routing Problem (MIRP) in a 
continuous time framework. In this study, we propose a new method to find bet-
ter solutions for the same problem. We use the same realistic-sized instances and 
compare the quality of the solutions with the results of the Hybrid Cargo Gener-
ating and Routing algorithm (HCGR) proposed by Hemmati et al. (2016).

Our focus here is to review different solution approaches that have been applied 
to similar maritime inventory routing problems. According to the literature, dif-
ferent mathematical models were developed to formulate MIRPs, and various 
commercial solvers were applied to solve the problem. (Al-Khayyal and Hwang 
2007; Diz et al. 2017; Agra et al. 2017), and (Misra et al. 2020). Moreover, differ-
ent exact algorithms, including but not limited to branch-and-bound (Christiansen 
1999) and (Agra et al. 2013), branch-and-price (Hewitt et al. 2013), and branch-
price-and-cut (Engineer et al. 2012) have been studied in the past.

Among the relevant literature, Christiansen (1999) solved a single-product 
MIRP with time windows by applying a branch-and-bound algorithm and using 
the Dantzig-Wolf decomposition approach. They decomposed the overall prob-
lem into ship routing and inventory management sub-problems. Later, Agra et al. 
(2013) applied a branch-and-bound approach to solve a single-product MIRP. 
They proposed two discrete time formulations with valid inequalities. Moreover, 
Engineer et al. (2012) implemented a branch-price-and-cut algorithm to solve a 
practical-sized single-product MIRP in an oil company. They used different cuts, 
including capacity cuts and other special cuts targeting fractional solutions, to 
find the optimal solution. Furthermore, Hewitt et  al. (2013) proposed a branch-
and-price algorithm to solve a MIRP and mentioned that their results are near-to-
optimal. They reduced the required time for finding good solutions by developing 
local search schemes.

However, in addition to the aforementioned exact methods, various heuristics, 
metaheuristics, and matheuristics were developed to solve MIRPs. For example, 
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Christiansen et  al. (2011) studied a multi-product MIRP in the cement industry 
where they proposed a constructive heuristic embedded in a Genetic Algorithm 
to solve realistic-sized instances within a reasonable time. Moreover, Song and 
Furman (2013) presented a Large Neighborhood Search (LNS) through a sim-
ple algorithmic framework to solve MIRP. Later, Agra et  al. (2016) developed 
a local search heuristic for the stochastic MIRP. Recently, Friske and Buriol 
(2020) developed a solution approach including two metaheuristics: a multi-start 
algorithm and a large neighborhood search. They used a commercial solver to 
solve the reduced mixed integer problem with the solutions obtained by LNS. 
In addition, Friske et  al. (2022) studied the use of Relax-and-Fix and Fix-and-
Optimize metaheuristics over two discrete-time formulations. They evaluated the 
contribution of different components of the formulations to the performance of 
the algorithm.

As an extension of the LNS algorithm, Adaptive Large Neighborhood Search 
(ALNS) is known as an efficient heuristic to deal with vehicle routing problems. 
(Ropke and Pisinger 2006; Pisinger and Ropke 2007; Ribeiro and Laporte 2012; 
François et al. 2019; Yu et al. 2020; Chen et al. 2021). The effectiveness of ALNS 
in maritime routing problems has also been shown by different researchers. (Lianes 
et al. 2021; Brekkå et al. 2022).

Several published studies are relevant to our problem setting, which are discussed 
in more detail as follows. Christiansen (1999) formulated a MIRP in which a hetero-
geneous fleet of ships was planned to transport a single product through a network 
including producers and customers. Each port could be visited a given number of 
times during the planning horizon. They assumed a time window limitation for start-
ing service at each port and the possibility of serving multiple ships at the same 
time. The problem was solved using branch-and-bound and applying the Dantzig-
Wolf decomposition approach. In each instance, a maximum of 5 vessels, 16 ports, 
and 36 days as the planning horizon were considered. Later, Al-Khayyal and Hwang 
(2007) formulated the same problem of transporting several products on a many-to-
many distribution network. The model assumed dedicated compartments for each 
product in each ship without time window limitations. The small-size instances were 
solved using a commercial solver. They mentioned the impact of the number of port 
visits on the solution time and the need for particular algorithms to take advantage 
of the structure of the model. They considered up to 3 products, 4 vessels, 4 ports, 
and 10 days for the planning horizon.

A few years later, Siswanto et  al. (2011) proposed a set of heuristics with four 
groups of rules to solve the same problem with undedicated compartments. The 
vessels had different numbers of compartments that were not dedicated to a spe-
cific product. They provided high-quality solutions for the set of instances with at 
most 2 products, 3 vessels, 4 ports, and 15 days as the planning horizon. Following 
that, Agra et al. (2014) proposed a tightened model with valid inequalities for the 
problem described by Al-Khayyal and Hwang (2007). Given the continuous-time 
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formulation, they presented three heuristics: rolling horizon, feasibility pump, and 
local branching. They proposed heuristics to solve real instances with a maximum 
of 4 products, 2 vessels, 7 ports, and 15 days for the planning horizon. According 
to their results, the quality of solutions improved by combining all three heuristics.

Later, Hemmati et  al. (2016) proposed the HCGR algorithm to solve the multi-
product SSIRP in a continuous time framework. A heterogeneous fleet of vessels was 
assumed to distribute multiple products within a many-to-many distribution network. 
They assumed different compatibility between vessels, ports, and products. There was 
no limitation on the compartment and no possibility of serving multiple vessels at the 
same time in their problem setting. They converted the IRP into a routing and schedul-
ing problem to solve realistic-size instances. They considered up to 3 products, 10 ves-
sels, 16 ports, and 60 days for the planning horizon. First, they solved two mathemati-
cal models, including transportation and time window models, to find the number of 
products picked up and delivered from/to each port and the corresponding time sched-
uling. In this step, the pair of producer and customer and the time of pickup and deliv-
ery operations became fixed based on the direct transportation and operational costs. In 
the next step, based on the best scheduling plan, the routing problem was solved using 
an ALNS. The algorithm disregarded some parts of the solution space because of mak-
ing a fixed pair of producers and customers. The proposed algorithm worked well in 
terms of running time.

Following that, Agra et al. (2017) presented discrete-time and continuous-time for-
mulations and different valid inequalities for the problem introduced by Al-Khayyal 
and Hwang (2007). They defined different production/consumption rates in the dis-
crete-time formulation for various periods. The rates were fixed during the whole plan-
ning horizon in the continuous-time formulation. They compared different proposed 
formulations in terms of their size, running time, and integrality gap for both discrete 
and continuous time. Using a commercial solver, they reported the computational 
results for real test instances. They found the optimal solutions for the cases with a 
maximum of 4 products, 2 vessels, 7 ports, and a fifteen-day planning horizon.

As mentioned earlier, the SSIRP proposed by Hemmati et al. (2016) was to find 
the best route and distribution plan for multiple products through a network with 
several producers and customers. They studied two groups of instances with dif-
ferent compatibility between vessels, ports, and products. The size of the instances 
was considerably larger compared to the literature. However, their proposed solution 
method could not find high-quality solutions for the instances where all the vessels 
were fully compatible with the ports and the products. In this paper, we propose a 
new solution approach to find better solutions for the problem introduced by Hem-
mati et al. (2016). To this end, we develop an ALNS-based Matheuristic algorithm 
(ALNSM) in which an ALNS algorithm determines routing variables. Moreover, 
the non-routing variables are taken care of by a Mixed Integer Programming (MIP) 
solver, given the value of routing variables. We compare our results on the test 
instances in Hemmati et al. (2016) and analyze the quality of the results accordingly.
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The rest of the paper is organized as follows: problem characteristics are 
explained in Sect. 2, the proposed ALNSM algorithm is described in Sect. 3, and 
computational results are reported in Sect. 4, followed by the conclusion in Sect. 5.

2  Problem description

The problem introduced by Hemmati et al. (2016) addresses the distribution man-
agement of different products within a many-to-many distribution structure, includ-
ing several producers and customers. It is assumed that a heterogeneous fleet of ves-
sels is planned to transport products through the network. The vessels differ in terms 
of capacities, compatibility with ports and products, and transportation cost and 
time. There is a limitation on the number of visits for each port during the planning 
horizon. Furthermore, the stock level of each product should lie within the prede-
fined minimum and maximum levels. The initial stock level and production or con-
sumption rates for each product at each port are given. The quantity of the products 
to be handled at each port is limited, and the handling operation time at each port for 
each product is predefined. The problem is to minimize transportation and opera-
tional costs, including fixed and variable handling costs.

The following mathematical model is presented by Hemmati et al. (2016). How-
ever, for the sake of a better explanation of our solution approach, their mathemati-
cal formulation is given as follows: Ports are indexed by i and j, and vessels, prod-
ucts, and ports visit numbers are represented by v, k, and m/n, respectively. The mth 
visit of port i is denoted by (i, m), and direct travel from port visit (i, m) to port visit 
(j, n) is represented by (i, m, j, n). N, V, and K are defined as the set of ports, the set 
of vessels, and the set of products, respectively. Moreover, the set of ports that vessel 
v can visit and the set of products k that can be transported with vessel v are denoted 
by Nv and Kv . Also, the set of all possible port visits, the set of possible port visits 
for vessel v, and the set of all possible direct travels for vessel v are represented by 
SA , SA

v
 , and SX

v
 , respectively.

2.1  Mathematical formulation

Parameters and variables of the model are listed below:
Parameters 

Jik:  1/-1 if product k is produced/consumed at port i and 0 if it is not pro-
duced nor consumed at port i.

Cv:  Capacity of vessel v

Q
ik

 , Qik:  Minimum and maximum amount of product k that is allowed to be han-
dled at port i
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T
Q

ik
:  Required amount of time for handling one unit of product k at port i

TO
iv

:  Transportation time from vessel v’s origin to port i

Tijv:  Transportation time between port i and port j with vessel v

T:  Duration of the planning horizon

Mi:  Maximum allowed number of visits at port i

SO
ik

:  Opening stock for product k at port i at the beginning of the planning 
horizon

Rik:  Production or consumption rate for product k at port i

S
ik
, Sik:  Lower and upper bound for the stock level of product k at port i

ST
ik
, S

T

ik
:  Lower and upper bound for the stock level of product k at port i at the end 

of the planning horizon

C
Q

ik
:  Operational cost for each unit of product k at port i

CT
ijv

:  Transportation cost from port i to port j with vessel v

CTO
iv

:  Transportation cost from vessel v’s origin to port i

CO
ik

:  Fixed operational cost for product k at port i

Variables 

ximjnv:  1 if there is a direct movement from port visit (i, m) to port visit (j, n) with 
vessel v and 0 otherwise.

xO
imv

:  1 if there is a movement from the vessel v’s origin to port visit (i, m) and 0 
otherwise.

zimv:  1 if the operation of vessel v ends at port visit (i, m) and 0 otherwise.

zO
v
:  1 if vessel v is not used and 0 otherwise.
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wimv:  1 if vessel v meets mth visit of port i and 0 otherwise

yim:  1 if mth visit of port i is done and 0 otherwise.

oimvk:  1 if product k is loaded/unloaded at port visit (i, m) with vessel v and 0 
otherwise

limvk:  Onboard quantity of product k on vessel v after port visit (i, m)

qimvk:  Loaded/unloaded amount of product k at port visit (i, m) with vessel v

tim:  Start time of handling operation at port visit (i, m)

tE
im

:  End time of handling operation at port visit (i, m)

simk:  Level of inventory for product k at the start of handling operation at port 
visit (i, m)

sE
imk

:  Level of inventory of product k at the end of handling operation at port visit 
(i, m)

The mathematical model is defined as follows:
Objective function:

Subject to
Routing constraints:

(1)

Min Z =
∑

v∈V

∑

(i,m,j,n)∈SX
v

CT
ijv
ximjnv +

∑

v∈V

∑

(i,m)∈SA
v

CTO
iv
xO
imv

+
∑

v∈V

∑

(i,m)∈SA
v

∑

k∈Kv

(CO
ik
oimvk + C

Q

ik
qimvk)

(2)
∑

(i,m)∈SA
v

xO
imv

+ zO
v
= 1, v ∈ V

(3)xO
imv

+
∑

(j,n,i,m)∈SX
v

xjnimv − wimv = 0 v ∈ V , (i,m) ∈ SA
v

(4)wimv −
∑

(i,m,j,n)∈SX
v

ximjnv − zimv = 0 v ∈ V , (i,m) ∈ SA
v

(5)
∑

v∈V∶(i,m)∈SA
v

wimv = yim (i,m) ∈ SA
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Loading and unloading constraints

Time constraints

(6)yi(m−1) − yim ≥ 0 (i,m) ∈ SA ∶ m ≥ 2

(7)xO
imv

,wimv, zimv ∈ {0, 1} v ∈ V , (i,m) ∈ SA
v

(8)ximjnv ∈ {0, 1} v ∈ V , (i,m, j, n) ∈ SX
v

(9)yim ∈ {0, 1} (i,m) ∈ SA

(10)zO
v
∈ {0, 1} v ∈ V

(11)ximjnv(limvk + Jjkqjnvk − ljnvk) = 0 v ∈ V , (i,m, j, n) ∈ SX
v
, k ∈ Kv

(12)xO
imv

(Jikqimvk − limvk) = 0 v ∈ V , (i,m) ∈ SA
v
, k ∈ Kv

(13)
∑

k∈Kv

limvk ≤ Cv

∑

(j,n)∈SA
v

ximjnv v ∈ V , (i,m) ∈ SA
v

(14)Q
ik
oimvk ≤ qimvk ≤ Qikoimvk v ∈ V , (i,m) ∈ SA

v
, k ∈ Kv

(15)
∑

k∈Kv

oimvk ≥ wimv v ∈ V , (i,m) ∈ SA
v

(16)oimvk ≤ wimv v ∈ V , (i,m) ∈ SA
v
, k ∈ Kv

(17)limvk, qimvk ≥ 0 v ∈ V , (i,m) ∈ SA
v
, k ∈ Kv

(18)oimvk ∈ {0, 1} v ∈ V , (i,m) ∈ SA
v
, k ∈ Kv

(19)tE
im

≥ tim +
∑

v∈V

∑

k∈Kv

T
Q

ik
qimvk (i,m) ∈ SA



1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 9 of 23 44

Inventory constraints

The objective function (1) aims to minimize the total transportation and operational 
costs. Equations (2) determine whether vessel v is used or not. In (3), the previous 
location of each port visit is defined, which can be either the origin of vessel v or 
another port visit of that vessel (j, n). Equations (4) state that each vessel can either 
end its route at a port visit (i, m) or continue to another port visit (j, n). Constraints 
(5) ensure that each port visit (i, m) is carried out by one of the available vessels, and 
equations (6) ensure that the port visits are conducted successively. Constraints (7)-
(10) define binary variables while constraints (11) and (12) determine the onboard 
quantity of each product after each port visit. Equations (13) describe the capac-
ity constraint for the vessels. In (14), the number of products allowed to be loaded/
unloaded is limited. Equations (15) and (16) define the possibility of loading and 

(20)tim − tE
i(m−1)

≥ 0 (i,m) ∈ SA,m ≥ 2

(21)ximjnv(t
E
im
+ Tijv − tjn) ≤ 0 (i,m, j, n) ∈ SX

v
, v ∈ V

(22)
∑

v∈V

TO
iv
xO
imv

≤ tim (i,m) ∈ SA

(23)tim, t
E
im

≥ 0 (i,m) ∈ SA

(24)si1k =S
O
ik
+ JikRikti1 i ∈ N, k ∈ K

(25)

sE
imk

=simk −
∑

v∈V∶(i,m)∈SA
v
,k∈Kv

Jikqimvk + JikRik(t
E
im
− tim) (i,m) ∈ SA, k ∈ K

(26)simk =s
E
i(m−1)k

+ JikRik(tim − tE
i(m−1)

) (i,m) ∈ SA ∶ m ≥ 2, k ∈ K

(27)S
ik
≤ simk, s

E
imk

≤ Sik (i,m) ∈ SA, k ∈ K

(28)ST
ik
≤ sE

iMik
+ JikRik(T − tE

iMi

)) ≤ S
T

ik
i ∈ N, k ∈ K

(29)simk, s
E
imk

≥ 0 (i,m) ∈ SA, k ∈ K
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unloading operations with the required port visits. Constraints (17) and (18) intro-
duce loading variables.

Constraints (19) determine the end-time operation at port visit (i, m) based on 
the number of products loaded/unloaded. Equations (20) state that the operation 
at port i cannot start before ending its previous port visit. Constraints (21) and 
(22) relate the beginning operation time at each port visit with the transportation 
time from the last port visit and its prior ending operation time. Equations (23) 
define time variables.

Constraints (24) determine the stock level of each product at each port at its first 
visit. Equations (25) and (26) define the inventory level of each product at the begin-
ning and end of each port visit. Constraints (27) and (28) ensure that each product’s 
stock level lies within the predefined maximum and minimum levels at each port 
visit and at the end of the planning horizon. Constraints (29) define stock variables.

3  ALNS‑based matheuristic algorithm

We propose a matheuristic algorithm to solve a multi-product many-to-many 
inventory routing problem. In our algorithm, we take advantage of the power of 
metaheuristics to search the discrete domain and the capabilities of MIP solvers to 
deal with continuous variables.

In the proposed algorithm, called Adaptive Large Neighborhood Search-based 
Matheuristic (ALNSM), all variables in the mathematical model are divided into 
two main groups: routing and non-routing variables. The routing variables are 
taken care of by a metaheuristic algorithm known as Adaptive Large Neighborhood 
Search. Following that, the non-routing variables are determined by the MIP solver, 
given the values of the routing variables.

Considering the difficulty of generating feasible solutions for the problem, we 
define a penalized model where the inventory constraints are relaxed, and instead, 
penalty functions for the violated constraints are added to the objective function. 
As finding a feasible solution for the penalized model is still difficult, we initiate 
our algorithm with a sub-model that offers a more relaxed version of the penalized 
model. This sub-model, explained in Sect. 3.2, is called only once at the beginning 
of the algorithm to generate a feasible initial solution.

In each iteration of the ALNSM algorithm, a new solution is generated using a 
group of designed operators to determine routing variables. To this end, we design 
different operators for the penalized and the original problems. Once the search 
reaches the solution space of the original problem, i.e., the penalty variables become 
zero, it continues using operators designed solely for the original problem.

Next, the routing variables are passed to the MIP solver to calculate the objective 
function, determine the values of the non-routing and penalty variables, and check 
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the feasibility of the solution. The ALNSM algorithm proceeds with searching the 
solution space until it meets the stop-criterion. In order to escape from local optima, 
an escape-algorithm is applied which is described in Sect. 3.4. Ultimately, the best-
found solution is reported. The main steps of the algorithm are summarized in Algo-
rithm 1. The proposed penalized model and initial solution are described in Sects. 
3.1 and 3.2, respectively, followed by the ALNS algorithm in Sect. 3.3.

3.1  Penalized model

Taking the complexity of the problem into account for finding a feasible solution, a 
set of constraints in the mathematical model, i.e., inventory constraints, are relaxed, 
and the corresponding penalties for the violated constraints are added to the objec-
tive function. We define the stock penalty variables as follows: 

gimk:  The amount of stock shortage for product k at port visit (i, m) at the begin-
ning of handling operation compared to the lower bound for the stock level, 
S
ik

.
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gE
imk

:  The amount of stock shortage for product k at port visit (i, m) at the end “E” 
of handling operation compared to the lower bound for the stock level, S

ik
.

eimk:  The excess amount of stock for product k at port visit (i, m) at the beginning 
of handling operation compared to the upper bound for the stock level, Sik.

eE
imk

:  The excess amount of stock for product k at port visit (i, m) at the end “E” of 
handling operation compared to the upper bound for the stock level, Sik.

gT
ik

:  The amount of stock shortage for product k at port i at the end of planning 
horizon “T” compared to the lower bound for the stock level at the end of 
planning horizon, ST

ik
.

eT
ik

:  The excess amount of stock for product k at port i at the end of planning hori-
zon “T” compared to the upper bound for the stock level at the end of plan-
ning horizon, S

T

ik
.

With the new variables defined above, the inventory constraints (27, 28) are relaxed 
as follows:

Moreover, we define “P” as a sufficiently big number, and we update the objective 
function by adding the following penalty function:

The main challenge here is to minimize the penalty function and find a feasible solu-
tion for the original problem. To this end, we design a set of operators to focus on 
this purpose described in Sect. 3.3.2.

3.2  Initial solution

Although the stock constraints in the penalized model are relaxed, the routing, load-
ing/unloading, and time constraints should be satisfied to start with a feasible initial 
solution.

(30)S
ik
− gimk ≤ simk ≤ Sik + eimk (i,m) ∈ SA, k ∈ K

(31)S
ik
− gE

imk
≤ sE

imk
≤ Sik + eE

imk
(i,m) ∈ SA, k ∈ K

(32)ST
ik
− gT

ik
≤ sE

iMik
+ JikRik(T − tE

iMi

) ≤ S
T

ik
+ eT

ik
i ∈ N, k ∈ K

∑

v∈V

∑

(i,m)∈SA
v

∑

k∈Kv

P(gimk + eimk + gE
imk

+ eE
imk

) +
∑

i∈N

∑

k∈K

P(gT
ik
+ eT

ik
)
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To make it easier to find a feasible initial solution, we start the algorithm with a 
solution in which each port is visited only once, and a set of constraints are satisfied. 
To this end, the sub-model includes routing constraints (2)–(5) and (7)–(10), loading 
and unloading constraints (11)–(18), and the following constraints:

Constraints (33) and (34) ensure that each port is visited only once. Equations (35)-
(38) along with the other mentioned constraints determine one feasible route for 
each used vessel.

3.3  Adaptive large neighborhood search algorithm

The core of our proposed ALNS-based matheuristic algorithm is based on an adap-
tive large neighborhood search framework inspired by Ropke and Pisinger (2006). 
In this framework, as an efficient heuristic for vehicle routing problems, different 
operators are defined to create new solutions. In the selection procedure, initially, 
all the operators have the same chance to be selected to generate new solutions. 
After a number of iterations called a segment, the probability of choosing different 
operators is updated based on their performance in the previous iterations. There-
fore, the more efficient operators have a higher chance of being selected in the next 
iterations. The algorithm selects the operators using a roulette wheel selection 
principle.

Algorithm 2 presents the framework of the ALNS algorithm. The acceptance 
method that we used in the following framework (lines 7–12) is based on the well-
known simulated annealing algorithm’s acceptance criteria (Kirkpatrick et  al. 
1983).

(33)yi1 =1 i ∈ N

(34)yim =0 i ∈ N,m ≥ 2

(35)
∑

v∈V

∑

j∈N∶(i,1,j,1,v)∈SX
v

xi1j1v +
∑

v∈V

zi1v = 1 i ∈ N

(36)
∑

v∈V

∑

i∈N∶(i,1,j,1,v)∈SX
v

xi1j1v +
∑

v∈V

xO
j1v

= 1 j ∈ N

(37)kui1v + 1 − kuj1v ≤ |N|(1 − xi1j1v) v ∈ V , (i, 1, j, 1, v) ∈ SX
v

(38)kui1v ≥ 0 v ∈ V , i ∈ N ∶ (i, 1) ∈ SA
v
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3.3.1  Solution representation

The solution is represented with a two-dimensional vector defined as follows: in 
the first dimension, the sequence of port visits for different vessels is defined, and 
in the second dimension, the corresponding visit counter for each port is speci-
fied. For example, suppose that the number of ports is 6, the number of vessels is 
3, and the maximum number of visits for each port is 2. Therefore, one possible 
solution can be represented as follows:

1 3 0 1 2 6 0 5 3 4
2 1 0 1 1 1 0 1 2 1
The solution depicts that the first vessel makes the second port visit of port 1, 

and the first port visit of port 3. The second vessel makes the first port visits of 
ports 1, 2, and 6, and the third vessel makes the first port visit of port 5, the sec-
ond port visit of port 3, and the first port visit of port 4. In this solution represen-
tation, vessels and their routes are separated by (0, 0).

3.3.2  Operators

To find the best routing plan for the fleet of vessels, we design different operators 
to focus on the sequence of visits performed by vessels. The main challenge is 
moving from the penalized model’s feasible solution space to the original feasible 
region. To achieve this, in the first part of the algorithm, we design several opera-
tors to focus on decreasing the penalty function and moving toward the feasible 
region of the original problem. Once the algorithm reaches the original feasible 
solution space, the other operators are applied to find the best solution to the orig-
inal problem. The following three principles are used in all designed operators: 



1 3

An ALNS‑based matheuristic algorithm for a multi‑product… Page 15 of 23 44

1. Each used vessel should start its route by visiting one producer and end it with 
one customer.

2. If a given port is producing only one specific product and there is only one cus-
tomer for that product, both the producer and the corresponding customer must 
be visited by the same vessel.

3. Changing the position of ports in a solution may result in rearranging port visit 
counters accordingly.

Among the following operators, the first two are specifically designed to decrease 
the penalty function, while the rest of them are applied to search the solution 
space for both penalized and original problems.

• Stock-Balanced: The Stock-Balanced operator removes one port visit with a 
positive stock penalty value and inserts it in a possible place in a route. Posi-
tive gimk and gE

imk
 indicate that the corresponding vessel arrives late at the port 

visit (i, m). Moreover, positive gT
ik

 denotes that the last visit to port i is per-
formed early so that the stock level of product k at the end of the planning 
horizon is less than the minimum required level. Similarly, the positive values 
for eimk/eEimk and eT

ik
 indicate a high stock level of product k at the port visit 

(i, m), and port i at the end of the planning horizon, respectively. The Stock-
Balanced operator removes one of the port visits with a positive stock penalty 
value. Ports with higher penalty values have more chances to be removed. If 
gimk , gEimk , eimk , and eE

imk
 are positive, the removed port visit will not be inserted 

at any place in a route of its allocated vessel later than its present point. 
Instead, it can be done earlier or assigned to another compatible vessel. How-
ever, positive gT

ik
 and eT

ik
 represent that the last visit to port i should be done 

later so that the stock level of product k at port i remains in a range of prede-
fined bound limits at the end of the planning horizon. In this case, the last port 
visit to port i should not be done earlier than its present time. Therefore, either 
it can be done later or moved to another compatible vessel.

• Random-Worst-Remove-Random-Insert (RWRR): Compared to the Stock-
Balanced operator, the RWRR operator selects more than one port visit with 
positive penalty values and inserts them in random possible places in a route. 
The maximum number of port visits to remove from each route is limited such 
that each route includes at least one producer and one customer. Among port 
visits with positive values, the number of possible port visits to remove is 
determined randomly, defining at most four. Port visits with higher penalty 
values get more chances to be selected and removed. Next, selected port visits 
with their connected ports (based on the second principle described above) are 
removed and inserted in a random possible place in a solution, considering the 
compatibility of ports and vessels. Since more than one port visit is selected 
to be removed, the insertion rule in the Stock-Balanced operator is not fol-
lowed by this operator. Changing the position of several port visits may affect 
the status of other removed port visits.
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• Random-Remove-Random-Insert (RRR): Unlike the RWRR, which is applied 
to the penalized model, RRR is used for both penalized and original prob-
lems. Herein, at most, four port visits are selected randomly to remove. Ensur-
ing that at least one producer and one customer are assigned to each vessel, 
selected port visits are removed and inserted in a random possible place in a 
route.

• Random-Remove-First-Improvement-Insert (RRFI): Here, one port visit in a 
solution is selected randomly, ensuring that it does not belong to a vessel with 
only one producer and one customer. Next, the removed port visit is inserted in 
a place where the first improvement is found, i.e., a point in a solution in which 
the new solution is still feasible, and the objective value is less than its present 
value. To calculate the objective value and check the feasibility of the solution, 
the solver is called for each step of insertion. If there is no better possible place 
for insertion, the removed port visit remains in its current place in a solution.

• Swap: To diversify the search, we change the position of two port visits in a 
solution with a swap operator. It is necessary to make sure that selected ports are 
compatible with their newly assigned vessels, the logic of starting a route with 
one producer and ending it with one customer being satisfied, and each used ves-
sel contains at least one producer and one customer after the swap operation.

• Route-Add: To generate solutions with fewer idle vessels, one producer and one 
customer are selected and successively inserted in one possible place in a solu-
tion. It is required to make sure that a common compatible vessel is used to carry 
a product for a producer and its customer. Therefore, it is possible to use more 
vessels for the transportation plan, which may create more and better feasible 
solutions.

• Vessel-Change: Compared to the Route-Add operator, the Vessel-Change opera-
tor generates new solutions where one used vessel is discarded, and its allocated 
route is assigned to the other compatible vessels. This operator helps to escape 
from local optima when it is necessary to reduce the number of used vessels.

• Visit-Add: In case we are allowed to visit each port more than once, the Visit-
Add operator is applied. The minimum required number of visits for each port 
is calculated based on the initial inventory of each product at each port, the pro-
duction and consumption rates of each product at each port, the stock bounds at 
each port for each product, and the maximum amount of each product allowed to 
be handled at each port. It is necessary to ensure that each port is visited at least 
to its minimum required number of visits. In the Visit-Add operator, extra port 
visits are added to the current solution to check if more port visits could lead to a 
better solution at a lower cost.

• Visit-Remove: Similar to the Visit-Add operator, the minimum required number 
of visits for each port is calculated. In this operator, the extra port visits com-
pared to its minimum required number of visits (if any) are removed from the 
current solution to check the possibility of making a better new feasible solution.

• Vessel-Swap: In this operator, the routes of two vessels with common character-
istics but different transportation costs are changed. The Vessel-Swap operator 
helps to create better feasible solutions where compatible vessels are strictly lim-
ited, and the transportation costs for compatible vessels are considerably different.
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• Farthest-Remove-Nearest-Insert (FRN): The FRN operator is designed to gener-
ate solutions with shorter distances among port visits in one single route. First, 
one port visit with the longest distance from its subsequent port visit is selected 
randomly. Port visits are arranged based on their distance in descending order to 

Table 1  Computational results for ALNSM and HCGR 

HCGR ALNSM ALNSM-HCGR 

Inst. no. |N| |V| |P| Best Obj Avg. Obj Best Obj Avg. Secs Gap (%)

1 4 2 1 327,037 327,037 327,037 75 0.00
2 4 2 1 367,408 367,408 367,408 73 0.00
3 4 2 1 396,685 396,685 396,685 74 0.00
4 4 2 1 412,060 412,060 412,060 72 0.00
5 4 2 1 328,049 328,049 328,049 78 0.00
6 4 2 1 210,031 210,031 210,031 75 0.00
7 8 4 2 694,445 694,445 694,445 96 0.00
8 8 4 2 723,722 723,722 723,722 96 0.00
9 8 4 2 739,097 739,097 739,097 94 0.00
10 8 4 2 655,086 655,086 655,086 98 0.00
11 8 4 2 695,457 695,457 695,457 97 0.00
12 12 6 3 949,128 949,128 949,128 206 0.00
13 12 6 3 865,117 865,117 865,117 211 0.00
14 12 6 3 989,499 989,499 989,499 212 0.00
15 12 6 3 905,488 905,488 905,488 212 0.00
16 12 6 3 1,018,776 1,018,780 1,018,780 217 0.00
17 16 8 4 1,232,525 1,264,001 1,232,525 428 0.00
18 16 8 4 1,261,802 1,272,718 1,261,802 434 0.00
19 16 8 4 1,277,177 1,314,488 1,277,180 438 0.00
20 16 8 4 1,302,173 1,302,173 1,302,173 419 0.00
21 16 8 4 1,317,548 1,346,456 1,317,550 429 0.00
22 16 10 2 197,919 185,711 179,914 319 − 9.10
23 16 10 2 245,719 242,720 236,664 435 − 3.69
24 16 10 2 279,574 266,440 249,627 463 − 10.71
25 16 10 3 208,413 206,450 192,347 605 − 7.71
26 16 10 3 243,845 235,165 212,571 797 − 12.83
27 16 10 3 362,039 293,634 276,851 863 − 23.53
28 16 10 3 418,542 339,261 311,447 1053 − 25.59
29 20 10 5 1,831,239 1,870,533 1,831,239 724 0.00
30 20 10 5 1,713,221 1,732,888 1,713,221 745 0.00
31 20 10 5 1,629,210 1,695,540 1,629,210 754 0.00
32 20 10 5 1,644,585 1,701,483 1,644,585 709 0.00
33 20 10 5 1,714,233 1,792,897 1,714,233 711 0.00
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avoid choosing the same port visit in successive iterations. Port visits with longer 
distances have more chances to be selected to remove. Finally, the removed port 
visit is inserted into a solution next to its nearest possible place.

3.4  Escape‑algorithm

Although the ALNSM algorithm benefits from diversifying components, includ-
ing the simulated annealing and randomness inside the operators, we also exploit 
the escape-algorithm to escape from local optima. In Algorithm  1, if there is no 
improvement after a number of iterations (m), we activate the escape-algorithm. In 
this iterative algorithm, two operators are randomly selected to diversify the search. 
The new solution in each iteration is accepted regardless of its quality. The algo-
rithm stops once a better solution than the best-found solution is found. Otherwise, 
the algorithm continues until it meets the stopping criterion, which is reaching a 
certain number of iterations.

4  Computational result

A set of realistic-sized instances, as defined by Hemmati et  al. (2016), is used to 
evaluate the performance of the ALNSM algorithm. The instances are categorized 
into two groups. In the first group, instances are deliberately designed to allow for 
problem segmentation into smaller sub-problems, enabling the reporting of opti-
mal solutions. Conversely, the instances in the second group, indexed as 22–28 in 
Table 1, cannot be partitioned into smaller sub-problems, thus preventing the report-
ing of optimal solutions. The instances are characterized based on the number of 
producers and customers, the number of vessels, and the number of products for a 
fixed planning horizon. Furthermore, the test instances are divided into two groups 
based on their compatibility: with full compatibility and with limited compatibility 
between vessels, ports, and products. It is assumed that there is limited compatibil-
ity between vessels, ports, and products for all instances except for those indexed 
22–28. In the group of instances with limited compatibility, we can only visit each 
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port and carry each product with a few compatible vessels, while in the cases with 
full compatibility, all vessels, ports, and products are compatible.

Gurobi is used as the MIP solver in our proposed algorithm. In the ALNS algo-
rithm, the number of iterations in each segment is 50. Moreover, in the escape-algo-
rithm, m is defined as 100, and the stop-criterion is set at 20 iterations. The two 
selected operators in the escape-algorithm include swap and RRR. The ALNSM 
algorithm stops after 6000 iterations.

Table 1 illustrates the computational results achieved by the ALNSM and its 
comparison with the HCGR presented by Hemmati et  al. (2016). The first four 
columns of Table  1 specify the instance index, the number of ports, the num-
ber of vessels, and the number of products, respectively. The next column shows 
the best-found solutions by the HCGR. The following three columns illustrate the 

Fig. 1  With full compatibility between vessels, ports, and products

Fig. 2  With limited compatibility between vessels, ports, and products
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average objective values, the best-found solution, and the average running time 
(in seconds) achieved by running the ALNSM 10 times on each instance. The 
last column shows the gap between the ALNSM and the HCGR. Bold values are 
reported as the optimal solutions by Hemmati et al. (2016).

As the results show, our proposed algorithm finds the optimal solution for all 
instances with limited compatibility between vessels, ports, and products. How-
ever, for the remaining cases, our proposed algorithm outperforms the HCGR. 
Specifically, for instances with full compatibility, the gap between the results of 
the ALNSM and the HCGR is improved by up to 26%, respectively.

The ALNSM and the HCGR algorithms are tackling the problem differently. The 
HCGR algorithm is initiated by specifying the minimum required quantity to be 
loaded/unloaded from each port. This is calculated based on the given production/
consumption rates, initial stocks, and the minimum and maximum bounds of stock 
levels. Then, the best amount of products to be loaded/unloaded from each port and 
the relevant time windows are determined. Here, the HCGR algorithm specifies the 
fixed pair of pickup and delivery ports based on their direct transportation costs and 
operational costs. Next, the best route of fixed pickup and delivery ports is deter-
mined using adaptive large neighborhood search. The main drawback of the HCGR 
algorithm is disregarding some parts of the feasible solution space and considering 
only the immediate impact of decisions. For example, consider a network with six 
ports, where ports 1 and 5 act as producers for one product, and ports 2, 3, 4, and 
6 are customers. Assume that the minimum required quantities to be loaded from 
ports 1 and 5 are 660 and 220 units, respectively, and each customer demands a 
minimum of 220 units. The HCGR algorithm yields the following fixed pickup and 
delivery pairs:

(1, 2) with 440 units of products to be loaded from port 1 and unloaded at port 2
(1, 3) with 220 units of products to be loaded from port 1 and unloaded at port 3
(5, 4) with 220 units of products to be loaded from port 5 and unloaded at port 4
(5, 6) with 220 units of products to be loaded from port 5 and unloaded at port 6.
The above solution is obtained due to the consideration of direct transportation 

costs between the paired pickup and delivery ports. However, a feasible and more 
improved solution is possible by keeping products onboard the vessels and unload-
ing them later. Therefore, a better feasible solution is the route of 1-2-3-4 with the 
loading of 660 units at port 1, unloading 220 units at ports 2, 3, and 4, and the route 
of 5-6 with the loading of 220 units at port 5, and unloading 220 units at port 6. Our 
proposed algorithm can achieve this by determining different load/unload quantities 
with no limitation in searching the entire solution space. In the ALNSM, routes are 
defined using an adaptive large neighborhood search algorithm, and a MIP solver is 
utilized to obtain optimal values of non-routing variables, subject to the specified 
routing variables. This process continues until the stop-criterion is met, reporting 
the best-found feasible solution.

Two groups of instances are analyzed separately to highlight the effect of prob-
lem characteristics on the running time. Figures  1 and 2 depict the relationship 
between the running time and problem characteristics for the first and second groups 
of instances, respectively.
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In this context, the problem characteristic is defined as the multiplication of the 
number of ports, the number of vessels, and the number of products. As the results 
show, the required time to solve different instances is affected by the problem char-
acteristics. Moreover, according to Fig. 1, within the group of instances with identi-
cal problem characteristics, the number of active producers and customers affects 
the running time. Active producers and customers handle different product types in 
their stock. Increasing the number of inventories in a problem leads to a correspond-
ing increase in the running time.

5  Conclusion

In this study, we proposed an ALNS-based matheuristic algorithm to solve the 
multi-product many-to-many inventory routing problem introduced by Hemmati 
et al. (2016). The proposed ALNSM follows an iterative process where routing vari-
ables are determined using an adaptive large neighborhood search algorithm, while a 
MIP solver is employed to determine the optimal values of stock and time variables 
based on the obtained routing values. Comparing the performance of the ALNSM 
with the HCGR algorithm reveals that the ALNSM significantly outperforms the 
HCGR on different sets of realistic instances. Particularly, our algorithm excels in 
improving solution quality when there is full compatibility between vessels, ports, 
and products. In such instances, the feasible solution space is larger, necessitating 
more exploration to find better solutions. The ALNSM’s approach of emphasizing 
finding optimal values for non-routing variables for each specific vessel routs allows 
for a more comprehensive search compared to the HCGR, where some areas of the 
solution space are not even explored. Our results demonstrate notable improvements 
of up to 26% in solution quality for this group of instances. Furthermore, for the 
other group of instances with limited compatibility, the ALNSM achieves the opti-
mal solutions reported by Hemmati et al. (2016).
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