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Abstract
In order to characterize non-linear system dynamics and to generate term structures 
of joint distributions, we propose a flexible and multidimensional approach, which 
exploits Wasserstein barycentric coordinates for histograms. We apply this method-
ology to study the relationships between the performance in the European market of 
the renewable energy sector and that of the fossil fuel energy one. Our methodology 
allows us to estimate the term structure of conditional joint distributions. This opti-
mal barycentric interpolation can be interpreted as a posterior version of the joint 
distribution with respect to the prior contained in the past histograms history. Once 
the underlying dynamics mechanism among the set of variables are obtained as opti-
mal Wasserstein barycentric coordinates, the learned dynamic rules can be used to 
generate term structures of joint distributions.

Keywords Wasserstein barycenters · Density forecast estimation · Renewable 
energy indices · Fossil fuel indices

1 Introduction

The paper proposes a methodology, which provides forecast estimations of the joint 
density of the market dynamic of fossil-fuel and renewable energy prices, in Europe. 
We provide a framework for evaluating and improving multivariate density forecast 
based on optimal transport (OT) theory, which generalizes vector auto-regression 
modelling for densities. The methodology builds from OT, which aims at finding the 
less costly way for moving a probability distribution with a given shape to a target 
probability distribution. In particular, OT algorithms are used to compute the mean 
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of a set of empirical probability measures representing energy prices, under the OT 
metric. That is, our forecasted densities are Wasserstein barycenter, a measure that 
minimizes the sum of its Wasserstein distances to each element in a set. Namely, 
we propose to obtain the estimated evolution of the conditional joint distribution of 
fossil-fuel and renewable energy prices by directly minimizing the sum of OT dis-
tances from the their joint density at time t to a set of densities representing the joint 
dynamics at t − 1, t − 2,… , t − T .

Against this background, several papers have investigated the interactions 
between conventional energy resource (oil) prices and renewable ones, showing that 
a rise in oil prices causes prices of renewable stocks to rise. Henriques and Sador-
sky (2008), Kumar et al. (2012) and Managi and Okimoto (2013) have highlighted 
a significant positive response of clean energy stock prices to oil price shocks due 
to a substitution effect between traditional fossil fuels and renewable energy. Using 
multivariate GARCH models, Sadorsky (2012) has analyzed the volatility spillover 
between oil prices, technology stock prices, and clean energy stock prices, show-
ing that the stock prices of clean energy companies are more highly correlated with 
technology stock prices than with oil prices in terms of volatility. Wen et al. (2014) 
have also studied the return and volatility spillover effects between Chinese renewa-
ble energy stock prices and fossil fuel stocks, using the asymmetric (BEKK) model, 
finding that renewable energy and fossil fuel stocks were competing assets, with sig-
nificant mean and volatility spillovers between them, even though renewable energy 
stocks were riskier than fossil fuel stocks. In a more recent analysis the spillover 
approach by Diebold and Yilmaz (2009, 2012, 2014) and its extension proposed by 
Baruník and Křehlík (2018) is employed to identify the connectedness and its evo-
lution in the electricity market. Using continuous wavelets and non-linear Granger 
causality in the time-frequency domain, Reboredo et al. (2017) have studied the co-
movement and causality between oil and renewable energy stock prices, showing 
that the dependence was weak in the short run but gradually strengthened towards 
the long run. In order to study the impact of energy price movements on clean 
energy stock returns with a multivariate vine-copula dependence setup, Reboredo 
and Ugolini (2018) have examined dynamics volatility spillovers between clean 
energy stock prices and different energy prices (oil, gas, electricity and coal) taking 
into account direct and indirect transmission channel. The connectedness methodol-
ogy proposed by Baruník and Křehlík (2018) is employed by Ferrer et al. (2018) to 
investigate the dynamics of return and volatility connectedness over time and across 
frequencies simultaneously among stock prices of U.S. alternative energy compa-
nies, crude oil prices and a number of influential financial variables, namely high 
technology and conventional energy stock prices, U.S. 10-year Treasury bond yields, 
the U.S. default spread and the volatility of U.S. equity and Treasury bond markets. 
Results show that most of return and volatility connectedness is found in the short-
term and the crude oil prices are not the key driver of renewable energy companies 
performance, as opposed to Reboredo and Ugolini (2018). Using a Time-Varying 
Parameter VAR model with Stochastic Volatility, Urom et al. (2022) have examined 
the directional predictability from oil price uncertainty to clean energy sectors, char-
acterizing the level of spillovers with wavelet and Cross-Quantilogram techniques. 
Their analysis reveals that the direction and the magnitude of the response of clean 
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energy sectors to oil market uncertainty vary across sectors, and depend on mar-
ket conditions and investment horizons while the level of shock spillovers to clean 
energy sectors from oil price uncertainty is stronger in the intermediate and long-
term. By employing a Quantile Vector Autoregression framework, Khalfaoui et al. 
(2022) have investigated time-frequency transmission and connectedness among 
green Indices. Evidence from empirical results has shown high spillover and volatil-
ity effects among the Indices and a strong connectedness between climate change 
Indices at extreme lower and upper quantiles.

As mentioned above, the existing prediction methods of co-movement estima-
tion of energy price series have some room for improvement. Indeed, there is a lack 
of research on the probabilistic prediction of energy price behavior especially for 
what concern renewable and fossil fuel asset prices. The existing studies mainly 
focus on the point forecasts, which could not quantify uncertainty and provide less 
information for policymaking. Moreover, the existing studies have not established a 
comprehensive factor system based on Europe’s background. To fill up the research 
gaps discussed above, we propose a flexible and multidimensional approach, which 
exploits Wasserstein barycentric coordinates for histograms to characterize non-lin-
ear system dynamics and to generate term structures of joint distributions (see e.g. 
Bonneel et al. 2016). Our methodology allows us to estimate the term structure of 
conditional (in the Wasserstein sense) joint distributions. Wasserstein distances are 
metrics on probability distributions inspired by the problem of optimal mass trans-
portation. They measure the minimal effort required to reconfigure the probability 
mass of one distribution in order to recover the other distribution (see Panaretos and 
Zemel 2019). Initially formulated by Monge (1781) as an intractable non-convex 
optimization its modern linear programming formulation is due to Kantorovich 
(1942), and is presented in details in Villani’s monograph (see Villani 2021). We 
apply this methodology to study the relationships between the market performance 
of the renewable energy sector and that of the fossil fuel energy sector, in Europe. 
We focus on the behavior of the European Renewable Index (ERI), which proxies 
the renewable energy sector, and the MSCI Europe Energy (MSCI EE), which is 
designed to capture the large and mid cap companies performance across Integrated 
Oil and Gas segments (see Belhassine 2020). We consider discrete measures sup-
ported on the same set of points and we construct the one period-ahead conditional 
joint distribution as the Wasserstein barycentric interpolation, which minimizes the 
�2 norm between the joint distribution of ERI and MSCI EE at time t and the joint 
distributions realized at t − 1, t − 2,… , t − T  . This optimal barycentric interpola-
tion, obtained as Frechet means in the space of probability measures endowed with 
the Wasserstein metric (see Agueh and Carlier 2011), can be interpreted as a pos-
terior version of the joint distribution observed at time t with respect to the prior 
contained in the past histograms history. Once the underlying dynamic mechanism 
among the set of variables are obtained as optimal Wasserstein barycentric coor-
dinates, the learned rules can be used to generate term structures of joint distribu-
tions. Using non-parametric methods allows us to remain agnostic about the nature 
of dynamic interactions between variables of interest, allowing the data to inform 
us instead. The densities themselves are not assumed to have any specific paramet-
ric form, leading to flexible forecasting of future unobserved densities. Moreover, 
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our probabilistic prediction could provide not only the upper and lower of the pre-
diction interval but also the probability density of each point at each time. To the 
best of our knowledge, this paper is the first document to provide the probability 
density forecasts for renewable and fossil fuel energy prices. This might become 
even more relevant in light of the advent of large, exogenous shocks to the finan-
cial and socioeconomic fabric of countries such as COVID-19 (Spelta et al. 2021), 
climate-related natural disasters (Pagnottoni et al. 2022), or human-related disaster 
such as the Russian–Ukrainian war (Umar et al. 2022), which alter shock propaga-
tion mechanisms in financial markets and real economies to different extents (Spelta 
et al. 2020). Indeed, energy commodity price volatility began mounting in Decem-
ber 2021 when reports of a potential Russian invasion of Ukraine increased and in 
the first two weeks after the invasion, the prices of oil, and gas went up by around 
40%, and 180% respectively.

Our empirical application shows that the one-step ahead predicted joint distribu-
tion is approximately Gaussian suggesting market efficiency on the long-run, while 
on the short-run we observe some departures during crisis phases, where the distri-
bution moves towards negative returns. The two-steps and three-steps ahead fore-
casts highlight an increasing variance of the model predictions which reflects the 
higher uncertainty of the forecasts, due to the longer projecting horizon. Moreover, 
our results reveal the capability of the Wasserstein methodology to describe the joint 
dynamic of the ERI and MSCI EE indices outperforming benchmark linear models, 
generally adopted for time series prediction.

The paper proceeds as follows: Sect. 2 contains a brief review of the literature on 
optimal transport together with the presentation of the technique employed; Sect. 3 
provides some descriptive statistics and illustrates the performance of the Wasser-
stein methodology while Sect. 4 concludes.

2  Methodology

2.1  Background on optimal transport and some notation

In order to define our model, we now provide some minimal background on opti-
mal transport and Wasserstein distances, including some relevant notation. Given 
the simplex ΣN

def.
=

�
h ∈ ℝ

N
+
;
∑

i hi = 1
�
 of N dimensional normalized histograms, 

and consider a family of K reference histograms 
(
h1,… , hK

)
 in ΣN . To interpolate 

between these K histograms, we consider barycentric weights � ∈ ΣK . For a matrix 
A ∈ ℝ

N×N
+

 , we write E(A) =
∑

i,j Ai,j log
�
Ai,j

�
 its negative entropy, with the conven-

tion 0 log 0 = 0 . For two matrices A, B of the same size, we write ⟨A,B⟩ = tr
�
A⊤B

�
 

for their usual inner-product, where A⊤ is the transpose of A. We write 1 for the 
vector with unit coordinates whose size depends on the context. The �� norm for 
� ≥ 1 is ‖h‖�

�

def.
=

∑
i h

�
i
 . The Kullback–Leibler divergence between two histograms 

is KL(p ∣ q)
def.
=

∑
i pi log

�
pi∕qi

�
. In this paper, multiplication ( 

∏
 for products 

of many terms and ⊙ for two terms) and division / operators between vectors are 
applied entry-wise, as well as exponential exp and logarithmic log maps.
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Of particular relevance to this paper is the recent interest for entropy regular-
ized approaches to solve optimal transport problems (see Cuturi 2013). Instead of 
a linear programming, entropic smoothing allows the use of Bregman optimization 
tools (see Bregman 1967), and in particular the Sinkhorn’s algorithm (see Sinkhorn 
1964). In the case of entropic regularization, the Wasserstein distance is defined as:

where (p, q) in ΣN are two generic histograms and the matrix C quantifies the cost of 
transporting mass between histogram bins. For instance, if bins are sampled at some 
locations xi , xj in a Euclidean space, a common choice for C would be 
Ci,j =

‖‖‖xi − xj
‖‖‖
2

 . Indeed, for discrete measures, one can store in the matrix C all 
pairwise costs between points in the supports of the distributions. Usually, the 
“ground metric” matrix C is fixed, representing substitution costs between bins, and 
shared across several histograms one would like to compare. In the present paper we 
have employed costs in Euclidean spaces since a nice feature of the Wasserstein dis-
tance over an Euclidean space is that one can factor out translations making compu-
tations easier. Finally, we assume that the regularization parameter � is positive, 
which ensures that the optimal solution of this program is unique.

2.2  Wasserstein conditional joint distribution

To produce multi-period conditional distributional forecasts we start by estimating 
the Wasserstein conditional joint distribution. Consider a time series dataset of nv 
endogenous variables vi,t, i = 1,… , nv and denote by vt =

(
v1,t,… , vnv,t

)�

 the vector 
of date t realizations of the n variables. Suppose that we have nv⋆ exogenous predic-
tors v⋆

t
 , where the predictors are T lags of v, so that nv⋆ = 𝜈 × nv and

Namely, we are interested in estimating a distributional equivalent to a vector autore-
gressive model.

We denote yt the joint distribution of vt , found as the z-dimensional normalized 
histogram over the simplex ΣZ , with Z = �n , being � the number of bins used. We 
initialize the bins bound as;

with �vj being the unconditional standard deviation and we discretize the distribution 
support by employing � = 60 bins and � = 0.2 . This parameter controls the size of 
the initial state-space. We employ the � parameter to create a grid point for the bins 
used for computing the joint distribution.

We define the pairwise cost Ci,j with i, j = 1,… , Z as:

(1)W(p, q)
def.
= min

Π∈ℝN×N
+

�
⟨Π,C⟩ + 𝛾E(Π);Π1 = p,Π⊤

1 = q
�
,

v⋆
t
=
(
v�
t−1

,… , v�
t−𝜈

)�
.

(2)
[
min

(
vj
)
− ��vj , max

(
vj
)
+ ��vj

]
,
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where xi = [d̃r, d̃f ] and xj = [d̃r� , d̃f � ] are two-dimensional returns on the grid 
described by Equation (2). Thus Ci,j describes the cost of moving a mass from a bin 
indexed by xi = [d̃r, d̃f ] to a bin indexed by xj = [d̃r� , d̃f � ].

By starting from the histogram yt representing the joint distribution at time t, the 
dependence structures between variables can be obtained as the weights vector �̂� 
which minimizes the �2 norm between the projection of yt onto the set of all Was-
serstein barycenters Ω(�) formed by T histograms 

(
yt−1,… , yt−T

)
.

In other words, given the Z-dimensional histogram yt ∈ ΣZ , the optimal barycen-
tric coordinates of yt within the reference histograms 

(
yt−1, yt−2,… , yt−T

)
 are com-

puted by finding the vector of probability weights �̂� ∈ ΣT , such that it is an optimal 
solution to problem:

where Ω(�) defines the Wasserstein barycenters (see Cuturi and Doucet 2014) of the 
reference T histograms 

(
yt−1, yt−2,… , yt−T

)
 with weights � , as:

Although there is no closed-form expression for Ω(�) , Benamou et al. (2015) have 
shown that the Sinkhorn fixed-point algorithm can be extended to compute Was-
serstein barycenters. Following Benamou et al. (2015) we can find the approximate 
baricenter as:

where

and a(0)
�

= 1 , K
def.
= e−C∕� is the Z × Z kernel matrix corresponding to the cost C and 

regularization � , such that Ω(�)(�) ⟶
�→∞

Ω(�).
Thus the solution to Equation (3) can be obtained by minimizing a loss function 

on the approximate barycenter Ω(L)(�) computed after a finite number of iterations 
L ≥ 1 . That is, we solve through quasi-Newton methods the following problem:

To determine a stationary point of Equation (5) the gradient of GL with respect to � 
can be computed using the chain rule:

Ci,j =
‖‖‖xi − xj

‖‖‖
2

,

(3)argmin
�∈Σ

G(�) where G(�)
def.
=

1

2
||Ω(�) − yt||22,

(4)Ω ∶ � ↦ Ω(�)
def.
= argmin

y∈ΣZ

T∑

�=1

��W
(
y, yt−�

)
.

Ω(�)(𝜆)
def.
=

T∏

𝜏=1

(
K⊤a(�)

𝜏

)𝜆𝜏

b(�+1)
𝜏

def.
=

Ω(�)(𝜆)

K⊤a
(�)
𝜏

and a(�+1)
𝜏

def.
=

yt

Kb
(�+1)
𝜏

(5)argmin
�∈Σ

GL(�) where GL(�)
def.
=

1

2
||Ω(L)(�) − yt||22.
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The gradient of the loss GL(Ω
(L)(�), yt) evaluated at Ω(L)(�) is

Since Ω(L)(�) is obtained by recursively applying the same map L times, the appli-
cation of the transposed Jacobian 

[
𝜕Ω(L)(𝜆)

]⊤ to the vector ∇GL(Ω
(L)(�), yt) can be 

computed using backward recursive differentiation (see Neidinger 2010). Finally, 
following Bonneel et al. (2016), it is possible to prove that:

where

and the vectors v(�) are computed using backward recursion, i.e.;

initialized with v(L)
def.
= Ψ

(L)

b
∇GL(Ω

(L)(�), y� ).
For finding �̂� that minimizes GL(�) we develop an adaptive gradient descent 

method over a logarithmic domain using the change of variables � =
e�∑
� e

��
∈ ΣT 

and carrying out the optimization over � ∈ ℝ
T . Following Bonneel et al. (2016) and 

Malitsky and Mishchenko (2019) we start by setting �(0)
�

= 1∕T  , and the step size 
�(0) = 1 and the step size ratio �(0) = ∞ . Then, we recursively find the new step size 
as:

and we update � and � as:

2.3  Model selection

The number T of lagged histograms for the derivation of the barycentric interpola-
tion is determined by exploiting the Wasserstein distance as an error measure for 
comparing different probability distributions. In this section we make explicit the 

∇GL(𝜆) = [𝜕Ω(L)(𝜆)]⊤∇GL(Ω
(L)(𝜆), yt).

∇
1

2
||Ω(L)(�) − yt||22 = Ω(L)(�) − yt

(6)∇GL(�) = Ψ
(L)

�
∇GL(Ω

(L)(�), yt) +

L−1∑

�=0

Φ
(�)

�

(
v(�)

)

Φ
(�)

𝜆

def.
=

[
𝜕𝜆Φ

(
b(�)(𝜆), 𝜆

)]⊤
and Φ

(�)

b

def.
=

[
𝜕bΦ

(
b(�), 𝜆

)]⊤
,

Ψ
(�)

𝜆

def.
=

[
𝜕𝜆Ψ

(
b(�)(𝜆), 𝜆

)]⊤
and Ψ

(�)

b

def.
=

[
𝜕bΨ

(
b(�), 𝜆

)]⊤
,

∀� = L − 1, L − 2,… , 0, v(�−1)
def.
= Φ

(�−1)

b

(
v(�)

)

�(k) = min

�√
1 − �(k)�(k−1),

���(k) − �(k−1)��
2��∇GL(�

(k)) − ∇GL(�
(k−1))��

�

�(k) =�(k) − �(k)∇GL(�
(k))

�(k) =
�(k)

�(k−1)
.
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dependence of Ω(L)(�) from the number of lagged histograms 
(
yt−1, yt−2,… , yt−T

)
 

used to solve our optimization problem. Then, we derive a criterion based on the 
minimization of the �2 Wasserstein distance between yt and Ω(L)

T
(�) for different val-

ues of T.
In formulae we choose the optimal lag T⋆ as:

where W2

�
Ω

(L)

T
(𝜆), yt

�2

=
∑

i,j Ξ
⋆
i,j
Ci,j and where and Ξ⋆ is the optimal transport map 

defined as:

2.4  Joint distribution forecast

In order to predict joint probabilities, we exploit the learned dependence structure 
between densities and we apply the estimated model to the realized value at time t 
to determine its value in the next time step t + 1 . We keep fixed the optimal Wasser-
stein baricenters �̂� , which minimizes the �2-norm between the joint probability dis-
tribution at time t and the joint distributions at t − 1, t − 2,… t − T  , and we compute 
the predicted Z-dimensional histogram at t + 1 , as the Wasserstein baricenter among 
the joint distribution realized at t, t − 1,… t − T − 1 . In formulae:

We then proceed by substitution to obtain multiple-step ahead forecasts. 
Namely, by keeping fix �̂� , to forecast the joint density at time t + 2 , we use 
the information set It+1 = {yt+1(�̂�), yt,… , yt−T−2} , while for three-step ahead 
It+2 = {yt+2(�̂�), yt+1(�̂�), yt,… , yt−T−3}.

3  Results

3.1  Preliminary descriptive statistics

To study the relationships between the market performance of the renewable energy 
sector and that of the fossil fuel, we focus on the behavior of the European Renew-
able Index (ERI) which proxies the renewable energy sector and the MSCI Europe 
Energy (MSCI EE) which is designed to capture the large and mid cap companies 
performance across Integrated Oil and Gas segments in Europe.

Table  1 shows summary statistics of the main quantities used throughout 
the paper, namely the monthly returns of the ERI and MSCI EE indices. The 

(7)T⋆ ∈ min
T

W2

(
Ω

(L)

T
(𝜆), yt

)2

,

(8)Ξ⋆ ∈ min
Ξ∈ℝZ×Z

+

�
⟨Ξ,C⟩ + 𝛾E(Ξ);Ξ1 = Ω

(L)

T
(𝜆),Ξ⊤

1 = yt

�
.

(9)yt+1(�̂�)
def.
= argmin

y∈ΣZ

T∑

𝜏=1

�̂�𝜏W
(
y, yt−𝜏−1

)
.
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measures are yearly averages of the values. In the table we report the average 
value, the minimum and the maximum of each quantity along with the stand-
ard deviation, the skewness and the kurtosis of the distribution. Notice how, dur-
ing the phase 2008–2012, the ERI index suffered higher losses compared with 
the MSCI EE, displaying also an increasing standard deviations. In the last part 
of the sample, the MSCI EE index reports higher returns due to the increasing 
energy prices related to the fear and the outbreak of the Ukrainian war.

Figure 1 supports the finding provided in Table 1 by showing the price evolu-
tion of the two indices in the main panel and their pooled returns distributions 
in the right panels. From the figure, two market trends are clearly visible. Up to 
the 2008–2009 financial crisis, the two series have correlated behaviors, but after 
that period, the indices start moving in opposite direction, with an increasing ERI 
index price and a falling performance of the MSCI EE up to the year 2020. This 
suggests a change in the investor behavior which find the renewable energy sec-
tor more attractive then the fossil fuel. The last part of the sample highlights an 
inversion of this trend. Looking at the return distributions we observe heavy neg-
ative tails in both the two indices, with a more pronounced one in the renewable 
energy sector.

To have a deeper understanding on the evolution of the returns of the renew-
able and fossil fuel indices, we show in Fig. 2 the dynamic of the marginal dis-
tributions of the ERI (left panel) and of the MSCI EE (right panel). These dis-
tributions are obtained with a rolling window of three years and emphasized the 
higher volatility induced by the Global Financial Crisis on the ERI returns and 
the effect of Ukrainian war on the MSCI Europe Energy at the end of the sample.

Fig. 1  Price dynamics and return distributions. The figure reports the price evolution of the European 
Renewable Index and the MSCI Europe Energy index (left panel) together with the returns distributions 
(right panels). The blue color identifies the MSCI Europe Energy index while the European Renewable 
Index is depicted in orange (color figure online)
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Fig. 2  Marginal distributions evolution. The figure shows the dynamics of the marginal distributions of 
European Renewable Index (left panel) and the MSCI Europe Energy index returns (right panel). Histo-
grams are obtained by employing a rolling window of 3 years

Fig. 3  Model selection. The figure reports the �
2
 Wasserstein distance between the estimated model 

and the joint distribution of assets returns (upper-left panel), together with the optimal lag distribution 
(upper-right panel) and the evolution of the optimal lag through time (lower panel). The optimal lag rep-
resents the information set with the minimum Wasserstein distance
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3.2  Evolution of the joint distribution

We begin by illustrating the results related to the optimal lag selection. Figure 3 
reports, on the left panel, the monthly Wasserstein distance between the empiri-
cal joint distribution and the estimated model for different lags. The bottom panel 
identifies the optimal lag for each month with colored bars, while the right panel 
shows the distribution of the optimal lags. On average, the model selection pro-
cedure suggests the inclusion of the highest number of predictors in the informa-
tion set adopted for the model estimation. On the other hand, when the univariate 
distributions present long tails (as in period 2006–2007 for the European Renew-
able Index and in 2017–2018 for the MSCI Europe Energy index) the selection 
scheme highlights the reduced number of optimal lags selected.

Figure 4 plots the estimated joint distribution of the renewable and fossil fuel 
indices returns at one month ahead over time. Contour plots shaped like sym-
metric disks corresponding to (joint) Gaussian distributions approximately cen-
tered around zero. This means that the predictied distribution suggests market 
efficiency on the long-run, being equally uncertain about both improvements and 
deteriorations to both energy indices. On the other hand, we observe some crisis 
phases, in which the joint distribution moves towards negative returns. The right 
panels highlight this feature by reporting a business as usual joint distribution 
(upper panel) and a crisis phase joint distribution (lower panel), together with the 
marginals for both the MSCI European Energy index and European Renewable 
Index. Interestingly, the lower panel shows the effect of the Ukraine war on the 
energy indices. While the European Renewable Index is not affected, the MSCI 
Europe Energy displays an increase of the returns due to the war fear.

Fig. 4  One-step ahead forecast. The figure shows the one-step ahead conditional joint distribution 
between asset returns. The left panel reports the evolution of the predicted joint distribution as contour 
plots, with darker shades of red corresponding to lower probability densities. The right panels display the 
joint distribution in specific time frames along with the marginals of the two indices (color figure online)
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Figure  5 reports the two-step (left panel) and three-step ahead (right panel) 
forecasts of the joint distribution. The figure shows that the joint distribution 
of renewable and fossil fuel energy indices returns exhibits distinctly Gauss-
ian behavior during periods under analysis, with a slightly decrease of returns 
forecasts during market crisis phases. Moreover the larger contours highlight the 
increasing variance of the model prediction which reflects the higher uncertain-
ties of the forecasts due to the longer projecting horizon.

Figure 6 shows the in-sample and one-month ahead out-of-sample point esti-
mates for the European Renewable Index (upper panel) and for the MSCI Europe 
Energy index (lower panel). Point estimates are obtained by picking the indices 
returns which support the highest probability of the marginals. Figure  6 shows 
that the in-sample estimate, described by the blue line, is virtually indistinguish-
able from the real data (black line), for both the renewable an fossil fuel energy 
indices thus suggesting the model ability to explain the returns dynamic. On the 
other hand, the point forecasts depicted in red, deviate from the data, especially 
for the European Renewable Index, but, on average, they are able to correctly 
detect the returns behavior.

We now turn to evaluating the out-of-sample performance of our model rela-
tive to a standard benchmark: a VAR model with Gaussian errors. The compari-
son of the point estimate predictions derived from our model with those generated 
by the linear VAR model allows us to evaluate whether Wasserstein barycenters 
of statistical distributions produce superior forecast performances with respect to 
time-series linear models. For the latter model, we employ the Bayesian Infor-
mation Criterion (BIC) to select the optimal lags and we exploit the Root Mean 

Fig. 5  Joint distributions across horizons. The figure shows the two-step (left panel) and the three-step 
(right panel) ahead conditional joint distribution of asset returns. The evolution of the predicted joint 
distributions are reported as contour plots, with darker shades of red corresponding to lower probability 
densities (color figure online)
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Fig. 6  Asset returns one-step ahead point estimate. The figure reports the point estimates of the indices’ 
returns. The upper panel shows the returns dynamic for the European Renewable Index while the lower 
panel displays the same quantities for the MSCI European index. The black line identifies the actual 
returns while the blue line reports the in-sample dynamic. The red lines shows the predicted one-step 
ahead point estimates for assets returns

Fig. 7  Prediction accuracy measures. The figure shows the RMSE related to the point estimate forecast 
produced by the proposed methodology against VAR model predictions. The left panel shows, for one, 
two and three-step ahead forecasts, the error measure for the European Renewable Index while the right 
panel displays the same quantities for the MSCI European index
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Squared Error (RMSE), which measures the differences between values predicted 
by the models and the values observed, as a prediction accuracy measure.

Figure 7 displays the goodness of the predictions through the RMSE for one, two 
and three-step ahead returns forecasts for the European Renewable Index (left panel) 
and for the MSCI European Energy index (right panel). The forecasting procedure 
adopting the Wasserstein distance generates the best performance in all the cases, 
with the MSCI European Energy Index return forecasts that yields the lowest RMSE 
values. Moreover, while the error produced by the VAR model increase as long as 
longer forecasts horizon are produced, the Wasserstein model shows a quite stable 
prediction error for the one, two and three-step ahead forecasts.

4  Conclusion

This article introduce a novel approach to perform joint density forecast estimation. 
The methodology is grounded on OT and Wasserstein barycenters. The technique 
we propose is designed to learn the underlying joint distribution dynamic among 
a set of variables through Wasserstein barycentric coordinates. Accordingly, the 
learned generative mechanism is employed to predict the future configuration by 
exploiting the estimated barycentric coordinates coefficients and the contemporane-
ous values contained in the time series. This methodology, besides providing point 
estimates, yields one-step and multi-step head predictions of the joint probability. 
We apply this methodology to study the relationships between the market perfor-
mance of the renewable energy sector and that of the fossil fuel energy. We focus on 
the behavior of the European Renewable Index and the MSCI Europe Energy. We 
find that the predicted joint distribution suggests market efficiency on the long-run, 
while on the short-run we observe some departures during crisis phases, in which 
the joint distribution moves towards negative returns. The empirical experiments 
that we design reveal the capability of the Wasserstein methodology to describe the 
joint dynamic of the indices and to outperform benchmark linear models, generally 
adopted for time series prediction. Moreover, as future research we will exploit the 
Wasserstein regression to construct counterfactual predictive densities by alterating 
the cost structure. Comparing the (counterfactual) of the conditional density after a 
perturbation of the cost matrix in the one-period-ahead predictive density allows us 
to build the density impulse response function, tracking how the entire joint distribu-
tion responds dynamically to an initial shock. This impulse can be used in a variety 
of settings, from evaluating the potential policy effects to constructing dynamically 
consistent stress testing scenarios.
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