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Abstract
In this paper, we present a very fast Monte Carlo scheme for additive processes: the 
computational time is of the same order of magnitude of standard algorithms for 
simulating Brownian motions. We analyze in detail numerical error sources and pro-
pose a technique that reduces the two major sources of error. We also compare our 
results with a benchmark method: the jump simulation with Gaussian approxima-
tion. We show an application to additive normal tempered stable processes, a class 
of additive processes that calibrates “exactly” the implied volatility surface. Numeri-
cal results are relevant. This fast algorithm is also an accurate tool for pricing path-
dependent discretely-monitoring options with errors of one basis point or below.
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Ft(T)  Forward price with maturity T at time t
�s,t  Characteristic function of additive increment between s and t time to 

maturity
�t  Characteristic function of additive process at time t
�  Grid size in the CDF domain
h  Grid size in the Fourier domain
kt  ATS variance of jumps parameter
k̄  ATS constant part of the variance of jumps
K  Dimension of the CDF interpolation grid
�  Strike price
L  Down-and-In barrier strike
m+

s,t
  Probability density of positive jumps

m−
s,t

  Probability density of negative jumps
M  Integer number s.t. N is the number of grid points
n  Number of monitoring times in path dependent derivatives
nv  Number of points in which V is not differentiable
N  Number of grid points (N = 2M)

Nsim  Number of simulations
�t  Jump measure of additive process
P(x)  Model CDF of the increment between the times s and t
P̂(x)  Numerical approximation of the CDF of the increment between the times 

s and t
p−
t
  Upper bound of �t strip of regularity

p+
t
  −(p+

t
+ 1) is the lower bound of �t strip of regularity

�̄�  ATS diffusion parameter
St  Spot price at time t
U  Uniform r.v. in (0,1)
V(x)  Derivative payoff
(x0, xK)  Interval in which the CDF is interpolated

Abbreviations
a.s.  Almost surely
ATS  Additive normal tempered stable process
bp  Basis point
CDF  Cumulative distribution function
FFT  Fast Fourier transform
GA  Gaussian approximation technique
MAE  Mean absolute error
MAPE  Mean absolute percentage error (in MC prices)
MAX  Maximum error (in MC prices)
MC  Monte Carlo
ms  Milliseconds
nn  Nearest neighborhood algorithm
r.v.  Random variable
RMSE  MC prices root mean squared errors
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SD  Average standard deviation (in MC prices)
s.t  Such that
wrt  With respect to

1 Introduction

In this paper, we introduce a fast Monte Carlo simulation technique for additive 
processes. In option pricing, Monte Carlo methods are attractive because they do 
not require significant modifications when the payoff structure of the derivative 
changes. We describe an efficient and accurate algorithm for Monte Carlo simula-
tions of the process increments and we compute the prices of a class of discretely-
monitoring path-dependent options. A process {X(t)}t≥0 is said to be an additive 
process, if it presents independent (but not-stationary) increments and satisfies 
X(0) = 0 a.s.; stationarity is the main difference with Lévy processes (see e.g., 
Sato 1999).

Additive processes are becoming the new frontier in equity derivatives for their 
ability, on the one hand, to reproduce accurately market data, and on the other hand, 
to keep the process rather elementary (see e.g., Madan and Wang 2020; Carr and 
Torricelli 2021; Azzone and Baviera 2022a). In this paper, we show another advan-
tage of additive processes: simulation schemes are as fast as standard (fast) algo-
rithms for simulating the Black-Scholes model.

Up to our knowledge, the unique Monte Carlo (MC) scheme developed for a spe-
cific class of additive processes, Sato processes, has been introduced by Eberlein 
and Madan (2009). They generalize to this class of additive processes, a well-known 
jump simulation technique developed for Lévy processes, that can be found in many 
excellent textbooks (see e.g., Cont and Tankov 2003; Asmussen and Glynn 2007). 
It entails truncating small jumps below a certain threshold and then simulating the 
finite number of independent jumps; finally, the Asmussen and Rosiński (2001) 
Gaussian approximation (hereinafter GA) can be applied to substitute small jumps 
with a diffusive term: this has become a benchmark technique to compare numerical 
results.

In this paper, we propose a new MC technique for additive processes based on 
a numerical inversion of the cumulative distribution function (CDF). Monte Carlo 
simulation of additive processes is not straightforward because, in general, the CDF 
of process increments is not known explicitly. However, analytic expressions exist 
for the characteristic functions thanks to the celebrated Lévy-Khintchine formula 
(Sato 1999). Since the seminal paper of Bohman (1970), general methods have been 
developed for sampling from Fourier transforms and even some specific methods for 
some distributions (e.g. stable distributions) that do not require numerical inversion 
(Samorodnitsky and Taqqu 1994, Sect.1.7, p.41).

In the financial literature, these techniques have been developed specifically in 
the Lévy case, where it is possible to leverage on the stationary increments (see e.g., 
Glasserman and Liu 2010; Chen et  al. 2012; Ballotta and Kyriakou 2014). These 
techniques are reliable and efficient: they build upon the characteristic function 



 M. Azzone, R. Baviera 

1 3

31 Page 4 of 34

numerical inversion to obtain an estimation of the CDF. Specifically, we use the fast 
Fourier transform (FFT) method for the numerical inversion as proposed by Lee 
(2004) and then applied to MC option pricing in the studies of Chen et al. (2012) 
and Ballotta and Kyriakou (2014). Unfortunately, it is not trivial to extend these 
numerical methods to additive processes. Relative to this literature, our contribution 
lies in (i) extending to non-stationary processes these techniques and (ii) analyzing 
the three sources of error that arise in estimating derivative price expectations and 
showing how to improve the two largest ones.

Three are the main contributions of this paper. First, we propose a new Monte 
Carlo simulation technique for additive processes based on FFT. Second, we 
improve the two main sources of numerical error in existing techniques to accelerate 
convergence, using both a property of the Lewis formula in the complex plane and a 
spline method for CDF numerical inversion. Finally, we point out that the proposed 
technique is accurate and fast: (i) we compare it with traditional GA simulations 
showing that it is at least one and a half orders of magnitude faster whatever time 
horizon we consider and (ii) we observe that, when pricing some discretely-monitor-
ing path-dependent options, the computing time has the same order of magnitude as 
standard algorithms for Brownian motions.

The rest of the paper is organized as follows. In Sect. 2, we overview the method 
and recall both Lewis (2001) formula for CDF and the error sources in the numerical 
approximation: we discuss the optimal selection of the integration path. In Sect. 3, 
we describe the proposed simulation method and present the other main error source 
in MC option pricing: the interpolation method in numerical inversion. We also dis-
cuss how to generalize the GA method for additives in an efficient way. Section 4 
presents numerical results for a large class of pure-jump additive processes in the 
case of both European options (where analytic pricing methods are available), and 
some discretely-monitoring path-dependent options. Section 5 concludes. The main 
characteristics of the additive process that we use for the numerical analysis can be 
found in Appendix 1, a brief description of the algorithm in Appendix 2 and a com-
parison of simulated option prices with and without spline interpolation in Appen-
dix 3.

2  Overview of the MC method for additive process

Pure jump asset pricing models based on additive processes have enjoyed remark-
able popularity in recent years, at least for two main reasons. First, they allow a 
highly tractable closed-form approach with simple analytic expression for European 
options following Lewis (2001). This formula is computable as fast as the standard 
Black-Scholes one. Second, additive processes provide an adequate calibration to 
the implied volatility surface of equity derivatives, as well as they reproduce stylized 
facts as the time scaling of skew in volatility smile (see e.g., Azzone and Baviera 
2022b).

In this section, we describe a third reason in favor of these models: they allow a 
simple, accurate, and fast numerical scheme for path-dependent option valuation. 
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We extend to additive processes the preceding literature on Lévy processes’ simula-
tion techniques and we discover that, thanks to this Monte Carlo scheme, it is pos-
sible to price efficiently exotic derivatives as Asian contracts or barrier options with 
discretely-monitored barriers, because we can focus only on monitoring dates.

The simulation of a discrete sample path of an additive process reduces to simu-
lating from the distribution of the process increment between time s and time t > s . 
Lévy process simulation is based on time-homogeneity of the jump process: the 
characteristic function of an increment is the same as the characteristic function of 
the process itself at time t = 1 , re-scaled by the time interval (t − s) of interest.

In this paper, we extend the preceding analysis to Lévy processes by i) presenting 
an explicit method for additive processes from their characteristic function and ii) 
analyzing the explicit bound for the total estimation bias. In the Lévy case, thanks 
to process time-homogeneity, the properties of the process characteristic function 
are immediately extended to its increments. For example, the characteristic func-
tion (also of increments) is analytic in a horizontal strip and the purely imaginary 
points on the boundary of the strip of regularity are singular points (cf. Lukacs 
1972, th.3.1, p.12). This identification of process characteristic function and incre-
ments’ characteristic function is not anymore valid for additive processes. However, 
the present paper shows that the analyticity strip depends on time and that it is pos-
sible to build an efficient numerical scheme for additive processes. Let us point out 
that it is not trivial to extend to the non-stationary case of additive processes other 
advanced methods developed for simulating Lévy processes (see e.g., Kuznetsov 
et al. 2011; Ferreiro-Castilla and Van Schaik 2015; Boyarchenko and Levendorskiĭ 
2019; Kudryavtsev 2019) or pricing path-dependent derivatives (see e.g., Jackson 
et al. 2008; Phelan et al. 2019).

Our method is based on three key observations. First, computing a CDF P(x) cor-
responds to pricing a digital option: this can be done efficiently in the Fourier space. 
This step can be crucial, as already highlighted by Ballotta and Kyriakou (2014) in 
the Lévy case, the standard Fourier formula with Hilbert transform presents some 
numerical instabilities due to the presence of a pole in the origin. They propose a 
regularization that leads to an additional numerical error. We propose a different 
approach that is based on the Lewis (2001) formula which presents two significant 
advantages. On the one hand, this technique is exact (thus, no numerical error is 
associated with it), and, on the other hand, it allows selecting the optimal integration 
path that reduces the numerical error in the discretization of the CDF.

Second, the Lewis (2001) formula for the CDF can be viewed as an inverse Fou-
rier transform method that can be approximated with a fast Fourier transform (FFT) 
technique: Lewis-FFT computes multiple values of the CDF simultaneously in a 
very efficient way.

Finally, knowing the CDF approximation P̂ , we can sample from this distribution 
by inverting the CDF, i.e. by setting X = P̂−1(U) , with U a uniform r.v. in [0, 1]. 
Thus, simulating a r.v. via a numerical CDF (i.e. coupling the discrete Fourier trans-
form with a Monte Carlo simulation), requires a numerical inversion that is real-
ized via an interpolation method. Following Glasserman and Liu (2010), due to its 
simplicity, a linear interpolation of the CDF is chosen in the existing financial lit-
erature (see e.g., Chen et al. 2012; Feng and Lin 2013). We propose the spline as 
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interpolation rule because the computational cost is similar, while the bias associ-
ated with the two interpolation rules is significantly different: the upper bound of the 
bias can be estimated for a given grid step � , and, as we discuss in Sect. 3, it should 
be at least �2 smaller for the spline interpolation. In extensive numerical experiments 
we observe that, on the one hand, the error decreases even faster as a power of � than 
predicted by the upper bound, thanks to the additional properties of the interpolated 
functions, and on the other hand, it becomes negligible for the grids that are selected 
in practice.

Due to these three main ingredients (Lewis formula, FFT and Spline interpola-
tion) that play a crucial role in the proposed Monte Carlo simulation technique, we 
call the method Lewis-FFT-S. The algorithm is reported in Appendix 2.

The Lewis-FFT-S method extends the Eberlein and Madan (2009) technique to 
any additive process of financial interest, being significantly faster: we show that 
the proposed Monte Carlo is much faster than any jump-simulation method even 
considering the Asmussen and Rosiński (2001) Gaussian approximation. Analyzing 
in detail the numerical errors related to the methodology, we design an algorithm 
that increases both accuracy and computational efficiency. To the best of our knowl-
edge, the proposed scheme is the first application in financial engineering of the MC 
simulation based on Lewis formula and FFT, when the underlying is governed by an 
additive process.

In the next subsection, we also recall explicit and computable expressions for the 
error estimates.

2.1  Lewis CDF via FFT

The proposed MC method simulates from the characteristic function of the additive 
increments. Due to the Lévy-Khintchine formula, the characteristic function

of an additive process {ft}t≥0 admits a closed-form expression. Furthermore, as 
already mentioned, according to (Lukacs (1972), th.3.1, p.12), the process charac-
teristic function is analytic in a horizontal strip of the complex plane. Similarly to 
Lee (2004), we define p−

t
≥ 0 and −(p+

t
+ 1) ≤ 0 , s.t. the characteristic function �t is 

analytic when ℑ(u) ∈ (−(p+
t
+ 1), p−

t
).

We observe that for Lévy processes, the increment ft − fs has the same distribu-
tion as fΔ , where Δ = t − s : the same property does not hold for additive processes, 
due to the time inhomogeneity. For an additive process, the characteristic function of 
an increment ft − fs between times s and t > s is

due to the independent increment property of additive processes.
Moreover, for all additive processes, a relevant property holds on the analytic 

strip of the characteristic function �t.

�t(u) ∶= � ei u ft

�s,t(u) = � ei u (ft−fs) =
� ei u ft

� ei u fs
,
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Theorem 2.1 p+
t
 and p−

t
 are non increasing for all additive processes.

Proof From theorem  9.8 of (Sato 1999,  p.52), we have that for any additive pro-
cess the Lévy measure �t(x) is a positive and non decreasing function of t for any 
x. Thanks to the Lévy Khintchine representation the characteristic exponent of an 
additive process, given its triplet (�t, At, �t) , is (see e.g., Sato 1999, th.8.1 p.37)

where �t is the drift term and At the diffusion term. (Lukacs 1972, th.3.1, p.12) 
has proven that the characteristic function is analytical in an horizontal strip that 
includes the origin and is delimited by two points (if the strip is not the whole plane) 
on the imaginary axis. Hence, we evaluate the characteristic function in u = −i a , 
with a ∈ ℝ , and identify p+

t
 and p−

t
 as the extrema of the interval of a s.t. (1) is well 

defined, i.e. a ∈ (−p−
t
, p+

t
+ 1) . The integral ∫

ℝ
dx (eax − 1 − I|x|<1 a x)𝜈t(x) is the 

unique term that can diverge in (1).
First, we recall that �t(x) is bounded for x ≠ 0 and ∫

ℝ
dx min(|x|2, 1)𝜈t(x) < ∞ 

(cf. Sato 1999, th.8.1 p.37). Then, for any Q > 1 the quantities i) 
∫ Q

−Q
dx (eax − 1 − I|x|<1 a x)𝜈t(x) , ii) ∫ −Q

−∞
dx �t(x) and iii) ∫ ∞

Q
dx �t(x) are finite. 

Thus, we can recognize p+
t
 and p−

t
 from the set of a for which ∫ ∞

Q
dx eax�t(x) and 

∫ −Q

−∞
dx eax�t(x) converge.

Let us first prove the proposition for p+
t
 . Notice that p+

t
 is unique because 

∫ ∞

Q
dx eax�t(x) is non decreasing in a and that p+

t
≥ −1 because the origin is included 

in the analytical strip. Fix t > 0 , there are three possible cases 

1. If ∫ ∞

Q
dx eax�t(x) = ∞ for any a > 0 , then p+

t
= −1;

2. If ∫ ∞

Q
dx eax𝜈t(x) < ∞ for any a > 0 , then p+

t
= ∞;

3. If it exists �+
t
 s.t. ∫ ∞

Q
eax𝜈t(x)dx < ∞ for any 0 < a < 𝜆+

t
 and ∫ ∞

Q
dx eax�t(x) = ∞ 

for any a > 𝜆+
t
 , then p+

t
= �+

t
− 1.

For any s < t , we observe that ∫ ∞

Q
dx eax�s(x) ≤ ∫ ∞

Q
dx eax�t(x) , thanks to the 

monotonicity of �t(x) in t: let us consider the implications on the monotonicity of 
p+
t
 in the three cases.
In case 1, p+

t
≤ p+

s
 because p+

s
≥ −1 as emphasized above. In case 2, 

∫ ∞

Q
dx eax𝜈s(x) ≤ ∫ ∞

Q
dx eax𝜈t(x) < ∞ and then p+

s
= ∞ . In case 3, also 

∫ ∞

Q
dx eax𝜈s(x) < ∞ for any 0 < a < 𝜆+

t
 and then �+

t
≤ �+

s
 , i.e. p+

t
≤ p+

s
 . This proves 

the proposition for p+
t
.

By repeating the same considerations for the integral ∫ −Q

−∞
dx eax�t(x) we can show 

that also p−
t
 is non increasing in t   ◻

Thanks to the monotonicity of p+
t
 and p−

t
 , we can easily identify the strip of 

regularity for any increment ft − fs : its characteristic function �s,t is analytic when 
ℑ(u) ∈ (−(p+

t
+ 1), p−

t
) for any s ∈ [0, t).

(1)log𝜙t = iu𝛾t − u2At + ∫
ℝ

dx (eiux − 1 − I|x|<1i u x)𝜈t(x) ,
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Lewis (2001) obtains the CDF, shifting the integration path within the charac-
teristic function horizontal analyticity strip. The shift is −i a with a a real constant 
s.t. a ∈ (−p−

t
, p+

t
+ 1) . Lewis deduces this formula using the properties of contour 

integrals in the complex plane.
The CDF P(x) of an additive process increment is (see e.g., Lee 2004, th.5.1)

where

The case with no shift ( a = 0 ) is the Hilbert transform: it has been considered in 
several studies in the financial literature on MC pricing (see e.g., Chen et al. 2012; 
Ballotta and Kyriakou 2014). In the Hilbert transform case, the singularity in zero in 
the integration should be taken into account as a Cauchy principal value; as already 
emphasized by Ballotta and Kyriakou (2014), the method could be not robust 
enough for applications in the financial industry: they have suggested a regulariza-
tion technique that introduces an additional error source, while the Lewis method we 
consider here is exact (cf. also Fig. 2 for a comparison between the CDF error with 
Lewis formula and the Hilbert trasform method).

In the following, we focus on a > 0 : this is a default choice in the equity 
case because p+

t
≥ p−

t
 is consistent with the negative equity skew (see e.g., Lee 

2004, Section 7.4, p.26). We derive an approximation formula and its error bounds 
(in Sects. 2.2 and 3.1). Similar results hold for a < 0.

We approximate the Fourier transform with a discrete Fourier transform P̂(x)

where h is the step size in the Fourier domain and N is the number of points in the 
grid.

To implement the MC method, we need the CDF function for a large number 
of values in a regular grid with step size � . An algorithm that is computationally 
efficient is the fast Fourier transform (see Lee 2004, for a detailed analysis of the 
method in derivative pricing): it involves Toeplitz matrix–vector multiplication (see 
e.g., Press et al. 1992, ch.12) and relies on an additional requirement for N, whose 
simplest choice is N = 2M with M ∈ ℕ ; hereinafter, we consider an N within this 
set. The main advantage of the method is that the computational complexity of the 
FFT is O(N log2 N) when computing one time-increment. Moreover, with an FFT, it 
holds the relationship

(2)P(x) = Ra −
e−ax

�

∞

∫
0

du Re

[
e−iux�s,t(u − ia)

i u + a

]
,

Ra =

⎧
⎪⎨⎪⎩

1 0 < a < p+
t
+ 1

1

2
a = 0

0 − p−
t
< a < 0

.

(3)P̂(x) ∶= 1 −
e−ax

𝜋

N−1∑
l=0

h Re

[
e−i(l+1∕2)hx𝜙s,t((l + 1∕2)h − i a)

i (l + 1∕2)h + a

]
,
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i.e., for a given number N of grid points, the step size in the Fourier domain h fixes 
the step size �.1

2.2  CDF error sources

The numerical Fourier inversion is subject i) to a discretization error, because the 
integrand is evaluated only at the grid points, and ii) to a range error, because we 
approximate with a finite sum.

Assumption. ∀ t > s ≥ 0 there exists B > 0 , b > 0 and 𝜔 > 0 such that, for suf-
ficiently large |u|, the following bound for the absolute value of the characteristic 
function holds

Leveraging on the Assumption, we can estimate the explicit bound for the bias in 
terms of the step size h and the number of grid points N, as shown in the next propo-
sition. The result in the next proposition improves the known bounds for numerical 
errors when computing the CDF (2), via a discrete Fourier transform, and indicates 
an optimal integration path that minimizes this error bound.

Proposition 2.2 If the Assumption holds, then 

1. The numerical error |P(x) − P̂(x)| for the CDF is bounded by 

 where Γ(z, u) is the upper incomplete gamma function and 

2. The (optimal) bound holds selecting the shift a in (2) equal to (p+
t
+ 1)∕2.

Proof We bound the range and the discretization error separately.

� h =
2�

N
;

|𝜙s,t(u − i a)| < Be−b |u|𝜔 , ∀a ∈ (0, p+
t
+ 1) ♣

(4)
E
CDF
h,M

(x) =
Be−x (p

+
t
+1)∕2

��
Γ
[
0, b(N h)�

]

+
e−�(p

+
t
+1)∕h + e−�(p

+
t
+1)∕h−(p+

t
+1) x�s,t(−i (p

+
t
+ 1))

1 − e−2�(p
+
t +1)∕h

,

Γ
[
0, b(N h)�

]
= O

(
(N h)−�e−b (N h)�

)
;

1 To avoid this constraint, one can consider the fractional fast Fourier transform (Chourdakis 2005) 
instead of the standard FFT. We have verified that the additional computational cost of the former 
method is not justified in the CDF simulation described in this paper.
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First, we bound the CDF range error, i.e. the error we introduce considering the 
integral (2) in the range (0, Nh). Fix h, it exists N ∈ ℕ s.t.

The first inequality is due to |iu + a| > u for a > 0 and to the fact that 
|�s,t(u − ia)| ≤ Be−b u� for sufficiently large values of u, thanks to the Assumption. 
Notice that in the range error the order of the exponential decay does not depend on 
a. Below, we prove that the choice of a determines the exponential decay of the dis-
cretization error: thus, its choice is crucial to get the optimal error bound.

Second, we bound the CDF discretization error.
By theorem 6.2 of Lee (2004), we have that for any a, p s.t. 0 < a < p < p+

t
+ 1

where �s,t(−i p) is well defined because 0 < p < p+
t
+ 1.

We select a and p to minimize the discretization error. Notice that, for a suffi-
ciently small h, the leading terms in the bound on the discretization error are e−2�a∕h 
and e−2�(p−a)∕h−p x . Hence, for a given p the best choice of a is

This last quantity, for a sufficiently small h, is close to p/2 for any finite x. Thus, to 
minimize the discretization error, we select a = p∕2 . Then, p can be chosen to its 
maximum value p+

t
+ 1 and the upper bound becomes

With the selection of a = (p+
t
+ 1)∕2 and combining the bounds on the range and 

discretization errors, the thesis follows   ◻

�������
P(x) −

⎛
⎜⎜⎝
1 −

e−ax

𝜋

N h

∫
0

du Re

�
e−iux

𝜙s,t(u − ia)

iu + a

�⎞
⎟⎟⎠

�������

<
B e−ax

𝜋

∞

∫
N h

du
e−b u𝜔

u
=

B e−ax

𝜔𝜋
Γ
�
0, b(N h)𝜔

�
= O

�
(N h)−𝜔e−b (N h)𝜔

�
.

|||||||
e−ax

�

∞

�
0

du e−iux
�s,t(u − ia)

iu + a
−

e−ax

�

N−1∑
l=0

h Re

[
e−i(l+1∕2)hx�s,t((l + 1∕2)h − i a)

i (l + 1∕2)h + a

]|||||||
≤ e−2�a∕h

1 − e−4�a∕h
+

e−2�(p−a)∕h−p x

1 − e−4�(p−a)∕h
�s,t(−ip) ,

â =
p

2

(
1 −

x

𝜋
h
)
.

e−�(p
+
t
+1)∕h + e−�(p

+
t
+1)∕h−(p+

t
+1) x�s,t(−i(p

+
t
+ 1))

1 − e−2�(p
+
t +1)∕h

.
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The first term of ECDF
h,M

(x) accounts for the range error in the numerical inversion, 
while the second one accounts for the discretization error.2 It is possible to prove, 
following the same steps of proposition 2.2, that in the a < 0 case the leading term 
in ECDF

M
(x) is exp(−�p−

t
∕h).3 From this result, we can observe that it is convenient 

to use a > 0 if p+
t
+ 1 ≥ p−

t
 and a < 0 otherwise. In the financial literature, error 

estimations have been proposed when approximating a CDF via a discrete Fourier 
Transform (see e.g., Lee 2004; Chen et al. 2012; Ballotta and Kyriakou 2014). The 
bound in proposition 2.2 extends these results to the Lewis-FFT case, showing how 
to select the optimal integration path in the Lewis formula (2) to minimize the expo-
nential decay of the error. Our approach eliminates the source of error originating 
from the pole in the origin (see e.g., Ballotta and Kyriakou 2014, eq.(4), p.1097), 
improving the CDF error. Moreover, selecting the optimal path, CDF error is even 
better than the one proposed by (Chen et al. (2012),th.2.1, p.14:6) deduced via the 
sinc expansion technique. The leading term in the discretization error in theorem 2.1 
of Chen et al. (2012) goes as max(e−� p−

t
∕h, e−� (p+

t
+1)∕h) , while, in our case, the error 

goes as the minimum of the two terms. Hence, we improve the discretization error 
of Chen et al. (2012) in all cases.4

We desire to get a small approximation error increasing N and decreasing 
h. However, let us observe that, if one takes the limit h → 0 and N → ∞ keep-
ing Nh fixed, then the range error bound does not decrease. Thus, our inter-
est is to select h = h(N) so that the discretization and the range errors have about 
the same order. Expression (4) allows us to determine the size h and the number 
N such that the two sources of CDF error are comparable: we can impose that 
exp(−�(p+

t
+ 1)∕h) = exp(−b (N h)�) , i.e. we select

We define

the error in this case. ECDF
M

(x) in (5) is the relevant estimation of the CDF 
error that we use in practice: with this selection of h, the total CDF error is 

h(N) =

(
� (p+

t
+ 1)

b

1

N�

)1∕(� + 1)

.

(5)E
CDF
M

(x) ∶= E
CDF

h(2M),M
(x)

2 It is possible also to obtain an error bound even when the Assumption does not hold. Equation (4) 
can be extended to the case where the characteristic function has an asymptotical polynomial decay 
|�s,t(u − i a)| ≤ B |u|−b , with b > 0 : in this case, the range error decays only as a power of u due to the 
polynomial decay of the characteristic function (see e.g., Ballotta and Kyriakou 2014, eq.(14), p.1099). 
However, in practice, when pricing exotic derivatives, the exponential decay of the characteristic function 
is a good reason for model selection.
3 In this case, the optimal shift is a = −p−

t
∕2.

4 Baschetti et al. (2022) point out that the symmetry in the real and imaginary components of the Hilbert 
transform allows to compute the CDF only N/2 times when the FFT grid size is N. This observation 
becomes relevant for situations where computing the characteristic function is computationally demand-
ing. However, in the case of additive processes, characteristic functions are analytic and very fast to com-
pute.
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O(N−�∕(1+�)) exp(−bN�∕(1+�)) and decays almost exponentially as we increase N; 
moreover, the step size � = 2�∕(hN) = O(N−1∕(1+�)).

3  The simulation method

Knowing the CDF approximation P̂ in (3), we can sample from this distribution by 
inverting P̂ , i.e. by setting X = P̂−1(U) , with U an uniform r.v. in [0, 1].

From the Fourier inversion, we obtain an estimate of P̂ on a grid of N points 
with step � . As pointed out by (Glasserman and Liu 2010, Sect. 3, pp.1614-1615), 
an adequate inversion requires to impose that P̂ is i) increasing and ii) inside the 
interval [0,1]. Thus, it is convenient to work with a subset of the grid of N points. 
We truncate the CDF between x0 < 0 and xK > 0 , such that the two conditions hold, 
and we consider the equally spaced grid (with step � ) x0 < x1 < ... < xK with K < N.

Simulating a r.v. via a numerical CDF (i.e. coupling the Fourier transform with a 
MC simulation), requires a numerical inversion that is realized with an interpolation 
method. As already discussed in Sect. 2, differently from the existing financial liter-
ature (see e.g., Glasserman and Liu 2010; Chen et al. 2012; Feng and Lin 2013), the 
proposed method is based on spline interpolation. In the next subsection, we discuss 
the key idea behind this choice of the interpolation method.

3.1  Simulation error sources: truncation and interpolation

Besides numerical inversion error of the CDF, two are the error sources in the MC, 
when pricing a contingent claim: truncation and interpolation of the CDF.

Let us consider the expected value �V(ft − fs) , with V(x) a derivative contract 
with a pay-off differentiable everywhere except in nV points. It can be proven, simi-
larly to (Chen et al. 2012, th.4.3, p.14:11), that the pricing error5 using the Lewis-
FFT method with linear interpolation is

(6)E ∶=

∞

∫
−∞

dx V(x)
[
p(x) − p̂(x)

]

(7)

<

(
|V(x0)| + |V(xK)| + (2K + nV ) sup

x∈(x0,xK )

|V(x)| + 2 sup
x∈(x0,xK )

|V �(x)|
)
E
CDF
M

(x0)

5 The upper bound on the bias E can be trivially extended to a payoff with a finite number n of monitor-
ing times. The most relevant case, for n = 1 , will be discussed in detail in Sect. 4.1.
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where p(x) is the probability density function of ft − fs , p̂ its estimation and

Three are the components of the bias error (6) when pricing a derivative: an error 
related to the numerical approximation of the CDF (7), a truncation error (8) and an 
interpolation error (9). Let us consider each error source separately.

First, the error related to the numerical approximation of the CDF in (7) is pro-
portional to ECDF

M
(x0) : we have discussed in the previous section how to select the 

integration path and h in order to minimize it.
Second, we can always choose x0 and xK s.t. the truncation error is negligible for 

all practical purposes. We select these points s.t. P̂(x0) < 10−10, 1 − P̂(xK) > 10−10 
(as suggested by Baschetti et al. 2022, eq.5). We notice that the range (x0, xK) scales 
with 

√
t − s . In Fig. 1, as an example, we plot the one-day and one-year normalized 

probability density functions of the additive process used in the numerical experi-
ments of Sect.  4. As expected, the one-day density is significantly more concen-
trated around zero than the one-year density when considering a constant x (on the 
right). Conversely, the ranges of the two densities look similar when considering the 
rescaled x∕

√
t − s on the abscissa.6 Moreover, to further improve the method accu-

racy (in particular when M is small), we introduce an exponential extrapolation for 
the CDF tail below x0 and above xK.

Finally, the bias associated with the linear interpolation, when computing the 
option value, is quadratic in the grid spacing � ; this turns out to be the most sig-
nificant source of error in most cases, as shown in the next section. It is well known 
that linear interpolation error goes as �2 (see e.g., Quarteroni et al. 2007, eq.(8.26), 
p.339). For this reason, in this paper, we propose a spline interpolation method. In 
this latter case, it is known that the bias goes, at least, as �4 as shown in Hall and 
Meyer (1976).

(8)

+
�−
s,t

2�

��V(xK)�exKp−t
�p−t �

+ ∫ xK
∞dx V(x)ex p

−
t

�

+
�+
s,t

2�

⎛
⎜⎜⎝
V(x0)e

x0(p
+
t
+1)

p+t + 1
+

x0

∫
−∞

dx V(x)ex (p
+
t
+1)

⎞
⎟⎟⎠

(9)+
�2

2�
(xK − x0) sup

x∈(x0,xK )

|V �(x)|∫
ℝ

|du u�s,t(u)| ,

�−
s,t
∶= lim

a→p−t ∫
ℝ

du |�s,t(u − ia)| & �+
s,t
∶= lim

a→p+t +1∫
ℝ

du |�s,t(u − ia)| .

6 In extensive numerical experiments, we have observed that when choosing x
0
= −xK and xK the nearest 

point to 5
√
t − s the above condition on P̂(x

0
) and P̂(xk) is always satisfied.
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As already emphasized by (Glasserman and Liu 2010, Sect. 3, p.1615), to sample 
X from P̂(x) with a linear interpolation, after having generated U, a r.v. uniformly 
distributed in [0, 1], one should 

1. select the index j for which P̂(xj−1) ≤ U < P̂(xj);
2. for each j determine the linear interpolation coefficients cL

0,j
 and cL

1,j

3. compute 

Let us discuss the computational cost of each step when sampling Nsim observations. 
The first step relies on a nearest neighborhood algorithm with an average compu-
tational cost proportional to Nsim × log2 Nsim (see e.g., Cormen et al. 2001, p.11).7 
The second step cost is proportional to 6K. Finally, the last step is proportional to 
Nsim.

Whereas step 1 is shared by both interpolation methods, steps 2 and 3 differ 
between spline and linear interpolations. In step 2, the additional computational cost 

cL
0,j

∶=
xj P̂(xj) − xj−1 P̂(xj−1)

P̂(xj) − P̂(xj−1)
and cL

1,j
∶=

𝛾

P̂(xj) − P̂(xj−1)
;

X = cL
0,j
+ cL

1,j
U .
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Fig. 1  One-day and one-year normalized probability density functions of the additive process that we 
use in the numerical experiments of Sect. 4 with s = 0 . On the right, we see that, as expected, the one-
day density is significantly more concentrated around zero than the one-year density. Conversely, on the 
left, we see that the ranges of the two densities wrt to the rescaled x∕

√
t − s are similar. Notice that both 

probability density functions have been divided by their respective maximum for visualization purposes

7 The computational cost estimation is for the merge sort algorithm. Since merge sort is a recursive algo-
rithm it could be necessary, for memory efficiency, to recur to an insertion sort algorithm which compu-
tational cost is roughly proportional to N2

sim
 (see e.g., Cormen et al. 2001, p.11).



1 3

A fast Monte Carlo scheme for additive processes and option… Page 15 of 34 31

of considering spline interpolation boils down to the cost of solving a K + 1-dimen-
sional linear system with a tridiagonal matrix to determine the spline coefficients 
{cS

q,j
}3
q=0

 , (cf. Quarteroni et al. 2007, ch.8), i.e. the cost is 8K − 7 (Quarteroni et al. 
2007, ch.7, p.391). As for step 3, the cost of computing the spline interpolation of U 
is still proportional to Nsim . It is clear that for a sufficiently large number of simula-
tions Nsim and for Nsim >> K , for both methods, the most relevant contribution in 
the computational cost is the one due to step 1, the nearest neighborhood algorithm.

We perform numerical experiments to compare linear and spline interpolation. 
We observe that, if the number of simulations is significantly above the grid dimen-
sion K, the spline interpolation is as expensive as the linear interpolation. Moreo-
ver, in table 1, we compare the computational cost of linear interpolation and spline 
interpolation. We consider a grid of size K = 104 and Nsim = 105 . In this case, the 
spline cost is just 10% more than the linear one. The case considered in Table  1 
is a particularly unfavorable situation, when comparing spline interpolation with 
linear interpolation: a large grid size K = 104 and a small number of simulations 
Nsim = 105 . In this case steps 1, 2 and 3 computational times are comparable while, 
in practice, most of the computational costs are absorbed by the nearest neighbor-
hood algorithm. For reasonable values of M (e.g. for M ≤ 15 ), the dimension of the 
grid K is always well below 104 . Thus, for all values of K and Nsim ( Nsim ≥ 106 ) 
used in practice the incremental cost between Lewis-FFT (with linear interpolation) 
and Lewis-FFT-S (with spline interpolation) is negligible.

3.2  A simulation benchmark: the Gaussian approximation

In this subsection, we show how to generalize the GA method for additives in an 
efficient way, when a monotonicity property holds for the Lévy measure and then 
the ziggurat method (Marsaglia and Tsang 2000) can be applied.

A generic additive process may have an infinite number of jumps, most of them 
being small, over an arbitrary finite time horizon, making the simulation of such a 
process often nontrivial. Defining �t the additive process jump measure (see e.g., 
Sato 1999, def.8.2, p.38), the jump measure of the additive process increment ft − fs 
is �t − �s.

Eberlein and Madan (2009), in their study on simulation of additive processes, 
consider only a class of additive processes (Sato processes): their approach consists 
in discarding the small jumps that in absolute value are below a given threshold � . It 

Table 1  Computational cost in milliseconds [ms] for the nearest neighborhood (nn), the linear inter-
polation including nn, and the spline interpolation including nn. We consider a grid size K = 10

4 and 
Nsim = 10

5 simulations. Even considering a low number of simulations and a grid size K one order of 
magnitude above what is used in practice (in the Lewis-FFT-S case K is of order 103 ) the spline simula-
tion cost is just 10% more than the linear simulation one

Algorithm Nearest neighborhood Linear interpolation Spline interpolation

time [ms] 1.08 1.13 1.27
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is well known, in the Lévy case, that such an approach is accurate only if there are 
not too many small jumps (see e.g., Cont and Tankov 2003). Alternatively, the small 
jump component of an additive process may be approximated by a Brownian motion 
(Asmussen and Rosiński 2001).

Once the jump measure of the increment (between time s and time t > s ) is trun-
cated, we have i) to draw a Poisson number of positive and negative jumps and ii) 
to simulate separately positive jumps from the probability density m+

s,t
 and negative 

jumps from the probability density m−
s,t

 , where

To sample positive and negative jumps is extremely costly because often it is not 
possible to compute explicitly the integrals of m+

s,t
 and m−

s,t
.

When m+
s,t
(x) is non increasing in x and m−

s,t
(x) is non decreasing in x ∀s, t s.t. 

0 ≤ s < t , a faster methodology -for sampling from a known distribution without 
inverting numerically its integral- is available: the ziggurat method of Marsaglia 
and Tsang (2000). This method is applicable to probability density functions that 
are bounded and monotonic. We can apply the algorithm separately to negative and 
positive jumps. Notice that the density functions are bounded because we have trun-
cated the small jumps. The ziggurat method covers a probability density with Nret 
rectangles with equal area and a base strip. The base strip contains the tail of the 
probability density, it is built s.t. it has the same area of the rectangles. The method 
is composed of two building blocks: first, the rectangles with equal area are identi-
fied; second, the random variable is simulated either from a rectangle or from the 
base strip. Only in the latter case, an inversion of the integral is needed. Nret is a key 
parameter because it controls the trade-off, in terms of computational time, between 
the inversion and the construction of the rectangles.

With respect to Eberlein and Madan (2009), to reduce the bias of the method, we 
also consider the Gaussian approximation of Asmussen and Rosiński (2001).

4  Numerical results

Financial applications provide an important motivation for this study. We show that 
the proposed Monte Carlo technique for additive processes can price path-dependent 
options fast and accurately. The computational time is comparable to the case with 
simple Brownian motion dynamics.

We are interested in simulating a discrete sample path of the process over a finite 
time horizon: we are only concerned about the values of an additive process on such 
a discrete-time grid. This arises from situations where only discrete values of the 
process are concerned as in Chen et al. (2012); Ballotta and Kyriakou (2014) (e.g., 
they consider discrete barrier, lookback, and Asian options).

The case of an additive normal tempered stable (ATS) is discussed in detail. 
ATS processes present several advantages: they calibrate accurately equity 

(10)

m+
s,t
(x) ∶= �x>𝜖

𝜈t(x) − 𝜈s(x)

∫ ∞

𝜖
dz(𝜈t(z) − 𝜈s(z))

& m−
s,t
(x) ∶= �x<−𝜖

𝜈t(x) − 𝜈s(x)

∫ −𝜖

−∞
dz(𝜈t(z) − 𝜈s(z))

.
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implied volatility surfaces and, in particular, they capture volatility skews (see 
e.g., Azzone and Baviera 2022a). We model the forward price at time t with 
maturity T as an exponential additive Ft(T) = F0(T)e

ft , where ft is the ATS pro-
cess and F0(T) is the forward price at time 0. The ATS characteristic function and 
Lévy measure are reported in Appendix 1 (cf. Eqs. (15-16)).

The Lewis-FFT-S method can be used for the ATS because, in the next proposi-
tion, we prove that the Assumption in Sect. 2.2 holds for this class of additive pro-
cesses. Moreover, we prove that the Assumption holds for the two other classes of 
additive processes considered in the literature for option pricing: additive logistic 
processes (Carr and Torricelli 2021) and Sato processes (Carr et al. 2007).

Proposition 4.1 The Assumption (cf. Sect. 2.2) holds for 

1. ATS processes with � ∈ (0, 1);
2. additive logistic processes ( Carr and Torricelli 2021);
3. Sato processes with characteristic function �t(u) , for t = 1 , that decays exponen-

tially (Carr et al. 2007).

Proof We prove the thesis for the ATS.
We observe that, by the condition (a) on g1(t) and g2(t) of theorem A.1, we have

is non increasing wrt t. Hence, thanks to the condition (a) on g3(t) of theorem A.1

We have to show that, given s and t, there exists B > 0 , b > 0 , and 𝜔 > 0 such that, 
for sufficiently large |u|, the Assumption holds for the characteristic function of ATS.

We choose log(B) >
1−𝛼

𝛼

(
t

kt
−

s

ks

)
 , 0 < b <

(1−𝛼)1−𝛼

2𝛼𝛼

(
t

k1−𝛼t

𝜎2𝛼
t

−
s

k1−𝛼
s

𝜎2𝛼
s

)
 and 

0 < 𝜔 < 2𝛼.
Notice that it is possible to fix b > 0 , because (11) holds. Moreover, the imag-

inary part of the exponent in (15) does not contribute to B, because the absolute 
value of the exponential of an imaginary quantity is unitary. For sufficiently large |u|, 
and for s < t |�t,s(u − i a)| goes to zero faster than Be−b |u|� because log�t,s(u − i a) is 
asymptotic to

that is negative due to (11) for � ∈ (0, 1).
We prove the thesis for additive logistic processes.
Carr and Torricelli (2021) consider two additive logistic processes: the CPDA 

and the SLA. The characteristic function of an additive logistic process at time t is

g(t) ∶= −(g1(t) + g2(t)) =

√(
1∕2 + �t

)2
+ 2(1 − �)∕(kt �

2
t )

(11)
t

k1−�t

�2�
t

is increasing in t .

−
(1 − �)1−�

2��

(
t

k1−�t

�2�
t

−
s

k1−�
s

�2�
s

)
u2 � ,
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where B is the beta function and 𝜎t > 0 is non decreasing. For the CPDA model 
ct = 1 − �t and 𝜎t < 1 and for the SLA model ct = 1 (cf. Carr and Torricelli 2021, 
prop.4.2).

For sufficiently large |u|,

where the asymptotic approximation follows from Stirling’s formula for the 
Gamma function Γ(�) when � → ∞ and arg 𝜁 < 𝜋 (see e.g. Abramowitz and Stegun 
1948, p.257), and zt(u) is a deterministic function. From this approximation, if t > s , 
log

[
�t(u − i a)∕�s(u − i a)

]
 is asymptotic to

where the first inequality holds because �t|u|
1+�ta

 and �t|u|
ct−�ta

 are non decreasing in t and 
positive and the second holds for sufficiently large |u|. Moreover, b̂ > 0 because �t is 
non decreasing in t. Hence, we can set B > 0 and 0 < b < b̂ s.t.

for sufficiently large |u|.
Finally, we prove the thesis for Sato processes.
If �1(u) decays exponentially as e−b̂|u|w , with b̂ > 0 , then �t(u) = �1(ut

� ) 
decays as e−b̂|u|w t𝜁 w . It is possible to select B > 0 and 0 < b < b̂(t𝜁 w − s𝜁 w) s.t. 
|𝜙t,s(u − i a)| = |𝜙t(u − i a)∕𝜙s(u − i a)| < Be−b|u|w for t > s   ◻

A brief comment on Sato processes can be useful. Thanks to the self-similarity of 
the processes, if a condition on the characteristic function holds for t = 1 then it is 
satisfied also for all other time intervals.8

In particular, for the numerical example, we focus on the power-law scaling ATS 
(see e.g., Azzone and Baviera 2022a, p.503) that is characterized by the parameters

�t(u) =
B(1 + i �tu, ct − i �tu)

B(1, ct)
,

B(1 + i �tu, ct − i �tu) =
Γ(1 + i �tu)Γ(ct − i �tu)

Γ(1 + ct)

≈

√
2�

Γ(1 + ct)
(1 + i �tu)

1+i �tu−1∕2(ct − i �tu)
ct−i �tu−1∕2

=

√
2�ei zt(u)−1−ct

Γ(1 + ct)
e
log

�√
1+�2

t u
2

�
(1−1∕2)−arctan(�tu∕1)�tu+log

�√
(ct)

2+�2
t u

2

�
(ct−1∕2)−arctan(�tu∕ct)�tu

,

− |u|
[

�t

(

arctan
(

�t|u|
1 + �ta

)

+ arctan
(

�t|u|
ct − �ta

))

− �s

(

arctan
(

�s|u|
1 + �sa

)

+ arctan
(

�s|u|
cs − �sa

))]

≤ −|u|
[

(

�t − �s
)

(

arctan
(

�t|u|
1 + �ta

)

+ arctan
(

�t|u|
ct − �ta

))]

≤ −|u|
(

�t − �s
) 3�
4

= : − |u|b̂ ,

(12)|�t(u)∕�s(u)| ≤ Be−|u|b ,

8 Eberlein and Madan (2009) consider also some characteristic functions with polynomial decay; in this 
case, the considerations in note 3 hold.
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where �̄�, k̄, �̄� ∈ ℝ
+ , and �, � ∈ ℝ . This model description has been shown to be 

particularly accurate for equity derivatives. Let us emphasize that, in the ATS case, 
p+
t
≥ p−

t
 , as shown in the next proposition, and then it is convenient to use a > 0 (cf. 

Sect. 2).

Proposition 4.2 For ATS processes with � ∈ (0, 1) we have that p+
t
≥ p−

t
.

Proof To identify p+
t
 and p−

t
 , we apply the Lukacs theorem (cf. Lukacs 1972, th.3.1, 

p.12). At time t, the ATS characteristic function in Eq. (15) is analytic on the imagi-
nary axis u = −i a , a ∈ ℝ iff

By solving the second order inequality, we get

with g1(t) and g2(t) defined in (17). Hence, p+
t
∶= −g2(t) − 1 and p−

t
∶= −g1(t).

It holds that p+
t
≥ p−

t
 because

  ◻

For all numerical experiments, we use the parameters reported in Table 2: these 
parameters are consistent with the ones observed in market data. Moreover, for sim-
plicity, we consider the case with unitary underlying initial value and without inter-
est rates nor dividends: these deterministic quantities can be easily added to simu-
lated prices without any computational effort.9

To evaluate the Lewis-FFT-S performances, we consider plain vanilla and exotic 
derivatives at different moneyness x = log(S0∕�) , where � is the strike price, and at 
different times to maturity. In the rest of the section, to ensure that we verify the per-
formance of the method on options in a relevant range of moneyness x, we consider 
x in the range 

√
t(−0.2, 0.2) , where t is the option time to maturity; deep out-of-the-

money and in-the-money options are less informative on the method performances, 
as the option value is close to the intrinsic value.

In Sect. 4.1, we show how the Lewis-FFT-S (with spline interpolation) method 
significantly outperforms the method with linear interpolation for European options, 
where - thanks to the closed formula - we can easily verify the accuracy of the 
numerical method. In Sect. 4.2, we provide evidence that Lewis-FFT-S is extremely 
fast and it is less computationally expensive, by at least 1.5 orders of magnitude than 

kt = k̄ t𝛽 , 𝜂t = �̄� t𝛿 , 𝜎t = �̄�,

1 +
kt

1 − 𝛼

(
a
(
1

2
+ 𝜂t

)
𝜎2
t
−

a2𝜎2
t

2

)
> 0 .

g1(t) < a < −g2(t) ,

p+
t
− p−

t
= 2�t ≥ 0

9 We remind that, in this setting, the forward price F
0
(T) is equal to the spot price S

0
= 1.
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the GA method. In Sect. 4.3, we price discretely-monitored Asian options, lookback 
options, and Down-and-In options with a time to maturity of five years. We also 
show that the Lewis-FFT-S is particularly efficient. The computational time needed 
to price path-dependent options with this method is just three times the computa-
tional time needed when using standard MC techniques for a geometric Brownian 
motion.

4.1  European options: accuracy

In the following, the Lewis-FFT-S performances are assessed for the ATS process. 
First, we compare the accuracy of Lewis method and Hilbert transform to compute 
the CDF. Second, we show that, when using linear interpolation the leading term 
in (6) goes as �2 . Then, we improve the bound by considering spline interpolation 
(Lewis-FFT-S) and we discuss the excellent performances of the method for the 
ATS case. Thanks to FFT the Lewis-FFT-S is particularly fast: computational time 
has the same order of magnitude of standard algorithms that simulate Brownian 
motions. Thanks to the spline interpolation, Lewis-FFT-S is also particularly accu-
rate, for 107 simulations and for any M > 9 , the maximum observed error is 0.03 
basis points (bp).

In Fig. 2, we compare the accuracy of the Lewis formula and the Hilbert trans-
form method for inverting the CDF in terms of the mean absolute error (MAE) vary-
ing M s.t. N = 2M . We consider the ATS case for the one month maturity and we 
invert the CDF on an interval x0, xK . To investigate the potential instability of the 
Hilbert transform due to the pole in the origin, we consider both a small shift of 
0.01 ⋅ h in the FFT grid in the Fourier space and the case of a perfectly symmetric 
grid. The Lewis method is more accurate than the Hilbert transform method both in 
the case of a shift in the Fourier space (on the left) and in the symmetric case (on the 
right). The plotted results clearly indicate that the Hilbert method is highly unstable 
and even a slight shift in the Fourier space can result in a significant increase of the 
error, up to six orders of magnitude.

We do not desire a method that performs well either only OTM or only ITM. 
We want a MC that prices accurately options with any moneyness: for this reason, 
we consider 30 European call options with moneyness in a regular grid with range √
t(−0.2, 0.2).
Monte Carlo error is often decomposed into bias and variance (see e.g., Glasser-

man 2004, Sect.1.1.3, pp.9-18). In this paper, we aim to reduce the bias error, but it 
is relevant to take into account also the variance. For a large number of simulations, 

Table 2  ATS parameters used in all numerical simulations. These selected parameters are consistent with 
the ones observed in market data

� � k �̄� �̄�

1 −1/2 1 1 0.2
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confidence intervals estimated via MC are directly linked to this quantity (see e.g., 
Glasserman 2004, ch.1, eq.(1.10), p.10). In our case, since we are considering the 
average error over 30 call options, the bias is assessed in terms of the maximum 
error in absolute value (MAX) wrt the exact price, while the variance is estimated 
with the average over the 30 MC standard deviations (SD). When the maximum 
error is below SD we can infer that the error on bias has been dealt with correctly. In 
all considered cases, SD is of the order of 0.1 bp and significantly above the Lewis-
FFT-S error if M > 8 . We observe such a low SD because we are using 107 trials.

In Fig.  3, we plot the three terms that appear in the bias bound of Eq. (6) for 
an ATS with � = 2∕3 over a one-month time interval. The bound is for Lewis-FFT 
simulation with linear interpolation varying the number of grid points in the FFT 
via M s.t. N = 2M . We plot the bounds on the error due to i) the truncation error 
(blue circles) in (8), ii) the linear interpolation of the CDF (red squares) in (9), and 
iii) the error related to the CDF approximation (green triangles) in (7). As we have 
already anticipated in Sect. 3.1, two are the most relevant error sources: the error 
originating from the CDF approximation and the one due to the interpolation. The 
error originating from the truncation is always negligible: at least ten orders of mag-
nitude lower than interpolation error for every M. For the CDF approximation error, 
as explained in Sect. 2, we have suggested an optimal selection of the shift a in the 
Lewis-FFT approach. The term that we need to tackle is the interpolation one: for 
M > 8 the unique relevant bound is the one on the interpolation error that scales 
as �2 for all derivative contracts with pay-off differentiable everywhere except in a 
finite number of points (e.g. for M = 10 the interpolation error is 10 orders of mag-
nitude above all other errors). Similar results hold ∀� ∈ (0, 1).

6 7 8 9 10 11 12 13
M

-14

-12

-10

-8

-6

-4

-2

0
0.01·h shift

Hilbert
Lewis

6 7 8 9 10 11 12 13
M

-14

-12

-10

-8

-6

-4

-2

0
symmetric

Hilbert
Lewis

Fig. 2  One-month mean absolute error (MAE) in the CDF (in log-scale) for the Lewis formula and Hil-
bert transform with a small shift of 0.01 ⋅ h in the Fourier space (on the left) and in the case of a perfectly 
symmetric grid (on the right). The Lewis method is more accurate than the Hilbert method. The plotted 
results indicate that the Hilbert method is highly unstable and even a small shift in the Fourier space can 
result in a significant increase the error, up to six orders of magnitude
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Fig. 3  One-month European call option error bounds for an ATS ( � = 2∕3 ) simulated with Lewis-FFT 
and linear interpolation. We plot the bounds on the three error sources: (i) the truncation error (8) (blue 
circles), (ii) the error (9) due to the linear interpolation of the CDF (red squares) and (iii) the error (7) 
related to numerical CDF (green triangles). Let us emphasize that the truncation error is always negligi-
ble wrt the linear interpolation error (at least 10 orders of magnitude smaller for every M). Notice that, 
for M > 8 the unique significant term is the linear interpolation error (e.g. for M = 10 , it is at least 10 
orders of magnitude above all other errors) (colour figure online)
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Fig. 4  Maximum error for different values of M using Lewis-FFT-S (blue circles) and Lewis-FFT with 
linear interpolation (red squares). The maximum is computed over 30 call options (one-week maturity), 
with moneyness in the range 

√
t(−0.2,0.2). We consider 107 simulations and � = 2∕3 . Notice that, for 

M > 6 the spline interpolation error is significantly below the linear interpolation error. Spline interpola-
tion’s error improves significantly faster than the linear interpolation’s error: for M in the interval (6,10) 
the maximum error scales, on average, as �6 for the spline interpolation and as �2 for the linear interpola-
tion. Moreover, the maximum error becomes significantly lower than the average MC standard devia-
tion (dashed green line) (colour figure online)
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As discussed in Sect. 3.1, to reduce the CDF interpolation error, we consider the 
spline interpolation for the numerical inversion instead of the linear interpolation. 
With spline interpolation E should scale as �4 instead of �2 . In Figs. 4 and 5, we plot 
the Lewis-FFT maximum error (MAX) for two different times to maturity: the error 
is for 30 European call options for different values of M using spline (blue circles) 
and linear (red squares) interpolation. We also plot SD, the average MC standard 
deviation, with a dashed green line. Notice that, for M > 6 the spline interpolation 
error is significantly below the linear interpolation error. Spline interpolation’s error 
improves significantly faster than the linear interpolation’s error: for M in the inter-
val (6,10), the maximum error scales as �2 for the linear interpolation and as �6 for 
the spline interpolation. The observed behavior in the latter case -with an error that 
decreases much faster than �4 - is probably due to the monotonicity and boundness of 
the interpolated function (the CDF).

We also desire to estimate the method’s error with different metrics: besides 
MAX we consider the root mean squared error (RMSE) and the mean absolute per-
centage error (MAPE). In Table 3, we report the performances of the Lewis-FFT-S 
algorithm for 107 simulations. We consider two values of � for the ATS: � = 1∕3 and 
� = 2∕3 . The metrics are computed for 30 call options (one-month maturity) and 
moneyness in the range 

√
t(−0.2,0.2). We observe that for M > 9 the error is 0.03 bp 

or below whatever metric we consider.

6 7 8 9 10 11 12 13
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Fig. 5  As Fig. 4 but for one-month maturity. Notice that, for M > 6 the spline interpolation error is sig-
nificantly below the linear interpolation error. Also in this case, spline interpolation’s error improves 
significantly faster than the linear interpolation’s error: for M in the interval (6,10) the maximum error 
scales, on average, as �6 for the spline interpolation and as �2 for the linear interpolation
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The main result of this subsection is that, in the Lewis-FFT-S framework, a 
Monte Carlo with 107 simulations and M > 9 provides a very accurate pricing tool 
whatever time-horizon and � ∈ (0, 1) we consider.

4.2  European options: computational time

In this subsection, we emphasize that the proposed MC method is fast. We compare 
the Lewis-FFT-S computational cost both with the simplest possible dynamics for 
the underlying (geometric Brownian motion) and with the methodology that is often 
considered a benchmark for simulating jump processes (i.e. the simulation of jumps 
via the GA method). We prove that it is possible to speed up the simulation bench-
mark with the ziggurat method because the monotonicity conditions on m+

s,t
 and m−

s,t
 

in (10) hold for the ATS and also for the additive logistic process.10

Proposition 4.3 Consider m+
s,t

 and m−
s,t

 in (10). m+
s,t

 is non increasing in x when x > 0 
and m−

s,t
 is non decreasing in x when x < 0 for 

1. ATS processes with � ∈ (0, 1);
2. additive logistic processes.

Proof We have to demonstrate that m+
s,t
(x) is non increasing in x and m−

s,t
(x) is non 

decreasing. We prove the thesis by showing that the derivative of �t(x) wrt x is nega-
tive and non increasing in t for any x > 0 and is positive and non decreasing in t for 
any x < 0 . Notice that if this holds then

Table 3  Lewis-FFT-S algorithm (with spline) performances wrt different metrics using 107 trials for 
� = 1∕3 and � = 2∕3 : MAX [bp], RMSE [bp], MAPE [%], SD [bp]. The process is simulated for M that 
goes from 6 to 13. The metrics are computed for 30 call options (one-month maturity), with moneyness 
in the range 

√
t(−0.2,0.2). We observe that for all M > 9 the maximum error is 0.03 bp or below

M 6 7 8 9 10 11 12 13

� = 1∕3 MAX [bp.] 1639.69 0.17 0.02 0.02 0.03 0.03 0.03 0.03
RMSE [bp.] 1593.78 0.10 0.01 0.01 0.02 0.02 0.02 0.02
MAPE [%] 1164.74 0.07 0.01 0.01 0.01 0.01 0.01 0.01
SD [bp.] 0.97 0.12 0.12 0.12 0.12 0.12 0.12 0.12

� = 2∕3 MAX [bp.] 1774.61 0.74 0.21 0.04 0.01 0.02 0.03 0.03
RMSE [bp.] 1728.65 0.49 0.17 0.03 0.01 0.01 0.02 0.02
MAPE [%] 1224.96 0.34 0.12 0.02 0.01 0.01 0.01 0.01
SD [bp.] 1.05 0.11 0.11 0.11 0.11 0.11 0.11 0.11

10 Eberlein and Madan 2009, p.30 point out that -for Sato processes- the Lévy measure is decreasing in x 
for positive x and increasing in x for negative x.
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is non-increasing in x and

is non decreasing in x.
We prove the thesis for the ATS.
Deriving �t(x) in (16), we get

where C2 is a positive constant. The derivative of �t(x) is non increasing in t for any 
x > 0 because 

1. g3(t) is positive and non decreasing in t by condition 1 of theorem A.1;

2. ex g2(t)
(
� +

s

s∕2+x g(t)

)
 is the combination of two non decreasing function in t for 

any x > 0;
3. g2(t) is negative and non decreasing and (1 − c x)ec x is non decreasing for c < 0.

This proves the thesis for x > 0.
The same holds true for x < 0 . Mutatis mutandis, by substituting g2(t) with g1(t) , 

the proof is the same.
We prove the thesis for the logistic processes.
This entails showing that the derivative of the Lévy measure for the CPDA model 

and the SLA model is non increasing for x > 0 and non decreasing for x < 0 . Let us 
first consider the CPDA. Its Lévy measure can be rewritten as

where at ∶= 1∕�t , y ∶= x∕�t and g(y) ∶= e−y∕(y(1 − e−y)).
We consider separately the positive and negative x. The derivative of �t(x) for 

x > 0 is

where the equality is because �y
�x

= at . The mixed derivative is

m+
s,t
(x) = �x>𝜖

𝜈t(x) − 𝜈s(x)

∫ ∞

𝜖
dz(𝜈t(z) − 𝜈s(z))

m−
s,t
(x) = �x<−𝜖

𝜈t(x) − 𝜈s(x)

∫ −𝜖

−∞
dz(𝜈t(z) − 𝜈s(z))

��t(x)

�x
= −C2

∞

∫
0

dz
e−zz�g3(t) e

xg2(t)

x2+�

(
� +

z

z∕2 + x g(t)
+ 1 − x g2(t)

)
,

𝜈t(x) =

⎧⎪⎨⎪⎩

e−x∕𝜎t

x(1 − e−x∕𝜎t )
=∶ at g(y) x > 0

−
ex∕𝜎t−x

x(1 − ex∕𝜎t )
=∶ e−y∕atatg(−y) x < 0

��t(x)

�x
= a2

t
g�(y) ,
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where the first equality holds because �y
�t

=
a�
t
y

at
.

The derivative of �t(x) for x < 0 is

We can compute the mixed derivative

where the equality holds because �y
�t

=
a�
t
y

at
 and the inequalities because a′

t
< 0 and

Equations (13) and (14) prove the thesis for the CPDA process.
The Lévy measure for the SLA process can be rewritten as

Equation (13) proves the thesis for the SLA process if x > 0 . Mutatis mutandis for 
the SLA process when x < 0 , we get that

Hence, m+
s,t

 is non increasing in x > 0 and m−
s,t

 is non decreasing in x < 0 for both the 
CPDA and the SLA processes   ◻

In Table 4, we report the performances of the Lewis-FFT-S algorithm for 107 sim-
ulations. We consider the ATS with � = 1∕3 and � = 2∕3 . For every choice of M, 

(13)
𝜕2𝜈t(x)

𝜕x𝜕t
= ata

�
t

[
2g�(y) + y g��(y)

]
= 2ata

�
t

ey(1 + ey)

(ey − 1)3
< 0 ,

��t(x)

�x
= −e−y∕atat g(−y) − e−y∕ata2

t
g�(−y) .

(14)

𝜕2𝜈t(x)

𝜕x𝜕t
= −e−y∕ata�

t

(
g(−y) − yg�(−y) + at

(
2g�(−y) − yg��(−y)

))

≥ −e−y∕ata�
t

(
g(−y) − yg�(−y) + 2g�(−y) − yg��(−y)

)
= a�

t
e−y∕at

2e2y

(ey − 1)3
> 0

2g�(y) − yg��(y) = −
ey(1 + ey)

(ey − 1)3
> 0 .

𝜈t(x) =

⎧⎪⎨⎪⎩

e−x∕𝜎t

x(1 − e−x∕𝜎t )
=∶ at g(y) x > 0

−
ex∕𝜎t

x(1 − ex∕𝜎t )
=∶ atg(−y) x < 0 ,

𝜕2vt(x)

𝜕x𝜕t
= −2ata

�
t

ey(1 + ey)

(ey − 1)3
> 0 .

Table 4  Lewis-FFT-S computational time for simulating the ATS (with � = 1∕3 and � = 2∕3 ) over a 
one-month time-interval using 107 trials

M 6 7 8 9 10 11 12 13

� = 1∕3 Time [s] 0.23 0.23 0.27 0.28 0.28 0.28 0.28 0.29
� = 2∕3 Time [s] 0.24 0.25 0.27 0.28 0.28 0.28 0.28 0.28
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we register the computational time [s]. The metrics are computed for 30 call options 
(one-month maturity), with moneyness in the range 

√
t(−0.2,0.2). We observe that 

for M > 9 the maximum error is 0.03 bp or below.
We point out, that Lewis-FFT-S is considerably efficient. In our machine,11 sam-

pling 107 trials of a geometric Brownian motion takes approximately 0.08  s: just 
one-third of the Lewis-FFT-S computational cost (reported in Table 4).

In Fig. 6, we plot the computational time wrt the time to maturity in log-log scale 
for 107 simulations with Gaussian Approximation (blue squares) and Lewis-FFT-S 
(red circles). Time to maturity goes from one day to two years. To compare the two 
methods fairly, we need to select M for the Lewis-FFT-S and � for the Gaussian 
approximation s.t. the two methods provide similar errors. As above, for both meth-
ods, we price the 30 call options, with moneyness in the range 

√
t(−0.2,0.2). For 

each time to maturity, we select M and � s.t. the maximum error (MAX) is between 
1 bp and 0.1 bp, and s.t. the Lewis-FFT-S error is always below the GA error. Lewis-
FFT-S computational time appears constant in the time to maturity, while GA com-
putational time improves as the time to maturity reduces. However, GA is always 
more computationally expensive than Lewis-FFT-S by at least 1.75 orders of mag-
nitude. This difference appears remarkable considering that we have verified that 
Lewis-FFT-S error is always below GA error.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-1

-0.5

0

0.5

1

1.5

2
Gaussian approximation
Lewis-FFT-S

Fig. 6  Computational time wrt the time to maturity in log-log scale for 107 simulations with GA (blue 
squares) and Lewis-FFT-S (red circles) techniques. We price 30 European call options, with moneyness 
in the range 

√
t(−0.2, 0.2) with GA and Lewis-FFT-S. We consider times to maturity, between one day 

and two years. For each t, we select M and the threshold � s.t. the maximum error is between 1 bp and 0.1 
bp and we require that the Lewis-FFT-S error is always below the GA error. The GA computational time 
improves as the time to maturity reduces because a lower number of jumps is involved, while the Lewis-
FFT-S simulation depends weakly on the time horizon considered. We observe that GA is always more 
computationally expensive than Lewis-FFT-S by at least 1.75 orders of magnitude (colour figure online)

11 We use MATLAB 2021a on an AMD Ryzen 7 5800 H, with 3.2 GHz.
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4.3  Discretely monitoring options

In this subsection, to give an idea of an application of the proposed MC, we price 
discretely-monitored (quarterly) Asian options, lookback options, and Down-and-In 
options with a time to maturity of five years.

Let us call L the Down-and-In barrier. The payoffs -Asian calls, lookback puts, 
and Down-and-In puts- we consider are respectively

where n = 20 , 0 = t0 < t1 < ... < ti < ... < tn are the monitoring times, fti is the pro-
cess at time ti for the logarithm of the underlying price, the strike price � = S0e

−x 
and x is the moneyness. For example, the process {ft}t≥0 can be modeled as a Brown-
ian motion, in the simplest Black-Scholes case, or as an ATS process, as discussed 
in this paper. In both cases, we can simulate the paths of {ft}t≥0 by simulating the 
increments fti − fti−1 . Every increment of the ATS is simulated separately with the 
Lewis-FFT-S method. We point out that the procedure can be parallelized by lever-
aging on the independence of increments.

In Table  5, we report prices and MC standard deviation of Asian calls, look-
back puts, and Down-and-In puts (with a barrier strike L = 0.6 ). We simulate 107 
paths of the ATS with � = 2∕3 and price the discretely-monitored (quarterly) path-
dependent options with time to maturity of five years. We consider options with dif-
ferent moneyness in the range ( −0.5,0.5), where 0.5 ≈ 0.2

√
t for t = 5 years. We use 

M = 13 for the numerical CDF inversion. The method is very precise: the numerical 
error SD is of the order of one bp (or below) in all considered cases.

As pointed out in the previous subsection, the Lewis-FFT-S is also extremely effi-
cient when pricing discretely-monitored path-dependent exotics: with an ATS, it takes 
only three times the computational cost that it takes with a standard Brownian motion.

(
S0

n∑
i=0

e
fti − �

)+

,

(
� −min

i
S0e

fti

)+

and

(
� − S0e

fti

)+

�
mini S0e

fti ≥L ,

Table 5  Prices and MC standard deviation of Asian calls, lookback puts, and Down-and-In puts for 
moneyness in the range ( −0.5,0.5). We simulate 107 paths of the ATS with � = 2∕3 and price the dis-
cretely-monitored (quarterly) path-dependent options with time to maturity of five years. SD errors are 
always lower than 1 bp

Moneyness Asian [%] SD [%] Lookback [%] SD [%] Down-and-In [%] SD [%]

−0.5 39.79 0.01 3.31 0.00 2.31 0.00
−0.25 24.36 0.01 8.72 0.00 3.98 0.00
0 10.04 0.01 23.07 0.01 6.15 0.01
0.25 2.57 0.00 50.53 0.01 8.95 0.01
0.5 0.55 0.00 86.98 0.01 12.55 0.01
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5  Conclusions

In this paper, we propose the Lewis-FFT-S method: a new Monte Carlo scheme for 
additive processes that leverages on the numerical efficiency of the FFT applied to 
the Lewis formula for a CDF and on the spline interpolation properties when invert-
ing the CDF. We present an application to the additive normal tempered stable pro-
cess, which has excellent calibration features on the equity volatility surface (see 
e.g., Azzone and Baviera 2022a). This simulation scheme is accurate and fast.

We discuss in detail the accuracy of the method. In Fig. 3, we analyze the three-
components of the bias error in (6). In this study, we have shown how to accelerate 
convergence by improving the two main sources of numerical error (6): the CDF 
error (7) and the interpolation error (9). First, we sharpen the CDF error consider-
ing the Lewis formula (2) for CDF and selecting the optimal shift that minimizes 
the error bound in the FFT. Second, we substitute the linear interpolation with the 
spline interpolation. In this way, the leading term in the interpolation error improves 
from �2 to at least �4 . This improvement is particularly evident in Figs. 4, 5, where, 
for M > 6 , the Lewis-FFT-S maximum error is significantly below the Lewis-FFT 
version of the method with linear interpolation and it appears to decrease as �6 in 
numerical experiments.

The Lewis-FFT-S is also fast. As discussed in Sect. 3.1, for a sufficiently large 
number of simulations, the increment in computational time due to spline interpola-
tion is negligible. Moreover, as shown in Fig. 6, the proposed method is at least one 
and a half orders of magnitude faster than the traditional GA simulations, whatever 
time horizon we consider. Finally, we observe that, when pricing some discretely-
monitoring path-dependent options, the computational time is of the same order of 
magnitude as standard algorithms for Brownian motions.

Appendix 1: The key features of the ATS process

In this appendix, we briefly recall the features of the ATS process that we use in the 
numerical experiments.

As in Azzone and Baviera (2022a), we model the forward at time t with maturity 
T as an exponential additive

where ft is the ATS process.
At time t, the ATS characteristic function is

�t , kt are continuous on [0,∞) and �t is continuous on (0,∞) , with 𝜎t > 0 , kt, �t ≥ 0 . 
As in the corresponding Lévy case, we define

Ft(T) = F0(T)e
ft ,

(15)�t(u) = � ei u ft = Lt

(
iu
(
1

2
+ �t

)
�2
t
+

u2�2
t

2
; kt, �

)
e−iu logLt(�t�2

t
; kt , �) .
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with � ∈ (0, 1).12

As proven by Azzone and Baviera (2022a) in proposition 2.2, the forward process 
Ft(T) is a martingale under the risk neutral measure.

The ATS jump measure is

with

and K�(x) the modified Bessel function of the second kind (see e.g., Abramowitz and 
Stegun 1948, ch.9, p.376)

Moreover, we recall that a sufficient condition for the existence of ATS is provided 
in the following theorem (cf. Azzone and Baviera 2022a, th.2.1, p.503).

Theorem A.1 Sufficient conditions for existence of ATS There exists an additive 
process 

{
ft
}
t≥0 with the characteristic function (15) if the following two conditions 

hold. 

(a) g1(t) , g2(t) , and g3(t) are non decreasing, where 

lnLt(u; k, �) ∶=
t

k

1 − �

�

{
1 −

(
1 +

u k

1 − �

)�
}

,

(16)

�t(x) =
tC
(
�, kt, �t, �t

)
|x|1∕2+� e−(1∕2+�t)xK�+1∕2

(
|x|

√(
1∕2 + �t

)2
+ 2(1 − �)∕(kt �

2
t )

)
,

C
�
�, kt, �t, �t

�
∶=

2

Γ(1 − �)
√
2�

�
1 − �

kt

�1−�

�2�
t

��
1∕2 + �t

�2
+ 2(1 − �)∕(kt �

2
t
)
��∕2+1∕4

,

K�(x) ∶=
e−x

Γ
(
� +

1

2

)
√

�

2 x

∞

∫
0

dze−zz�−1∕2
(
1 +

z

2 x

)�−1∕2

.

(17)

g1(t) ∶= (1∕2 + �t) −

√(
1∕2 + �t

)2
+ 2(1 − �)∕(�2

t kt)

g2(t) ∶= −(1∕2 + �t) −

√(
1∕2 + �t

)2
+ 2(1 − �)∕(�2

t kt)

g3(t) ∶=
t1∕��2

t

k
(1−�)∕�
t

√(
1∕2 + �t

)2
+ 2(1 − �)∕(�2

t kt) ;

12 We emphasize that we consider 𝛼 > 0 . As discussed in Sect. 2.2, this is the relevant situation in prac-
tice when pricing exotic derivatives: the case with � exactly equal to zero presents a power-law decay in 
the characteristic function.



1 3

A fast Monte Carlo scheme for additive processes and option… Page 31 of 34 31

(b) Both t �2
t
�t and t �2�

t
��
t
∕k1−�

t
 go to zero as t goes to zero   ◻

We point out that the boundaries of the strip of regularity of the characteristic 
function of the ATS p+

t
+ 1 and p−

t
 are equivalent to g1(t) and g2(t) , as shown in the 

proof of proposition 4.2.

Appendix 2: Simulation algorithm

A brief description of the Lewis-FFT algorithm follows

Appendix 3: European options errors: spline versus linear

In this appendix, we report the error between simulated and exact option prices 
strike-by-strike. In Table 6, we report the prices of 30 European options with exact 
method, Lewis-FFT-S MC and Lewis-FFT MC with linear interpolation for the 
1-month maturity, � = 2∕3 , and M = 10 . Option prices are in percentage of the spot 
price. Errors of the Lewis-FFT-S are of the order of 0.01 bp. Morover, errors with 
spline interpolation are, on average, two orders of magnitude below errors with lin-
ear interpolation.
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Table 6  Prices of 30 European options with exact method, Lewis-FFT-S MC and Lewis-FFT MC with 
linear interpolation for the 1-month maturity, � = 2∕3 , and M = 10 . Option prices are in percentage of 
the spot price. For every option we compute the error (exact price - MC price) in bp and the relative 
error (exact price - MC price) divided by the exact price in percentage. Errors of the Lewis-FFT-S are of 
the order of 0.01 bp. Morover, errors with spline interpolation are, on average, two orders of magnitude 
below errors with linear interpolation

Strike [%] x [%] Exact [%] Lewis-
FFT-S [%]

Error [bp] Rel. Error 
[%]

Lewis-
FFT-Lin 
[%]

Error [bp] Rel. Error 
[%]

105.94 −5.77 0.42 0.42 −0.01 −0.03 0.43 0.54 1.28
105.52 −5.38 0.48 0.48 −0.01 −0.02 0.48 0.65 1.37
105.10 −4.98 0.54 0.54 −0.00 −0.01 0.55 0.70 1.30
104.69 −4.58 0.61 0.61 0.00 0.00 0.62 0.77 1.27
104.27 −4.18 0.69 0.69 0.01 0.01 0.70 0.90 1.31
103.86 −3.78 0.77 0.77 0.01 0.01 0.78 1.00 1.29
103.44 −3.38 0.87 0.87 0.01 0.01 0.88 1.03 1.18
103.03 −2.99 0.98 0.98 0.01 0.01 0.99 1.11 1.13
102.62 −2.59 1.10 1.10 0.01 0.01 1.11 1.21 1.10
102.21 −2.19 1.22 1.23 0.01 0.01 1.24 1.26 1.03
101.81 −1.79 1.37 1.37 0.01 0.01 1.38 1.29 0.94
101.40 −1.39 1.52 1.52 0.01 0.01 1.53 1.33 0.88
101.00 −1.00 1.69 1.69 0.01 0.01 1.70 1.37 0.81
100.60 −0.60 1.87 1.87 0.01 0.01 1.88 1.38 0.74
100.20 −0.20 2.06 2.06 0.01 0.01 2.07 1.37 0.66
99.80 0.20 2.26 2.26 0.01 0.00 2.27 1.34 0.59
99.40 0.60 2.48 2.48 0.01 0.00 2.49 1.33 0.54
99.01 1.00 2.71 2.71 0.01 0.00 2.72 1.31 0.48
98.62 1.39 2.95 2.95 0.01 0.00 2.96 1.24 0.42
98.22 1.79 3.20 3.20 0.00 0.00 3.21 1.16 0.36
97.83 2.19 3.46 3.46 −0.00 −0.00 3.47 1.12 0.32
97.45 2.59 3.73 3.73 −0.01 −0.00 3.74 1.06 0.28
97.06 2.99 4.01 4.01 −0.01 −0.00 4.02 0.95 0.24
96.67 3.38 4.29 4.29 −0.01 −0.00 4.30 0.87 0.20
96.29 3.78 4.59 4.59 −0.01 −0.00 4.60 0.85 0.19
95.91 4.18 4.89 4.89 −0.00 −0.00 4.90 0.77 0.16
95.52 4.58 5.20 5.20 −0.00 −0.00 5.21 0.68 0.13
95.14 4.98 5.51 5.51 0.00 0.00 5.52 0.63 0.11
94.77 5.38 5.83 5.83 0.00 0.00 5.84 0.60 0.10
94.39 5.77 6.15 6.15 0.00 0.00 6.16 0.52 0.09
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