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Abstract
Hydrogen is considered a solution to decarbonize the transportation sector, an 
important step to meet the requirements of the Paris agreement. Even though hydro-
gen demand is expected to increase over the next years, the exact demand level 
over time remains a main source of uncertainty. We study the problem of where 
and when to locate hydrogen production plants to satisfy uncertain future customer 
demand. We formulate our problem as a two-stage stochastic multi-period facility 
location and capacity expansion problem. The first-stage decisions are related to the 
location and initial capacity of the production plants and have to be taken before 
customer demand is known. They involve selecting a modular capacity with a piece-
wise linear, convex short-term cost function for the chosen capacity level. In the sec-
ond stage, decisions regarding capacity expansion and demand allocation are taken. 
Given the complexity of the formulation, we solve the problem using a Lagrangian 
decomposition heuristic. Our method is capable of finding solutions of sufficiently 
high quality within a few hours, even for instances too large for commercial solvers. 
We apply our model to a case from Norway and design the corresponding hydrogen 
infrastructure for the transportation sector.

Keywords Multi-period facility location · Capacity expansion · Uncertain demand · 
Lagrangian relaxation

1 Introduction

According to the emission targets set in the Paris agreement, greenhouse gas emis-
sions (as by 1990) must be decreased by 40% until 2030 (United Nations 2015). 
The Norwegian government has set even more ambitious goals regarding the emis-
sions within the transportation sector (Regjeringen 2019). Specifically, the transition 
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towards zero-emission fuels is a key step in order to meet these targets. The transi-
tion from fossil fuels towards hydrogen gained even more importance as countries 
with diversified energy carrier mix can better handle the current energy crisis in 
Europe (Crew 2022). IEA (2022) further states that the global energy crisis acceler-
ates the urgency to use hydrogen, as it contributes to emission reduction targets as 
well as energy stability. With 92% electricity produced from hydropower, Norway is 
well positioned to produce green hydrogen, which is required to be produced exclu-
sively from renewable sources using electrolysis (EL).

In Norway, the sector of high-speed passenger ferries and car ferries is oper-
ated based on public contracts, and when renewing these contracts, hydrogen can 
be required as zero-emission fuel (Ocean Hyway Cluster 2020a). The demand from 
sectors that are operated based on public contracts may therefore be easier to predict 
and has a deterministic character as the transition can be forced based on the con-
tracts. There are also alternative zero-emission energy carriers that are relevant in 
Norway, such as electric batteries and ammonia. However, the future market shares 
among these fuels are uncertain. Since demand from other relevant sectors such as 
land-based transport and the offshore sector is highly uncertain, having the ability 
to expand the production infrastructure is crucial to meet future demand (DNV GL 
2019).

The above motivates our work on the real-world problem of locating hydrogen 
production facilities in Norway under uncertain demand. The decisions regard-
ing opening location, time and capacity must be taken before the future demand is 
known. After uncertain demand is disclosed, decisions regarding capacity expansion 
and production, as well as demand allocation can be taken. The problem formulates 
as a large mixed-integer programming problem that is, in general, hard to solve. 
Specifically, as shown in Štádlerová et al. (2022), the problem can be solved with 
a commercial solver only for a few scenarios. In this paper, we, therefore, solve this 
problem using a solution method based on Lagrangian relaxation.

Our contributions are threefold. First, we provide a solution method based on 
Lagrangian relaxation for the multi-period facility location and capacity expan-
sion problem under uncertainty that allows for solving problems with a sufficiently 
large number of scenarios within reasonable computing time. Our model formula-
tion includes minimum production requirements motivated by the properties of the 
production technology for hydrogen. Such requirements can also be found in other 
industries, for example due to economic or technological considerations (such as 
minimum batch sizes). Still, our model formulation is general enough to also be 
applicable if such minimum production requirements do not exist. We compare 
the performance of the method to the one of Gurobi and discuss the quality of the 
Lagrangian bound. We further analyze the out-of-sample performance and discuss 
the value of the stochastic solution. Second, we study the hydrogen production infra-
structure for different demand distributions and compare the first-stage solutions to 
the solution from the expected value problem. The computational results show that 
the Lagrangian relaxation provides tight lower bounds and that our solution method 
finds solutions of sufficiently high quality for all tested instances. We further analyze 
the value of the stochastic solution, indicating that for most problems, the solution 
of the expected value problem is of no practical use. Third, we analyze the solution 
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obtained for the case of Norway, illustrating the practical usefulness and importance 
of our approach.

The remainder of this paper is structured as follows: The relevant literature is 
reviewed in Sect. 2. The mathematical model is introduced in Sect. 3. The solution 
method is detailed in Sect. 4. The case study is presented in Sect. 5 and the compu-
tational results are discussed in Sect. 6. Finally, we conclude in Sect. 7.

2  Literature review

We split the literature review in two main parts. In Sect.  2.1, we provide a brief 
literature review on modelling deterministic and stochastic capacitated facility loca-
tion problems with piecewise linear costs and/or capacity expansion. We also review 
facility location and supply chain design problems in the context of hydrogen infra-
structure. Solution methods for facility location and supply chain design problems 
with a focus on two-stage stochastic problems are reviewed in Sect. 2.2.

2.1  Capacitated facility location

For an overview on deterministic multi-period facility location and capacity expan-
sion models, we also refer to the reviews by Melo et  al. (2009) and Nickel and 
Saldanha-da Gama (2019).

Deterministic multi-period facility location and capacity expansion problems 
are often modelled with modular capacities. The expansion is then modelled as a 
jump between available capacity levels and leads to modification of existing facili-
ties (Jena et al. 2015, 2016, 2017; Sauvey et al. 2020; Štádlerová and Schütz 2021; 
Štádlerová et al. 2022). Štádlerová and Schütz (2021) and Štádlerová et al. (2022) 
study a problem with modular capacities and piecewise linear short-term production 
costs (which can be seen as a combination of the problems studied by Correia and 
Captivo (2003) and Van den Broek et  al. (2006)). Similar to Correia and Captivo 
(2003), they split investment and operational costs and provide specific operational 
costs to each modular capacity level. However, instead of one unit price for each 
capacity level, they model a capacity-specific piecewise linear short-term costs func-
tion similar to Van den Broek et al. (2006). Van den Broek et al. (2006) combine 
operational costs depending on installed capacity from Correia and Captivo (2003) 
with the linear staircase cost approximation from Holmberg (1994). Our modelling 
approach is identical to Štádlerová and Schütz (2021) and Štádlerová et al. (2022), 
as it enables us to model economies and dis-economies of scale in the investment 
and production processes having modular capacities.

Introducing demand uncertainty is a natural extension of deterministic problems. 
An early literature review on dynamic facility location and supply chain problems 
with stochastic parameters can be found in Owen and Daskin (1998). A review on 
facility location problems under uncertainty is provided by Snyder (2006) and recent 
summaries on facility location and supply chain problems under uncertainty are pre-
sented by Govindan et al. (2017), and Correia and Saldanha-da Gama (2019).
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Traditionally, two-stage stochastic facility location problems are formulated as 
single-period problems. An early paper discussing a single-period capacitated facil-
ity location problem with random demand and non-linear cost function to model 
economies of scale is presented by Balachandran and Jain (1976). A generalization 
of their model is proposed by Schütz et al. (2008) who differentiate between general 
long-term costs for opening facilities and piecewise linear convex short-term costs 
for operating facilities. Correia and Melo (2021) study a two-stage multi-period 
facility location model with capacity expansion and reduction. Due to the complex-
ity of the model, the problem can be solved for only 5 scenarios. The authors further 
show that using valid inequalities to strengthen the model improves computation 
times and optimality gaps.

Some supply chain design problems are characterized by a decision structure 
similar to two-stage facility location problems, as first-stage decisions are related 
to investments, while the second-stage decisions are related to demand allocation 
(Lucas et  al. 2001). For a review on deterministic, as well as stochastic hydrogen 
supply chain design problems, we refer to Li et  al. (2019). Kim et  al. (2008) for-
mulate the model of designing a hydrogen supply chain as a two-stage stochastic 
mixed-integer problem. Here, the first stage decision is related to investment in pro-
duction facilities and storage while the second stage decision is related to demand 
allocation. The work by Almansoori and Shah (2012) and Nunes et al. (2015) can 
be seen as an extension of Kim et al. (2008) as the authors consider multiple time 
periods. Dayhim et al. (2014) present a two-stage stochastic problem for minimizing 
the total expected daily costs of the hydrogen supply chain facing uncertain demand. 
Unlike Kim et al. (2008) and Nunes et al. (2015), the authors consider also emission, 
risk and energy consumption costs. Similar to Nunes et al. (2015), Štádlerová et al. 
(2022) present a two-stage multi-period stochastic model to formulate the problem 
of locating hydrogen facilities. However, the authors extend the model by allowing 
capacity expansion in the second stage.

2.2  Solution methods

Deterministic multi-period facility location and capacity expansion problems are in 
general hard to solve. The stochastic formulation might be closer to the real-world 
decision process, but also increases the complexity of the problem, especially when 
considering integer variables in the second stage. To find quality solutions for large 
instances, efficient solution algorithms need to be applied.

Lagrangian relaxation combined with heuristics for finding feasible solutions has 
performed well for deterministic multi-period facility location and capacity expan-
sion problems (see, e.g., Shulman 1991; Jena et  al. 2016, 2017; Štádlerová et  al. 
2022). Lagrangian relaxation has also been successfully used to solve single-period 
stochastic two-stage facility location problems with continuous second-stage vari-
ables (see, e.g., Schütz et al. 2008).

Sample average approximation (SAA) improves computational tractability by 
solving the problem repeatedly with a smaller number of scenarios (Kleywegt et al. 
2001). Santoso et al. (2005) combine Benders decomposition with SAA to solve a 
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supply chain design problem with uncertain demand and continuous second-stage 
variables. Sherali and Zhu (2006) and Angulo et al. (2016) study the application of 
Benders decomposition for stochastic problems with integer first and second-stage 
variables.

Nunes et al. (2015) and Štádlerová et al. (2022) apply SAA to solve the problem 
of locating hydrogen facilities. Nunes et al. (2015) solve the SAA problems with 15 
scenarios. The number of scenarios in Štádlerová et al. (2022) is limited to 10 as the 
integer variables in the second stage make the problem harder to solve than the one 
studied in Nunes et al. (2015). SAA is often used in combination with other solution 
methods to further improve the quality of the solution (see, e.g., Santoso et al. 2005; 
Schütz et al. 2009; Li and Zhang 2018).

Researchers have only recently started to consider uncertainty in multi-period 
facility location problems with capacity expansion. Correia and Melo (2021) and 
Štádlerová et  al. (2022) illustrate the challenges when using commercial software 
to solve two-stage stochastic programming models for this type of problem. To the 
best of our knowledge, our work is the first to present a solution method based on 
Lagrangian relaxation for the multi-period facility location problem with uncertain 
demand and capacity expansion in the second stage.

3  Mathematical model

We formulate the problem of designing production infrastructure as a two-stage sto-
chastic multi-period facility location and capacity expansion problem with modular 
capacities. In the first stage, we decide where and when to open new facilities along 
with their initial capacity levels. Once the demand is known in the second stage, 
we take decisions related to capacity expansion and demand allocation. The goal 
is to minimize the expected discounted total costs of satisfying the demand in each 
scenario.

3.1  Problem definition

Candidate locations for production facilities are given by the set I  . The investment 
costs Cik for a new facility depend on location and installed capacity. The feasible 
production quantity at a facility depends on the installed capacity. The short-term 
production costs Fibkt then depend on location, installed capacity and its utilization, 
as well as time period. Customer locations are given by the set J  . For each cus-
tomer, a specific demand, Ds

jt
 , is defined for each time period and each scenario s 

from the set S . A customer may be served from one or more facilities. However, 
there are restrictions on which facility can serve which customers. For possible facil-
ity-customer combinations, unit distribution costs are based on distance. If the cus-
tomers’ demand Ds

jt
 cannot be satisfied, penalty costs MD apply for each unit of 

unsatisfied demand, denoted by ds
jt
 . Penalty costs for unsatisfied demand can also be 

interpreted as additional costs for importing the product. If the quantities demanded 
from a facility are lower than the minimum production quantity for the installed 
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capacity level, penalty costs MQ for a capacity excess unit qs
it
 apply. Similar to the 

penalty cost for unsatisfied demand, the capacity excess costs can be understood as 
costs for exporting excess production.

Once a facility has been opened, it cannot be closed. However, its capacity may be 
extended at a later time period to a higher capacity level. The expansion is allowed up 
to the highest available capacity K . Capacity expansion leads to facility modification 
and it represents an expensive strategic decision. Thus, having a relatively short plan-
ning horizon, capacity expansion is allowed only once and then, the capacity cannot 
be changed until the end of the planning horizon T . Investment costs Cik and expan-
sion costs Eikl represent long-term costs and are separated from short-term produc-
tion costs. For each capacity level, a specific convex piecewise linear short-term pro-
duction cost function defines both the cost and the feasible production quantities for 
the installed capacity. Figure 1a exemplifies the link between long-term facility costs 
and short-term production costs. The short-term production cost function fk(q) for a 
specific capacity level k is illustrated in Fig. 1b, where Fkb represents the production 
costs at a given breakpoint b of the piecewise linear cost function. The lowest break-
point of the short-term production costs function represents the minimum production 
requirements for a given capacity level, while the highest breakpoint Bk corresponds 
to the installed capacity and thus to the upper production limit at capacity level k. The 
upper limit can only be increased by expansion towards a higher capacity level k + n . 
These capacity limits reflect the technological limitations of hydrogen production 
through electrolysis. This modelling approach is identical to Štádlerová et al. (2022), 
except for the addition of penalties for unsatisfied demand and excess production.

3.2  Mathematical formulation

All used sets, parameters and decision variables are summarized below:

Sets

Bk  Set of breakpoints of the short-term cost function connected to capacity level k, 
Bk = {1, 2, ...,Bk};

Fig. 1  Long-term and short-term production cost functions
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I   Set of candidate locations for production facilities;
J   Set of customer locations;
K  Set of available discrete capacity levels, K = {1, 2, ...,K};
S  Set of scenarios;
T   Set of time periods, T = {1, 2, ..., T};

T1  Set of time periods corresponding to the first stage, T1 ⊂ T .

Parameters and coefficients
Cik  Investment costs at location i ∈ I  for capacity level k ∈ K;

Ds
jt
  Demand at customer location j ∈ J  in period t ∈ T  and scenario s ∈ S;

Eikl  Costs of expanding at facility i ∈ I  from capacity level k ∈ K to capacity 
level l ∈ K ∶ l > k;

Fibkt  Production costs at facility i ∈ I  at breakpoint b ∈ Bk at the short-term 
cost function of capacity level k ∈ K in period t ∈ T ;

Lij  1 if demand at location j ∈ J  can be served from facility i ∈ I  , 0 
otherwise;

Qbk  Production volume at breakpoint b ∈ Bk of the short-term cost function, 
for capacity level k ∈ K;

Tij  Distribution costs from facility i ∈ I  to customer j ∈ J ;
MD  Penalty costs for one unit of unsatisfied demand;
MQ  Penalty costs for one excess unit;
yikk0  1 if a facility is opened at location i ∈ I  with capacity level k ∈ K at the 

beginning of the planning horizon, 0 otherwise;
�t  Discount factor in period t ∈ T ;

ps  Probability of scenario s ∈ S.

Decision variables
The mathematical model uses the following decision variables: 

ds
jt
  Shortfall variable: amount of not satisfied demand at customer location j ∈ J  

in period t ∈ T  for scenario s ∈ S;
qs
it
  Capacity excess variable: amount of production excess units from facility 

location i ∈ I  in period t ∈ T  for scenario s ∈ S that is not distributed to 
customers;

xs
ijkt

  Amount of customer demand at location j ∈ J  satisfied from facility i ∈ I  
operating at capacity level k ∈ K in period t ∈ T  in scenarios s ∈ S;

ys
iklt

  1 if facility is operated at location i ∈ I  , originally opened at capacity level 
k ∈ K , and operating at capacity level l ∈ K ∶ l ≥ k in period t ∈ T  and sce-
nario s ∈ S , 0 otherwise;

�s
bilt

  Weight of breakpoint b ∈ Bl at location i ∈ I  for capacity level l ∈ K in 
period t ∈ T  and scenario s ∈ S.
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We present a two-stage stochastic multi-period Mixed-Integer-Programming (MIP) 
model. The model is similar to Štádlerová et al. (2022), but additionally provides rela-
tively complete recourse, as we introduce variables for unsatisfied demand and capacity 
excess. The model is given as:

subject to:

(1)

min
∑
s∈S

ps

[∑
i∈I

∑
k∈K

∑
t∈T

𝛿tCik

(
ys
ikkt

− ys
ikk(t−1)

)

+
∑
i∈I

∑
k∈K

∑
l∈K∶l>k

∑
t∈T

𝛿tEikl

(
ys
iklt

− ys
ikl(t−1)

)

+
∑
b∈B

∑
i∈I

∑
l∈K

∑
t∈T

𝛿tFiblt𝜇
s
bilt

+
∑
i∈I

∑
j∈J

∑
l∈K

∑
t∈T

𝛿tTijx
s
ijlt

∑
j∈J

∑
t∈T

MDds
jt
+
∑
i∈I

∑
t∈T

MQqs
it

]

(2)
∑
k∈K

∑
l∈K∶l≥k

ys
iklt

≤ 1, i ∈ I, t ∈ T, s ∈ S,

(3)
∑
k∈K

∑
l∈K∶l>k

ys
iklt

= 0, i ∈ I, t ∈ T1, s ∈ S,

(4)
t−1∑
t�=1

ys
ikkt�

≥

∑
l∈K∶l>k

ys
iklt
, i ∈ I, k ∈ K, t ∈ T, s ∈ S,

(5)
∑

l∈K∶l≥k

ys
iklt

≥

∑
l∈K∶l≥k

ys
ikl(t−1)

, i ∈ I, k ∈ K, t ∈ T, s ∈ S

(6)ys
iklt

− ys
ikl(t−1)

≥ 0, i ∈ I, k ∈ K, l ∈ K ∶ l > k, t ∈ T, s ∈ S,

(7)
∑
b∈Bl

�s
bilt

=
∑
k∈K

ys
iklt
, i ∈ I, l ∈ K, t ∈ T, s ∈ S,

(8)
∑
j∈J

∑
l∈K

xs
ijlt

+ qs
it
=

∑
b∈Bl

∑
l∈K

Qbl�
s
bilt
, i ∈ I, t ∈ T, s ∈ S,

(9)
∑
i∈I

∑
l∈K

xs
ijlt

+ ds
jt
= Ds

jt
, j ∈ J, t ∈ T, s ∈ S,



1 3

Using Lagrangian relaxation to locate hydrogen production… Page 9 of 32 10

Objective (1) minimizes the expected discounted sum of investment, expansion, pro-
duction, and distribution costs as well as the penalty costs for unsatisfied demand 
and excess capacity. Constraints (2) state that for each time period and scenario, at 
most one facility can be operated at a given location. Constraints (3) ensure that in 
the first stage, facilities can be only opened, but not expanded, while Inequalities (4) 
only allow expansion of opened facilities. Constraints (5) ensure that once a facility 
is opened, it cannot be closed, but only expanded, while Constraints (6) require that 
an open facility can only be expanded once during the planning horizon. Equalities 
(7) link capacity level k with the appropriate short-term cost function and ensure 
that only opened facilities can be used for production. Constraints (8) ensure that 
the whole production is either distributed to customers or allocated to the capac-
ity excess variable. The constraints also implicitly assure the minimum production 
requirements through the quantity Qbl given by the smallest breakpoint b. Note 
that this formulation is also applicable for problems without minimum production 
requirements, as we can define the quantity belonging to the smallest breakpoint as 
zero. Equations (9) ensure that demand is satisfied or registered as demand shortfall. 
Restrictions (10) are formulated in the form of strong inequalities. They limit which 
facility can satisfy which customer and link the distribution variable to the operated 
capacity level. Such linking constraints provide stronger bounds and lead to lower 
integrality gaps from linear relaxation than aggregated linking constraints (see, e.g., 
Jena et al. 2016). Constraints (11) are the non-anticipativity constraints that ensure 
that the opening capacity level k is the same for all scenarios while the operating 
capacity level l is scenario specific. Constraints (12)–(16) are the non-negativity and 
binary requirements.

(10)xs
ijlt

≤ LijD
s
jt

∑
k∈K∶k≤l

ys
iklt
, i ∈ I, j ∈ J, l ∈ K, t ∈ T, s ∈ S,

(11)
1

|S|
∑
s�∈S

∑
l∈K∶l≥k

ys
�

iklt
=

∑
l∈K∶l≥k

ys
iklt
, i ∈ I, k ∈ K, t ∈ T, s ∈ S,

(12)ys
iklt

∈ {0, 1}, i ∈ I, k ∈ K, l ∈ K ∶ l ≥ k, t ∈ T, s ∈ S,

(13)xs
ijlt

≥ 0, i ∈ I, j ∈ J, l ∈ K, t ∈ T, s ∈ S

(14)�s
bilt

≥ 0, b ∈ Bl, i ∈ I, k ∈ K, t ∈ T, s ∈ S,

(15)qs
it
≥ 0, i ∈ J, t ∈ T, s ∈ S,

(16)ds
jt
≥ 0, j ∈ J, t ∈ T, s ∈ S.
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4  Lagrangian relaxation

In the domain of facility location, Lagrangian relaxation has mostly been applied in 
deterministic settings (see, e.g., Shulman 1991; Jena et al. 2016, 2017; Štádlerová et al. 
2022). Given the similar structure of the here considered facility location problem, 
Lagrangian relaxation remains an attractive candidate, even when considering multiple 
demand scenarios. We now present the Lagrangian heuristic used to solve our stochas-
tic problem. Specifically, we relax demand constraints (9) which are the only con-
straints connecting the decision variables among the different facility locations and 
have been a popular choice in the literature (Shulman 1991; Schütz et al. 2008; Jena 
et al. 2016). We define �s

jt
 as the matrix of Lagrangian multipliers and we obtain the fol-

lowing Lagrangian subproblem:

subject to Constraints (2)–(8) and (10)–(15). In the relaxed problem, the variable djt 
is unbounded and it has no connection to any other decision variable. Since we have 
a minimization problem, it can be shown that the term 

∑
j∈J

∑
t∈T(M

D − �s
jt
)ds

jt
 

becomes zero in any optimal solution and can hence be omitted. Further, for given 
multipliers �s

jt
 , the expression 

∑
s∈S

∑
j∈J

∑
t∈T p

s�jtD
s
jt
 is constant. As all constraints 

are defined separately for each facility location i ∈ I  , we can decompose the prob-
lem and solve it independently for each facility location i ∈ I  . We can then define 
LR(�) =

∑
i∈I gi(�) +

∑
s∈S

∑
j∈J

∑
t∈T p

s�jtD
s
jt
 where gi(�) is the optimal value of 

the Lagrangian subproblem for location i:

(17)

LR(�) = min
∑
s∈S

ps

[∑
i∈I

∑
k∈K

∑
t∈T

𝛿tCik

(
ys
ikkt

− ys
ikk(t−1)

)

+
∑
i∈I

∑
k∈K

∑
l∈K∶l>k

∑
t∈T

𝛿tEikl(y
s
iklt

− ys
ikl(t−1)

)

+
∑
i∈I

∑
b∈Bl

∑
l∈K

∑
t∈T

𝛿tFiblt𝜇
s
bilt

+
∑
i∈I

∑
t∈T

MQqs
it

+
∑
i∈I

∑
j∈J

∑
l∈K

∑
t∈T

(𝛿tTijt − 𝜆s
jt
)xs

ijlt

+
∑
j∈J

∑
t∈T

(MD − 𝜆s
jt
)ds

jt
+
∑
j∈J

∑
t∈T

𝜆s
jt
Ds

jt

]
,
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subject to constraints (2)–(8) and (10)–(15) defined for the specific facility i ∈ I .

4.1  Solving the Lagrangian subproblem

The optimal solution to the Lagrangian subproblem represents the optimal open-
ing and expansion schedule and capacity level for each facility all scenarios 
and over all scenarios such that the expected total costs (18) are minimized. In 
deterministic settings, such schedules have been found by solving a shortest path 
problem via dynamic programming (see, e.g., Shulman 1991; Jena et  al. 2016; 
Štádlerová et  al. 2022). Given that, in our two-stage stochastic problem, the 
expansion schedule (i.e, the second-stage decisions) may be different for each 
scenario, shortest path networks including all opening and expansion decisions 
would be too complex and computationally intractable. Our approach, therefore, 
evaluates the optimal expansion schedule for all possible opening decisions sepa-
rately. Specifically, for each opening capacity level and time period (i.e, the first-
stage decisions), the shortest path problem is solved via dynamic programming 
independently for each scenario starting from the defined opening time period and 
capacity level, similar to Shulman (1991), Jena et al. (2016) and Štádlerová et al. 
(2022). For each scenario, at most one capacity expansion is allowed. The short-
est path problem for solving the Lagrangian subproblem is detailed in Sect. 4.1.2. 
For a given capacity level, time period, and scenario, the problem of customer 
allocation then becomes a continuous knapsack problem which is explained next.

4.1.1  Continuous knapsack

The costs of the optimal demand allocation for a given capacity level l ∈ K , time 
period t ∈ T  and scenario s ∈ S can be computed by solving a continuous knapsack 
problem with piecewise linear costs (Amiri 1997; Christensen and Klose 2021). The 
costs of the continuous knapsack for a given capacity level l consist of production 
costs, penalty costs for capacity excess and reduced distribution costs. The costs are 
calculated for a given facility i ∈ I  , capacity level l, time period t and scenario s. 
Since the continuous knapsack is calculated for a given capacity level l, the strong 
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inequalities (10) are considered in the calculation of the knapsack costs. We formu-
late the continuous knapsack problem as:

subject to:

The problem (19) – (25) is similar to the one solved by Schütz et al. (2008). How-
ever, in contrast to Schütz et al. (2008), we have a minimum production requirement 
for each capacity level and allow for capacity excess. For a given capacity level 
l ∈ K , period t ∈ T  and scenario s ∈ S , we calculate the unit production costs as 
uilbt =

Fib+1lt−Fiblt

Qb+1 l−Qbl

 . We further define the marginal costs of serving one additional 
demand unit as: ms

ijlbt
= Tij − �s

ij
 + uilbt . Note that the marginal costs are dependent 

on the line-piece of the short-term cost function. For each customer, we calculate the 
reduced costs Tij − �s

ij
 and start allocating customers with the lowest reduced costs 

until ms
ijlbt

> 0 for the first time or until the capacity limit of the line-piece Qb+1l is 
reached. For the next line-piece, the marginal costs must be updated. However, the 
ordering of customers according to their reduced costs remains unchanged. We con-
tinue adding customers until ms

ijlbt
> 0 or until the capacity limit Q

Bl
 is reached.

If the minimum production requirement for a given capacity cannot be fulfilled 
with customers with negative reduced costs, we may also have to add customers 
with positive reduced costs. Assuming that penalty costs are always higher than the 
costs of satisfying customers with positive reduced costs, we prefer customers with 
positive reduced costs to using variables qs

it
 . However, if there are no more custom-

ers that could be added and the minimum production requirement is still not satis-
fied, we can use variables qs

it
 that allow satisfying the minimum production require-

ment for penalty costs. If the penalty costs are sufficiently high, a capacity decision 
leading to qs

it
> 0 will most likely not be optimal since demand does not need to be 

satisfied in the relaxed problem.
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s
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4.1.2  Formulating the shortest path problem

As previously mentioned, in deterministic problems, the problem of finding the 
optimal opening and expansion decision can be formulated as a shortest path prob-
lem in a single graph and solved via dynamic programming (Shulman 1991; Jena 
et al. 2016; Štádlerová et al. 2022). In our scenario-based stochastic problem, such 
a single graph formulation is not suitable, since the opening decision has to remain 
the same for all scenarios, but the expansion decision can be different for each sce-
nario. Therefore, we define one shortest path problem for each tuple (k0, t0) of open-
ing capacity level k0 ∈ K ∪ {0} and opening time period t0 ∈ T  . For each given 
(k0, t0) , the second stage problem is then separable in scenarios and we can calculate 
the shortest path problem separately for each scenario. Finally, we choose the first-
stage opening decision that leads to the lowest expected costs over the shortest path 
problems.

For given opening decision (k0, t0) , let CE(k0, t0) denote the costs of the expected 
shortest path. The costs of opening and operating a facility during the opening 
period are equal to the investment costs and the expected costs of the continuous 
knapsack: �t0Ck0t0

+
∑

s∈S �t0p
sKs

ik0t0
(�) . The total costs can then be written as: 

�t0Cik0t0
+
∑

s∈ �t0p
sKs

ik0t0
(�) + CE(k0t0).

For given opening decision (k0, t0) and given scenario s ∈ S , the graph structure 
is illustrated in Fig. 2. Let l

T
 denote the capacity level at the end of the planning 

horizon. The graph shows that after investing in capacity level k0 , we can either keep 
the capacity at level k0 or we can expand once during the planning horizon towards 
a higher capacity level l

T
∈ K ∶ l

T
> k0 . Note that all capacities larger than k0 are 

available for expansion. However, we are not allowed to reduce the capacity level 
below the level given by k0.

The costs for an arc from node (k, t − 1) to node (k�, t) in our graph are given as:

Equation (26) calculates the costs of expanding a facility as the sum of expansion 
costs Eikk′ and the costs of continuous knapsack Kik�t(�) . Equation (27) calculates the 
costs of operating the facility if there is no change in the installed capacity level. The 
short-term production costs are then given as the costs of the continuous knapsack 
Kik�t(�) . We define the costs of all other combinations as +∞ (28) as these are infea-
sible and hence can be omitted in the graph structure.

4.2  Updating the Lagrangian multipliers

The lower bound on the Objective (1) is given by solving (??) subject to Constraints 
(2)–(8) and (10)–(15) for given multipliers �s

jt
 . In order to find the highest possible 

lower bound, we have to find a � that maximizes the Lagrangian dual problem: 

C(k, t − 1)(k�, t) =

⎧⎪⎨⎪⎩

Eikk� + Kik�t(�) if k = k0 ∧ k� = l
T
, (26)

Kik�t(�) if k = k�, (27)

+∞ else. (28)
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LD = max� LR(�) . To solve the LD problem, we iteratively use the box step method 
(Marsten et al. 1975) similar to Schütz et al. (2009) and Štádlerová et al. (2022), as this 
method allows us to update the multipliers without computing an upper bound. We cal-
culate the subgradient ∇ms

jt
 as ∇ms

jt
= Ds

jt
−
∑

i∈I x
s
ijt

 in each iteration m and for each sce-
nario s. We then define Lm = LR(�m) −

∑
j∈J

∑
t∈T

∑
s∈S p

s�ms
jt
∇ms

jt
 and find the 

updated multipliers by solving the following linear optimization problem:

We limit how much the Lagrangian multipliers can change in each iteration using 
box constraints (31) and (32). These boxes are specific for each variable �s

jt
 . If the 

sign of the subgradient ∇ms
jt

 changes from the previous iteration m − 1 , we decrease 

(29)max�

(30)� ≤ Li +
∑
j∈J

∑
t∈T

∑
s∈S

ps∇is
jt
�
m+1,s

jt
i = 1, ...,m,

(31)�
m+1,s

jt
≤ �ms

jt
+ Δms

jt
j ∈ J, t ∈ T, s ∈ S,

(32)�
m+1,s

jt
≥ �ms

jt
− Δms

jt
j ∈ J, t ∈ T, s ∈ S,

(33)� ∈ ℝ, �
m+1,s

jt
∈ ℝ.

Fig. 2  Structure of the shortest path problem for a given investment decision and scenario
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the box size as: Δms
jt

= �Δms
jt

 , where 0 < 𝛼 < 1 (Štádlerová et al. 2022). The aim of 
reducing the box size is to speed up the procedure of finding the optimal multipliers 
(Marsten et al. 1975). If the multipliers do not change for three consecutive itera-
tions, we reset the box size and allow large changes of the multipliers again in order 
to escape a local optimum.

4.3  Upper bound

We use a greedy heuristic to build a feasible solution based on the solution of the 
relaxed problem (i.e., the LD). Due to capacity excess and shortfall variables, the 
solution to the relaxed problem is always feasible. However, these variables may 
imply high penalty costs. In our upper bound heuristic, we aim to find first-stage 
solutions that are feasible in all scenarios without or with minimal penalty costs. 
The heuristic is an extension of the deterministic solution method presented by 
Štádlerová et al. (2022). The main steps of the heuristic are illustrated in Fig. 3.

We initialize the solution using the installed capacity from the Solution of the LD, 
i.e., the capacity level of opened facilities. The allocation and distribution decisions 
from the relaxed problem are ignored when we assign customers to facilities. Note 
that the solution of the relaxed problem satisfies the non-anticipativity constraints, 
so customers can be assigned to facilities separately for each scenario.

In step Assign customers, for a given scenario and time period, we create pairs of 
available facilities i ∈ I  and unsatisfied customers j ∈ J  . These pairs are sorted in 
increasing order of their reduced transportation costs Tij − �s

jt
 . We start with the pair 

with the lowest reduced transportation costs and serve the unsatisfied customer from 
the corresponding facility. We repeat this step until all available capacity is used or 
the demand of all customers is satisfied.

Within step Assign customers, we also verify the minimum production require-
ments and try to fix them. If the minimum production requirements of facility B are 
not satisfied, the heuristic selects a facility with high utilization A. If there are cus-
tomers that can be satisfied both from A and B, the heuristic uses facility A to shift 
some of its production to facility B until the production is sufficient. Otherwise, we 
have to find facility C, which has common customers with both A and B. Then, we 
shift some production from facility A via auxiliary facility C to facility B. The heu-
ristic uses up to three auxiliary facilities to shift production between A and B. When 
shifting the production quantities from A to B, customers are sorted in increasing 
order based on their reduced transportation costs from facility B. We start reallocat-
ing customers with the lowest reduced transportation costs. After reallocation, the 
spare capacity in facility A is used to satisfy additional unsatisfied customers.

The capacity obtained from the solution of the relaxed problem is most likely 
not sufficient to satisfy demand in all scenarios. If there are unsatisfied customers 
after step Assign customers considering Solution of the LD, the upper bound heuris-
tic increases the capacity to satisfy all customers or to minimize the penalty costs for 
demand shortfall. These steps are illustrated in Fig. 3 in the bold frame.

In general, a new facility can be opened at a location without a facility. Expan-
sion is allowed only at a location with an existing facility that has not been expanded 
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yet. When selecting the facility that has to be opened or expanded, there are usually 
several candidates. We choose the candidate that can satisfy most of the unsatisfied 
customers. In case of a tie, we prioritize the facility with lower production costs. 
The chosen capacity for opening or expanding a facility is the lowest possible capac-
ity level that can satisfy the demand.

We execute the upper bound heuristic repeatedly for 4 different reference scenar-
ios: maximum, minimum, mean and median demand scenarios and then, we select 
the solution with the lowest objective. Since the opening decision has to be equal for 
all scenarios, we start with step Open new facilities based on reference scenario and 
implement the first-stage decisions based on the chosen reference scenario for all other 
scenarios before executing routines that are specific for each scenario. Considering only 
4 reference scenarios enables shorter computation times compared to evaluating first-
stage decisions of each scenario. Simultaneously, first-stage decisions provided by one 
of the reference scenarios have shown to be sufficiently good for our upper bound.

After the opening decisions are fixed, step Assign customers can be again performed 
for each scenario independently as well as the expansion decisions in the step Expand 
facilities since these are the second-stage decisions. If the installed capacity is still not 
sufficient and our reference scenario differs from the maximum demand scenario, the 
heuristics performs the step Open new facility based on max demand scenario, where 
the opening decisions are taken based on unsatisfied customers in the scenario with 
maximum demand. Then, the capacity installed in the first stage increases in all sce-
narios. Note that these new facilities can later be expanded as well.

The upper bound heuristic aims to install sufficient capacity to avoid penalties 
for demand shortfall. However, the solution of the LD as well as in the upper bound 

Fig. 3  Upper bound structure
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heuristic may have installed more capacity than necessary. Therefore, we try to reduce 
the installed capacity or remove some facilities in order to improve the total costs. We 
first try to remove facilities with capacity excess. Specifically, we identify a facility that 
causes penalties for capacity excess and check whether the allocated customers can be 
served from other opened facilities in all time periods and scenarios. These facilities 
need to have some spare capacity and satisfy the distance limit to the customers. If all 
customers can be reallocated, we remove the facility. Further, we extend the determin-
istic procedure from Jena et al. (2016) to our stochastic problem. We fix the demand 
allocation decisions, and use a dynamic programming algorithm, to find optimal open-
ing and expansion capacities and time periods to satisfy the given quantities.

If the obtained solution is better than the average of the previously found solutions, 
we fix all integer variables and solve a problem consisting of demand allocation and 
facility utilization with Gurobi. When evaluating the average costs, we consider objec-
tives before re-optimizing distribution and facility utilization. This enables us to save 
time, as we do not need to re-optimize all available solutions and reduce the risk of 
ignoring a potentially good solution.

5  Case study

In this section, we introduce the input data for our case study from Norway. The case 
reflects the real-world problem of producing hydrogen for the Norwegian transport sec-
tor. However, our model is applicable to variety of facility location and capacity expan-
sion planning problems.

5.1  Candidate locations and production costs

We consider 17 ports along the Norwegian coast as candidate locations derived from 
the interactive map provided by Ocean Hyway Cluster (2020b). For testing pur-
poses, we further extend the number of candidate locations to 34. All these locations 
are Norwegian ports and contain the original 17 locations as a subset.

In our case study, we consider alkaline electrolysis as production technol-
ogy since it is as of today the most mature and the cheapest available technology. 
For alkaline electrolysers, minimum production requirements must be considered 
(Andrenacci et al. 2022). We assume that investment costs are the same for all facil-
ity locations. We approximate the long-term production cost function with 8 and 16 
modular capacity levels, each with specific investment costs. For 16 capacity levels, 
each of the original 8 capacity levels is split into two levels. The investment costs for 
8 capacity levels are shown in Table 1. All investment costs are calculated based on 
the model by Jakobsen and Åtland (2016).

Electrolysis production costs are highly dependent on electricity prices. Even 
though Norway is split into 5 electricity price regions, the prices differ mainly 
between the northern part and the southern part of Norway. We, therefore, use dif-
ferent production costs dependent on whether the candidate locations are in northern 
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Norway (N) or southern Norway (S). All candidate locations situated in and north of 
Trondheim are considered to belong to the northern region.

To calculate the production costs in periods 1 to 9, we use the 2021 yearly aver-
age electricity prices for the two regions. On average, the prices in the southern 
region were 1.8 times higher than prices in the northern region in 2021 (Nord Pool 
AS 2022). For periods 10 to 14, we use the electricity price based on the forecast 
from NVE (2021) that predicts a smaller difference between the northern and the 
southern region. According to this forecast, the price in the southern region should 
be about 1.2 times higher than in the northern region. The production costs are cal-
culated using the model by Jakobsen and Åtland (2016). The production costs at 
100% capacity utilization for southern (S) and northern Norway (N) are shown in 
Table 2.

For each capacity level, we approximate the short-term production cost function 
by a piecewise linear function with 4 breakpoints. The production range for elec-
trolysis is 15% − 100% (NEL Hydrogen 2018). Thus, we define breakpoints of the 
short-term cost function at 15% , 50% , 80% , and 100% of the installed capacity level. 
For each capacity level, the 15% breakpoint represents the minimum production 
requirement.

5.2  Penalty costs

We define penalty costs for each unit of demand shortfall and capacity excess. Since 
the focus of this case study is on domestic hydrogen production for domestic cus-
tomers, we set high penalties for both demand shortfall and capacity excess of 109 €/
kg to avoid both import and export of hydrogen.

5.3  Distribution costs

Hydrogen is distributed in trucks as pipelines are not a suitable distribution solution 
for Norway. Distribution costs per kilometer and kilogram of hydrogen are based on 
the hydrogen distribution study provided by Danebergs and Aarskog (2020) and taken 
from Štádlerová and Schütz (2021). The distribution costs are defined for different dis-
tance intervals as shown in Table 3. The maximum distance between production facili-
ties and customers is 1000 km.

5.4  Demand

The total hydrogen demand consists of three components:

Table 1  Investment costs for electrolysis (Štádlerová and Schütz 2021)

Discrete capacity 1 2 3 4 5 6 7 8

Capacity (tonnes/day) 0.6 3.1 6.2 12.2 30.3 61.0 151.5 304.9
Investment (mill. €) 1.4 6.0 11.2 20.5 46.5 87.2 197.7 371.5
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• Maritime demand (Ocean Hyway Cluster 2020a),
• Land-based demand (DNV GL 2019),
• Offshore demand (Aglen and Hofstad 2022).

The maritime demand is based on public contracts for high-speed passenger ferries 
and car ferries. This component is considered to be deterministic and is present in all 
demand scenarios. In the land-based and offshore sectors, the future demand share 
among competing zero-emission carriers is highly uncertain. Thus, the demand share, 
and as such the total demand for hydrogen, from these sectors differs in each scenario. 
The deterministic demand estimations in DNV GL (2019) and Aglen and Hofstad 
(2022) are highly uncertain and we consider them to represent the maximal potential 
demand for hydrogen in these sectors.

Figure 4 shows the evolution of the maximum potential demand for all demand 
components over the planning horizon. Maritime demand is characterized by a 
steady demand increase, and the demand jump in time period 11 represents ships 
on the coastal route Bergen-Kirkenes that will switch to hydrogen fuel as well. 
The transition towards hydrogen in the land-based sector is expected to come in 
two waves that cause the demand jumps in periods 4 and 9. In the offshore sector, 
most of the ships should be transformed to use hydrogen fuel before period 10. 
Afterwards, the demand is almost constant.

We assume that the share of each of the demand components is independent 
and given by a specific distribution. The effect of competing zero-emission is 
considered by using scenarios with low hydrogen demand since some customer 
segments can decide for using battery electric solutions or ammonia instead of 
hydrogen. Since also the demand distribution is subject to uncertainty, we study 
the impact of different demand distributions on the infrastructure.

To assess the impact the demand distribution has on the solution, we solve 
our model for a uniform (unif) distribution, a normal (norm) distribution, as well 
as three different triangular distributions, see Fig.  5. The uniform and the nor-
mal distributions have identical expected values, whereas the expected value of 
the triangular distributions depends on their shape. The left-skewed triangular 

Table 2  Production costs for EL at 100% capacity utilization

Discrete capacity 1 2 3 4 5 6 7 8

Capacity (tonnes/day) 0.6 3.1 6.2 12.2 30.3 61.0 151.5 304.9
Production S (€/kg) 4.26 4.21 4.20 4.18 4.16 4.14 4.13 4.11
Production N (€/kg) 2.54 2.50 2.47 2.46 2.44 2.42 2.40 2.39

Table 3  Hydrogen distribution costs in [€/km/kg H 
2
 ] (Štádlerová and Schütz 2021)

Distance (km) 1–50 51–100 101–200 201–400 401–800 801–1000

Costs 0.00498 0.00426 0.00390 0.00372 0.00363 0.00360
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distribution (trg-L) assumes demand to consist mainly of maritime demand and a 
low share of land-based and offshore demand, while the right-skewed triangular 
distribution (trg-R) assumes a high overall demand level. Finally, we present a 
left-skewed triangular distribution with the expected value equal to the maritime 
demand level with a very low of the Land-based and Offshore demand (trg-min).

We consider aggregated daily demand in 70 and 390 demand points located 
in Norway. For the maritime and offshore sectors, there are 51 demand points 
located in Norwegian ports. For the instances with 70 customers, we consider 
additional 19 municipalities with the highest road traffic volumes (Statistics Nor-
way 2018). Road traffic demand is then divided among the 70 customers accord-
ing to the relative traffic volume. For the instances with 390 demand points, we 
divide road traffic demand among the 390 municipalities. Note that municipalities 
with a daily hydrogen demand from road traffic of less than 10 kg are neglected.

6  Computational results

All calculations have been carried out on a Linux cluster with two 3.6 GHz Intel 
Xeon Gold 6244 CPU (core) processors and 384 GB RAM. We use commercial 
software Gurobi Optimizer 9.5. to solve the demand allocation and facility utiliza-
tion problem in our algorithm, as well as the LP relaxation of the problem and the 
original MIP to optimality. We implemented our algorithm in Julia 1.6.5. and enable 
parallelization on up to 32 threads.

We define the names of the problem instances by indicating the number of can-
didate facility locations (F), customers (D) and available capacity levels (C). For 
example, the problem instance F17D70C8 is a problem instance with 17 candidate 
facility locations, 70 customers and 8 available capacity levels. F17D70C8 also rep-
resents the real-world case of designing the hydrogen production infrastructure in 
Norway.

Fig. 4  Annual daily demand
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6.1  Comparison with the expected value problem

For instance F17D70C8, we calculate the solution to the deterministic expected 
value problem (EVP) and compare the results with the stochastic problem (SP) 
using 3, 50, and 100 scenarios. We study the performance of first-stage solutions 
on a reference sample with 1000 scenarios for each distribution. When solving 
the EVP, the different scenarios are replaced by a single scenario where all cus-
tomers request their expected demand. The expected demand level is illustrated 
in Fig. 6. Note that the normal and uniform distributions have identical expected 
demand and thus, identical EVPs, while each triangular distribution has different 
expected demand.

The expected value of the EVP solution (EEV) is calculated by evaluating the 
first-stage solution from the EVP over the reference sample with 1000 scenarios. 
We further evaluate first-stage decisions from solving the SP using 3, 50, and 100 
scenarios over the reference sample with 1000 scenarios. The objective value is 
then denoted RP. Note that problems with 3 scenarios are solved to optimality 
using Gurobi (the Lagrangian heuristic provides solutions with a proven optimal-
ity gap < 2% ). The problems with 50 and 100 scenarios are solved with a proven 
optimality gap < 4% using the Lagrangian heuristic, while Gurobi cannot find any 
feasible solution within three days of computing time. The value of the stochastic 
solution (VSS) given as VSS = EEV − RP (see, e.g., Birge and Louveaux 2011), 
provides a lower estimate of the true VSS since we do not solve the problem with 
1000 scenarios to optimality.

Fig. 5  Probability density function of demand share distribution
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Results in Table 4 show the EEV and the RP considering first-stage solutions 
obtained for 3, 50, and 100 scenarios. For each RP solution, we calculate the 
relative VSS to EEV. The EVP solution for normal, uniform and right-skewed 
triangular distribution is feasible only when using penalties for capacity excess 
for scenarios with low demand. Both left-skewed triangular distributions (trg-L, 
trg-min) have sufficiently low expected values so that the penalties for capacity 
excess are avoided. Simultaneously, capacity expansion in the second stage pro-
vides sufficient flexibility to always avoid penalties for demand shortfall. This 
also applies if only maritime demand is considered when determining the loca-
tions and initial capacity of the production facilities to be opened (i.e., the first-
stage decisions).

When increasing the number of scenarios from 50 to 100, first-stage decisions 
based on a solution to SP with 100 scenarios lead to lower RP. The improvement 
in RP when using 100 scenarios instead of 50 is at least 5.9% , 14.4% , 1.2% , 10.6% , 
7.9% for the normal, uniform and triangular distributions, respectively. Therefore, 
we focus on the results for 100 scenarios in our further evaluations.

In general, the installed capacity in symmetric and right-skewed EVPs is con-
siderably higher than the highest installed capacity among SPs (see Fig.  7) and 
therefore penalties for capacity excess apply in low-demand scenarios. The excep-
tions are the left-skewed distributions. The solution to EVP for trg-L installs slightly 
less capacity than the solution to SP in the first time periods while from period 9 
onwards the installed capacity is higher. Note that in period 9, there is the most sig-
nificant jump in the expected demand level for trg-L. The solution to SP leads to 
more conservative opening decisions to avoid low capacity utilization in scenarios 
where demand is realized below the expected value. Considering the distribution 
trg-min, the solution to SP installs more capacity to save expansion costs in sce-
narios where demand is realized above the expected value.

We can further observe (with exception of trg-min) that the installed capacity in 
SP is considerably lower than the expected demand while in the EVP, the installed 
capacity is close to the expected demand level. The reason is that capacity expansion 
is more expensive than opening a big facility right away. For a known demand level, 
the aim is to satisfy demand with very few expansions. Among the results for the SP, 

Fig. 6  Expected demand level
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solutions for the uniform and the trg-min distributions lead to the lowest installed 
capacity. The uniform distribution is characterized by the highest variance among 
scenarios. Since the capacity level can be easily increased by expansion, the solution 
installs less capacity in the first stage to avoid low capacity utilization in scenarios 
with a low demand level.

When sampling multiple times, 3 scenarios are not always sufficient to avoid pen-
alties even if the problem with 3 scenarios can be solved to optimality using Gurobi. 
In order to avoid penalties for capacity excess, at least one of the three scenarios 
has to be a scenario with a relatively low demand level which forces the solution to 
install less capacity. The solution to EEV for trg-min has shown that capacity expan-
sion enables to increase the capacity, if necessary, and to avoid penalties for demand 
shortfall. Considering 50 and 100 scenarios, the probability of having a low-demand 
scenario in a sample is sufficiently large.

6.2  Solution structure

To analyze the opening decisions for different demand distributions, we study the 
structure of the first-stage decisions for instance F17D70C8, solved with 100 scenar-
ios with a proven optimality gap < 4% . We focus on the normal, left-skewed trian-
gular, and uniform distributions as these are considered to reflect plausible demand 

Table 4  Out-of-sample evaluation for F17D70C8

dist EEV (106) 3 scen 50 scen 100 scen

RP (106) VSS [%] RP (106) VSS [%] RP [106] VSS [%]

norm 37, 531.9 3, 134.3 91.65 2, 958.6 92.12 2, 945.5 92.15
unif 139, 380.4 3, 359.2 97.59 2, 935.5 97.89 2, 925.6 97.90
trg-L 2, 742.5 2, 726.8 0.57 2, 695.0 1.73 2, 692.1 1.84
trg-R 27, 339, 684.7 3, 702.1 99.99 3, 347.1 99.99 3, 279.6 99.99
trg-min 2, 565.8 2, 502.0 2.49 2, 318.6 9.63 2, 274.3 11.36

Fig. 7  Installed capacity in the first stage (100 scenarios)
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scenarios for Norway. The geographical locations of opened facilities in different 
time periods are shown in Fig. 8. We visualize the opened facilities in periods 1, 
5, and 9, which allows us to analyze the main investment steps. Note that the solu-
tions open the last new facility in period 9. From period 10 onwards, there are no 
additional first-stage opening decisions and demand increase is only compensated 
by capacity expansion.

In the first period (see Fig.  8a), the facilities are located in the middle of the 
southern and northern regions. These are strategic locations which can satisfy all 
customers without the necessity to open small local facilities. Surprisingly, the high-
est installed capacity is in the trg-L distribution, which is the distribution with the 
lowest expected demand. At the same time, this distribution is characterized by the 
lowest variance among scenarios. Therefore, the solution aims to install sufficient 
capacity to satisfy demand in more scenarios without expansion since opening right 
away a bigger facility is cheaper than expansion. These savings in investment costs 
compensate for higher production costs in low-demand scenarios with low capac-
ity utilization. Figure  8b illustrates the opened facilities in period 5. We see that 
the solution opens most facilities when considering the trg-L distribution, while the 
fewest facilities are opened for the uniform distribution. The locations of the opened 
facilities are spread out along the entire coastline, irrespective of distribution. In 
period 9 (see Fig. 8c), 16 out of 17 possible facilities are opened. Hydrogen produc-
tion is characterized by economies of scale. However, high distribution costs domi-
nate economies of scale in production and therefore the solution chooses to open 
many relatively small facilities.

For all distributions, the largest facilities are opened in Kollsnes and Trondheim. 
Kollsnes has a strategic position on the west coast of Norway as most of the mari-
time customers and road traffic customers in the southern part of Norway are located 
within 1000 km distribution distance. Trondheim is an important location as it is 
the only location in the northern region that can supply road traffic customers in the 
southern part of Norway. A facility in Trondheim can therefore exploit both lower 

Fig. 8  First-stage decisions: investment in the SP
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production costs due to lower electricity prices and economies of scale in production 
due to supplying municipalities with high demand.

Most of the production is located in the southern region. Even if production is 
cheaper in the northern region, distribution costs are high. If the distance travelled 
from a facility in the southern region is about 470 km shorter than from a facility 
in the northern region, it is favourable to use the facility located in the southern 
region. It would therefore be cheaper to supply all coastal customers south of Florø 
from local facilities rather than from Trondheim, even though the latter has cheaper 
production.

When considering a higher number of facilities, the number of opened facilities 
in the solution increases as well. Similar to the instance F17D70C8, due to high dis-
tribution costs, local production is preferred to centralized large-scale production in 
all instances. Further, most of the production is located in the southern region close 
to the customers. A facility located in the southern part of the northern region still 
plays plays a crucial role in supplying customers in the northern part of the southern 
region using the advantage of lower production prices. Further, a higher number of 
available capacities leads to lower objective. However, it does not lead to any struc-
tural changes in the infrastructure. The timing of the investment decisions is mostly 
affected by the demand curves and the fact that the production technology has min-
imum production requirements. Therefore, the opening of new facilities is in line 
with the demand increase. Since, the main characteristics of the solutions for larger 
instances are the same as we describe for instance F17D70C8, we have decided not 
to discuss them in detail.

6.3  Solution quality

To analyze the quality of our lower bound, we compare it with the optimal solu-
tion to the MIP and with the LP relaxation bound and calculate the optimality 
gap. Given the complexity of the problem, Gurobi can find optimal solutions 
and solve the LP relaxation only for a few instances with 3 scenarios even when 
allowing four days of computing time. In Table  5, we provide the results for 
two different samples and demand distributions for the instance F17D70C8, the 
instance F25D70C16 for the left-skewed triangular distribution and the instance 
F17D70C16 for the normal distribution since Gurobi can find an optimal solution 
within four days of computing time only for these instances. When increasing 
the size of the problem size, neither the MIP nor the LP relaxation can be solved 
within the time limit. Table 5 shows the objective value of the LP relaxation and 
the Lagrangian bound as well as the time needed to solve the LP relaxation to 
optimality. Since the MIP optimal solution is known, we calculate the optimality 
gaps. Our Lagrangian heuristic finds good lower bounds within three hours with 
an optimality gap only slightly higher than the one of the LP relaxation (about 
0.5% ). For larger instances, the LP relaxation cannot be solved within four days 
which highlights the importance of scalable methods such as our Lagrangian 
heuristic.
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To discuss the performance of our algorithm and the quality of our solution, 
we show the results of our algorithm for 100 scenarios after 1 h and after 5 h of 
computing time in Table 6. We show the lower and upper bound, as well as the 
resulting gap and provide the computing time required to achieve a gap lower 
than 5% . For instance F17D70C8, we also show the results of our algorithm for 
10, 25, 50, and 100 scenarios to assess the scalability of our algorithm when the 
number of scenarios increases.

Our Lagrangian heuristic finds good feasible solutions for all tested instances 
within a time limit of one hour. When increasing the time limit to 5 hours, we also 
observe a slight improvement in the lower bound. However, the main improve-
ment is due to finding better feasible solutions with lower objective function val-
ues. After 5 hours, a solution with a proven optimality gap < 5% can be found for 
all tested instances.

The results show that for instances with a small number of scenarios, we find 
solutions with lower optimality gaps than for instances with a higher number of sce-
narios, since more iterations are performed and it is easier to find a first-stage solu-
tion that avoids penalties for all scenarios. However, the difference in solution qual-
ity between 50 scenarios and 100 scenarios is minimal.

Surprisingly, when increasing the problem size from 8 to 16 capacities, the result-
ing optimality gap tends to decrease, just as the run time needed to achieve a gap 
< 5% . With 16 capacities, it is easier to find a suitable capacity level for the required 
production quantities than with 8. Therefore, our upper bound heuristic finds good 
solutions with low optimality gaps already in early iterations.

Since we allow for parallelization on up to 32 threads when calculating the lower 
bound, we further observe that increasing the number of candidate facility loca-
tions has a relatively low impact on the quality of our solution. However, with 34 

Table 5  Quality of the bounds for 3 scenarios

Instance dist Gurobi LR bound Opt. gap [%]

LP relax. 3h LP LR

Obj ( ×106) Time (s) Obj ( ×106) Relax Bound

F17D70C8 norm 3563.4 1290 3561.7 0.47 0.52
F17D70C8 trg-L 2789.5 1378 2789.3 0.44 0.45
F17D70C8 unif 3658.1 936 3657.3 0.46 0.48
F17D70C8 norm 2892.7 1813 2891.1 0.41 0.47
F17D70C8 trg-L 3007.6 3022 3007.3 0.55 0.56
F17D70C8 unif 3198.0 1200 3196.7 0.33 0.37
F17D70C16 norm 2757.1 77473 2756.8 0.50 0.51
F17D70C16 trg-L – – 3311.5 – –
F17D70C16 unif – – 3082.0 – – 
F25D70C16 norm – – 2836.3 – – 
F25D70C16 trg-L 3268.1 305954 3267.0 0.45 0.49
F25D70C16 unif – – 3136.3 – – 
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Table 6  Computational results

Instance dist scen 1 h 5 h Time to gap

LB UB Gap LB UB Gap

(×106) (×106) [%] (×106) (×106) [%] < 5%

F17D70C8 norm 10 2972.2 3061.9 2.93 2972.7 3058.7 2.81 218
F17D70C8 trg-L 10 2868.4 2938.8 2.40 2868.9 2935.6 2.27 229
F17D70C8 unif 10 3135.3 3256.5 3.72 3135.8 3224.0 2.74 246
F17D70C8 norm 25 3065.4 3166.8 3.20 3065.4 3166.8 3.20 747
F17D70C8 trg-L 25 2730.6 2834.9 3.68 2731.0 2826.8 3.39 1331
F17D70C8 unif 25 2986.9 3121.6 4.32 2987.6 3089.3 3.29 589
F17D70C8 norm 50 2931.6 3041.3 3.61 2931.9 3041.3 3.60 3474
F17D70C8 trg-L 50 2762.6 2892.9 4.51 2763.0 2863.6 3.51 2433
F17D70C8 unif 50 2944.8 3089.2 4.68 2945.2 3064.7 3.90 1273
F17D70C8 norm 100 2949.4 3095.2 4.71 2950.3 3063.5 3.70 3043
F17D70C8 trg-L 100 2766.4 2895.5 4.46 2767.0 2877.5 3.84 2610
F17D70C8 unif 100 2905.9 3061.4 5.08 2906.7 3024.4 3.89 5099
F17D70C16 norm 100 2929.6 3063.1 4.36 2930.1 3009.8 2.65 2937
F17D70C16 trg-L 100 2749.1 2849.6 3.53 2749.5 2843.7 3.31 2610
F17D70C16 unif 100 2882.0 2988.3 3.56 2882.4 2982.9 3.37 2712
F25D70C8 norm 100 2908.7 3058.2 4.89 2909.0 3039.8 4.28 3248
F25D70C8 trg-L 100 2729.0 2848.6 4.21 2729.7 2848.8 4.18 3021
F25D70C8 unif 100 2861.6 3041.0 5.90 2862.7 2989.6 4.25 8654
F25D70C16 norm 100 2892.3 3058.3 5.43 2892.9 2981.2 2.96 3813
F25D70C16 trg-L 100 2713.3 2853.9 4.93 2714.0 2812.4 3.50 3516
F25D70C16 unif 100 2844.5 2991.2 4.91 2845.1 2940.3 3.24 3298
F34D70C8 norm 100 2903.6 3086.4 5.92 2903.9 3044.1 4.60 8807
F34D70C8 trg-L 100 2724.7 2847.9 4.32 2725.4 2847.9 4.30 2980
F34D70C8 unif 100 2856.4 3054.8 6.49 2857.5 2995.8 4.61 8295
F34D70C16 norm 100 2888.6 3077.7 6.15 2889.2 3007.9 3.95 5185
F34D70C16 trg-L 100 2710.0 2841.9 4.64 2710.5 2810.9 3.57 3532
F34D70C16 unif 100 2841.2 3018.0 5.86 2841.6 2960.7 4.02 6267
F17D390C8 norm 100 2787.8 3066.9 9.10 2814.0 2902.6 3.05 4373
F17D390C8 trg-L 100 2421.5 2618.8 7.53 2450.7 2548.5 3.83 4819
F17D390C8 unif 100 2669.1 2817.6 5.27 2695.7 2802.1 3.80 4068
F17D390C16 norm 100 2767.5 2997.2 7.66 2795.7 2867.9 2.52 5128
F17D390C16 trg-L 100 2396.8 2637.9 9.14 2433.5 2500.7 2.69 4474
F17D390C16 unif 100 2654.7 2919.9 9.08 2677.5 2754.7 2.80 3845
F25D390C8 norm 100 2727.5 3139.2 13.11 2779.0 2878.8 3.47 7727
F25D390C8 trg-L 100 2362.7 2734.2 13.58 2418.4 2515.8 3.87 10339
F25D390C8 unif 100 2611.9 2962.0 11.82 2662.5 2780.5 4.24 8531
F25D390C16 norm 100 2703.3 3027.8 10.72 2763.6 2857.0 3.27 6159
F25D390C16 trg-L 100 2337.4 2723.4 14.18 2403.6 2491.8 3.54 6326
F25D390C16 unif 100 2596.3 2997.7 13.39 2646.3 2734.1 3.21 5129
F34D390C8 norm 100 2697.1 3101.6 13.04 2772.2 2903.0 4.50 9855
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candidate locations, we can see that the resulting gap increases as well as the time 
needed to achieve a gap < 5% , since the number of iterations performed during the 
computing time decreases.

The instances with 390 customers are characterized by relatively long computing 
times to achieve an optimality gap < 5% . The time needed to update the Lagrangian 
multipliers increases as the size of the problem (29)–(33) depends on the number of 
customers and scenarios. In later iterations, updating the multipliers takes approxi-
mately 70% of the time needed for one iteration. When increasing the time limit, 
we see a considerable improvement in the upper bound. However, the lower bound 
improves in average by 2%.

7  Conclusion

We have studied the problem of locating hydrogen production facilities in Nor-
way under demand uncertainty. We have formulated our problem as a two-stage 
stochastic multi-period facility location and capacity expansion problem consid-
ering minimum production requirements. The state-of-the-art commercial solver 
Gurobi can solve only the smallest instances with a low number of scenarios. 
Since the out-of-sample performance can be improved considerably when increas-
ing the number of scenarios, we present a solution method based on Lagrangian 
relaxation to solve larger problems with a higher number of scenarios. With our 
algorithm, we find high-quality solutions for all tested instances within five hours 
computing time.

Results for small test instances indicate that our algorithm provides good lower 
bounds. Thus, for future work, the improvement potential lies within the upper 
bound heuristic. We further observed that the box-step method is a limiting fac-
tor for instances with a large number of customers, as the time needed to update 
the Lagrangian multipliers increases considerably. If shorter computing times are 
needed, exploring different methods or a combination of methods for the calcula-
tion of the Lagrangian dual may be a promising direction.

When solving our facility location model for the problem of locating hydro-
gen production in Norway, we see that due to high distribution costs, the solution 

Table 6  (continued)

Instance dist scen 1 h 5 h Time to gap

LB UB Gap LB UB Gap

(×106) (×106) [%] (×106) (×106) [%] < 5%

F34D390C8 trg-L 100 2372.2 2631.1 9.84 2412.5 2526.2 4.50 6848
F34D390C8 unif 100 2581.4 3006.3 14.13 2627.1 2760.6 4.84 8951
F34D390C16 norm 100 2695.1 3009.3 10.44 2779.0 2878.9 3.47 7857
F34D390C16 trg-L 100 2315.3 2778.4 16.67 2400.5 2509.8 4.35 10645
F34D390C16 unif 100 2517.1 3098.3 18.76 2642.6 2761.1 4.29 8118
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chooses to open facilities at most of the candidate locations. Furthermore, most 
of the production is located in the southern part of Norway, since high distribu-
tion costs dominate the lower production costs in the northern part of Norway. 
The facility in Trondheim is therefore characterized by high opening capacity as 
it has low production costs and many road traffic customers in the southern part 
of Norway are within the distance limit. However, the demand scenarios used 
in our analysis are characterized by a large degree of uncertainty. We show that 
different distribution types do not have a large impact on size and location of the 
opened facilities. Still, more precise input data, in particular for future hydro-
gen demand, may provide a better basis for generating the scenario tree for our 
problem. Additional research efforts should therefore be dedicated to estimating 
future hydrogen demand, but this is outside the scope of the analysis in this paper.

The model can be further extended by including the choice of production tech-
nology. Together with including uncertainty in investment and production costs, 
the model might also be used to capture uncertainty in technology development. 
This is subject to future research.
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