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Abstract
Equilibrium problems provide a mathematical framework which includes optimiza-
tion, variational inequalities, fixed point and saddle point problems, and noncoop-
erative games as particular cases. In this paper sufficient conditions for the existence 
of solutions of an equilibrium problem are given by weakening the assumption of 
quasiconvexity of the involved equilibrium bifunction. The existence of solutions is 
established both in presence of compactness of the feasible set as well with a coer-
civity assumption. The results are obtained in an infinite dimensional setting, and 
they are based on the so called finite solvability property which is weaker than the 
recently introduced finite intersection property and in turn, weaker than most com-
mon cyclic and proper quasimonotonicity. Some examples are presented to illustrate 
the various cases in which other existence results for equilibrium problems do not 
apply. Finally, applications to the solution of quasiequilibrium problems, quasiopti-
mization problems and generalized quasivariational inequalities are discussed.

Keywords  Equilibrium problem · Quasiequilibrium problem · Generalized 
convexity · Generalized monotonicity

1  Introduction

The importance of equilibrium problems (so named by Muu and Oettli (1992) and 
adopted by a lot of researchers working on this topic) is justified by a great num-
ber of applications in various fields of mathematics, including game theory, com-
plementarity problems, control theory, fixed point theory and so on. Over the time, 
equilibrium problems aroused increasing interest, and many aspects of these prob-
lems have been investigated (for a recent review see Bigi et al. (2019) and references 
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therein). As in the case of other general models, a special attention was paid to the 
existence of solutions.

The origin of the equilibrium problem goes back to the paper of Fan (1972), in 
which an existence result has been established under the following assumptions: 
compactness and convexity of the feasible set, the nonnegativity of the equilibrium 
bifunction f on the diagonal, upper semicontinuity of f (⋅, y) and quasiconvexity of 
f (x, ⋅) . Because Fan’s result is equivalent to his famous minimax inequality, the 
equilibrium problem is also called Ky Fan minimax inequality problem.

A major line of development in equilibrium theory, which has led in recent 
decades to a large number of articles, consisted in finding conditions, different or 
weaker than the usual ones, that guarantee the existence of the solutions. Our work 
fits in this group of papers. Its aim is to establish new existence criteria of the solu-
tions for equilibrium problems, using a new concept related to the bifunction f, the 
so-called finite solvability property that generalizes the finite intersection property 
recently introduced in Cotrina and Svensson (2021).

The paper is organized as follows. Section 2 contains some considerations about 
equilibrium problems and recalls some needed notions and results. Section  3 is 
devoted to the equilibrium problems when the equilibrium bifunction enjoys the 
finite solvability property. The existence of solutions is investigated first, for the case 
when the feasible set is compact and then, in the absence of compactness. In the last 
section, we establish existence theorems for quasiequilibrium and quasioptimization 
problems. An application to the generalized quasivariational inequality problem is 
also discussed.

2 � Preliminaries

Several optimization problems (minimization problems, variational inequalities, 
complementarity problems, Nash equilibria, saddle point problems are just a few 
examples) can be put in the following format:

where X is a nonempty convex subset of a Hausdorff topological vector space and f 
is a real bifunction defined on X × X.

Usually, in an equilibrium problem it is required the bifunction f to satisfy an 
equilibrium condition which can be, either f (x, x) = 0 for all x ∈ X or a weaker one

The well-known existence result due to Fan (1972) holds under the following 
assumptions: 

	 (i)	 X is a nonempty compact convex subset of a Hausdorff topological vector 
space;

	 (ii)	 f is 

find x0 ∈ X such that f (x0, y) ≥ 0, ∀y ∈ X (EP)

(1)f (x, x) ≥ 0, ∀x ∈ X
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(ii1)	� upper semicontinuous in the first variable, and

(ii2)	� quasiconvex in the second one;

	 (iii)	 condition (1) holds.

Actually condition (ii2 ) is too strong; the proof requires the convexity of the sub-
level sets {y ∈ X ∶ f (x, y) < 0} only. Moreover, in order to avoid any assumption of 
convexity both for the domain X and for the bifunction f, in Castellani and Giuli 
(2016) a different approach is proposed in which the existence of solutions for (EP) 
is obtained assuming the cyclical monotonicity of −f  , that is,

In this paper we establish equilibrium results avoiding the convexity of the sub-
level sets {y ∈ X ∶ f (x, y) < 0} and requiring that for any finite subset A ⊆ X and 
x ∈ convA , that is, x in the convex hull of the set A, it holds

We will show that this condition comes down to the pseudomonotonicity of −f  , if 
the sets {y ∈ X ∶ f (x, y) ≤ 0} are convex. It might be shown with several examples 
that the convexity of these sets is not comparable with the convexity of the sublevel 
sets {y ∈ X ∶ f (x, y) < 0} but they both descend from the quasiconvexity of f (x, ⋅) . 
We recall that a bifunction f ∶ X × X → ℝ is said to be pseudomonotone (Bianchi 
and Schaible 1996, ) if

Clearly −f  is pseudomonotone if and only if

It is easy to see that a bifunction f is nonnegative on the diagonal of X × X , when-
ever it satisfies conditions (2) or (3). Notice further that condition (2) implies the 
pseudomonotonicity of −f  . Indeed, if (2) holds and for some x, y ∈ X , f (x, y) ≤ 0 , 
then:

One can easily find examples showing that the pseudomonotonicity of −f  does not 
implies (2). Let f ∶ [1, 2] × [1, 2] → ℝ , f (x, y) = 2x(y − x) . Then clearly −f  is pseu-
domonotone but nevertheless f (1, 2) + f (2, 1) = −2 < 0 . Equilibrium theorems for 
pseudomonotone bifunctions can be found in Iusem and Sosa (2003) and Bianchi 
and Pini (2005) but, to the best of our knowledge, there is no such result for bifunc-
tions f with −f  pseudomonotone.

We end this preliminary section by recalling some basic notions and facts con-
cerning set-valued mappings (see Aliprantis and Border (2006) for more details). 

(2)f (x0, x1) + f (x1, x2) +⋯ + f (xm, x0) ≥ 0, ∀m ∈ ℕ, x0, x1,… , xm ∈ X

f (x, y) < 0 ⇒ ∃a ∈ A such that f (y, a) > 0

x, y ∈ X, f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0

(3)x, y ∈ X, f (x, y) < 0 ⇒ f (y, x) > 0

f (y, x) ≥ f (x, y) + f (y, x) ≥ 0
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If X and Y are topological spaces, the graph of a set-valued mapping F ∶ X ⇉ Y  
is denoted by grF = {(x, y) ∈ X × Y ∶ y ∈ F(x)} . The mapping F is closed if its 
graph is a closed subset of X × Y  and it is compact if its range F(X) is contained in 
a compact subset of Y. The mapping F is said to be closed-valued if F(x) is a closed 
set for any x ∈ X . The terms nonempty-valued, compact-valued and convex-valued 
are similarly defined. The mapping F is said to be lower semicontinuous if for any 
closed subset B of Y the set {x ∈ X ∶ F(x) ⊆ B} is closed or, equivalently, for each 
x ∈ X , for each convergent net x� → x , and for each y ∈ F(x) there exist a subnet 
{x��} of {x�} and a net {y�} in Y satisfying y� ∈ F(x��) for each � and y� → y . The 
mapping F is said to be upper semicontinuous if for any closed subset B of Y the 
set {x ∈ X ∶ F(x) ∩ B ≠ �} is closed. The mapping F is upper semicontinuous and 
compact-valued if and only if for every net {(x𝛼 , y𝛼)} ⊆ grF , if x� → x , then the net 
{y�} has a limit point in F(x). The mapping is continuous, if it is both upper and 
lower semicontinuous.

If X = Y  is a subset of a vector space, the mapping F is called KKM mapping if 
convA ⊆

⋃
x∈A F(x) for each finite set A ⊆ X . Lastly, the following two lemmas are 

needed in the proof of the main theorems.

Lemma 1  (Aliprantis and Border 2006) Let X and Y be topological spaces and 
F ∶ X ⇉ Y  a set-valued mapping. 

	 (i)	 If Y is Hausdorff and F is compact, then F is closed if and only if it is upper 
semicontinuous and closed-valued.

	 (ii)	 The intersection of a family of closed set-valued mappings is closed.
	 (iii)	 If Y is a finite dimensional topological vector space and F is upper semicon-

tinuous and compact-valued, then the convex hull mapping convF , defined by 
(convF)(x) = convF(x) , is upper semicontinuous.

Lemma 2  (Mehta et al. 1997) Let X and Y be topological spaces and D be an open 
subset of X. Suppose that F1 ∶ D ⇉ Y  and F2 ∶ X ⇉ Y  are upper semicontinu-
ous set-valued mappings such that F1(x) ⊆ F2(x) for all x ∈ D . Then the mapping 
F ∶ X ⇉ Y  defined by

is also upper semicontinuous.

3 � Equilibrium problems

In recent papers the existence of solutions of the problem (EP) has been obtained 
under some generalized monotonicity assumptions. We introduce the notion of finite 
solvability property for bifunctions, and we discuss its relation with some general-
ized monotonicity properties.

F(x) =

{
F1(x) if x ∈ D

F2(x) if x ∈ X ⧵ D
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Definition 1  A bifunction f ∶ X × X → ℝ is said to have the finite solvability prop-
erty on X if, for any finite subset A ⊆ X such that there exists x ∈ X with f (x, a) < 0 
for all a ∈ A , then there exists y ∈ X such that f (a, y) ≤ 0 for all a ∈ A.

Since the finite solvability property seems difficult to check in concrete situations, 
it is desirable to compare it with stronger conditions, but easier to verify. Below we 
make some comments on such conditions. Let X be a nonempty convex subset of a 
topological vector space. A bifunction f ∶ X × X → ℝ is said

•	 to be properly quasimonotone (Bianchi and Pini 2001) or 0-diagonally qua-
siconcave in the second variable, in the terminology used by Zhou and Chen 
(1988), if for each finite set A ⊆ X and any y ∈ convA , there exists a ∈ A such 
that f (a, y) ≤ 0;

•	 to be cyclically quasimonotone (Khanh and Quan 2019) if, for all n ≥ 1 and all 
x0, x1,… xn ∈ X , there exists i ∈ {0, 1,… , n} such that f (xi, xi+1) ≤ 0 , where 
xn+1 = x0;

•	 to have the finite intersection property (Cotrina and Svensson 2021) on X if for 
any finite subset A ⊆ X , there exists y ∈ X such that f (a, y) ≤ 0 , for all a ∈ A.

Very recently (Cotrina and Svensson 2021) characterized the cyclic quasimonoto-
nicity as follows: a bifunction f is cyclically quasimonotone if and only if, for any 
nonempty finite subset A ⊆ X , there exists y ∈ A such that f (a, y) ≤ 0 , for all a ∈ A . 
Hence cyclic quasimonotonicity implies the finite intersection property which in 
turn implies the finite solvability property.

Besides, the proper quasimonotonicity of f coincides with the affirmation that 
the mapping F(x) = {y ∈ X ∶ f (x, y) ≤ 0} is a KKM mapping. In particular, if F is 
closed-valued (for instance if f (x, ⋅) is lower semicontinuous) and A is a finite subset 
of X, from the Fan-KKM theorem we have 

⋂
a∈A F(a) ≠ � which implies that f has 

the finite intersection property.
The example below proves that a bifunction with the property of finite solvability 

may not have the finite intersection property.

Example 1  Consider the bifunction f ∶ [0, 2] × [0, 2] → ℝ defined as 
f (x, y) = x2 + 2y − 2 . This continuous bifunction has not the finite intersection 
property: indeed if 2 ∈ A then f (2, y) = 2y + 2 > 0 for all y ∈ [0, 2] . On the con-
verse, since there exists x ∈ [0, 2] such that f (x, a) < 0 for all a ∈ A if and only if 
maxA < 1 , then f (a, 0) < 1 − 2 < 0 for each a ∈ A and f has the finite solvability 
property.

The finite solvability property holds whenever there exists a function 
h ∶ X → X such that

x, y ∈ X, f (x, y) < 0 ⇒ f (y, h(x)) ≤ 0
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Indeed, in this case, if x ∈ X satisfies f (x, a) < 0 for all a ∈ A , then y = h(x) will be 
solution for the system f (a, y) ≤ 0 with a ∈ A . Notice that this property is verified 
by the bifunction in the previous example where h ∶ [0, 2] → [0, 2] is h(x) = x2∕2.

The following theorem is one of our main results. Its method of proof has 
some similarities with that used by Brézis et al. (1972) to generalize the Ky Fan 
minimax principle. Recall that a subset X of a topological vector space is said to 
be finitely closed (Shioji 1991) if for each finite dimensional subspace V the set 
X ∩ V  is closed.

Theorem 3  Let X be a nonempty compact convex subset of a Hausdorff topological 
vector space and f be a real bifunction defined on X × X that satisfies the following 
assumptions: 

	 (i) 	 for each y ∈ X , the set {x ∈ X ∶ f (x, y) ≥ 0} is finitely closed;
	 (ii) 	 for each x ∈ X , the set {y ∈ X ∶ f (x, y) ≤ 0} is finitely closed;
	 (iii) 	 for any finite subset A ⊆ X , x ∈ convA and y ∈ X it holds 

	 (iv) 	 for each finite dimensional subspace V, the bifunction f has the finite solvability 
property on section D = X ∩ V;

	 (v) 	 for any finite dimensional section D = X ∩ V  and for every net {x𝛼} ⊆ X con-
verging to a point x ∈ D , the following implication holds 

Then, there exists x0 ∈ X such that f (x0, y) ≥ 0 for all y ∈ X.
Proof  Let {V�} be the net of all finite dimensional subspaces of E that intersect 
the set X, ordered by inclusion, i.e. � ≥ � means V𝛼 ⊇ V𝛽 . For each � consider 
X� = X ∩ V� . We claim that there exists x� ∈ X� such that f (x� , y) ≥ 0 for all 
y ∈ X� . Assume by contradiction that for each x ∈ X� there exists y ∈ X� such that 
f (x, y) < 0 . Therefore X� =

⋃
y∈X�

G�(y) , where each

is open in X� by assumption (i). Since X� is compact, there exists a finite subcover 
{G�(y1),… ,G�(yn)} of X� . Define the set-valued mapping H� ∶ X� ⇉ X� by

where I(x) = {i ∈ {1,… , n} ∶ x ∈ G�(yi)} ≠ � and

is a closed set, for every i ∈ I(x) . The mapping H� is nonempty-valued from assump-
tion (iv). Moreover,

f (x, y) < 0 ⇒ ∃a ∈ A such that f (y, a) > 0;

f (x� , y) ≥ 0, ∀y ∈ D, ∀� ⇒ f (x, y) ≥ 0, ∀y ∈ D

G𝛼(y) = {x ∈ X𝛼 ∶ f (x, y) < 0}

H�(x) =
⋂
i∈I(x)

F�(yi)

F�(yi) = {x ∈ X� ∶ f (yi, x) ≤ 0}
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where the set-valued mappings H�
i
 are defined by

Lemma 2 ensures that the maps H�
i
 are upper semicontinuous. The mapping H� is 

closed as intersection of closed mappings (Lemma 1). The convex hull of a closed 
set is closed in the finite dimensional space V� and hence, again from Lemma 1 the 
set-valued mapping convH� is upper semicontinuous with nonempty, compact and 
convex values. Then there exists a fixed point x ∈ convH�(x) . Consequently, there 
is a finite set A ⊆ H𝛼(x) such that x ∈ convA and f (yi, a) ≤ 0 for all i ∈ I(x) and 
a ∈ A . Fixing an i ∈ I(x) , we get f (yi, a) ≤ 0 , for all a ∈ A and f (x, yi) < 0 which 
contradicts (iii). Therefore, there exists a net {x�} such that for each � , x� ∈ X� and 
f (x� , y) ≥ 0 , for all y ∈ X� . Since X is a compact set, without loss of generality, we 
may assume that the net {x�} converges to a point x0 ∈ X . Consider an arbitrary 
y ∈ X and denote by V�0

 the linear space generated by x0 and y. For any � ≥ �0 we 
get f (x� , z) ≥ 0 for all z ∈ X ∩ V�0

 , and f (x0, y) ≥ 0 derives from (v). 	�  ◻

It is worthy to say that if all the sublevel sets {x ∈ X ∶ f (x, y) ≥ 0} are closed, the 
limit condition (v) in Theorem 3 is verified. Therefore in the particular case where 
the domain X is a subset of a Euclidean space, and finitely closed sets are closed, we 
get the following as a direct consequence of Theorem 3.

Corollary 4  Let X ⊆ ℝ
n be a nonempty compact convex set and f be a real bifunction 

defined on X × X that satisfies the following assumptions: 

	 (i)	 for each y ∈ X , the set {x ∈ X ∶ f (x, y) ≥ 0} is closed;
	 (ii)	 for each x ∈ X , the set {y ∈ X ∶ f (x, y) ≤ 0} is closed;
	 (iii)	 for any finite subset A ⊆ X , x ∈ convA and y ∈ X it holds 

	 (iv)	 the bifunction f has the finite solvability property on X.

Then, there exists x0 ∈ X such that f (x0, y) ≥ 0 for all y ∈ X.
When the space is not finite dimensional, as in the proof of Theorem 3, the sub-

level sets are intersected with a finite dimensional subspace V to ensure the clos-
edness of convex hulls of closed sets. This can be avoided and the proof can be 
shortened considerably by assuming the sublevel sets in (ii) to be convex. Moreover, 
under this additional assumption, condition (iii) coincides with the pseudomono-
tonicity of −f  . Condition (iii) implies the pseudomonotonicity of −f  by choos-
ing A = {x} . Viceversa the pseudomonotonicity of −f  and the convexity of the 
sets {y ∈ X ∶ f (x, y) ≤ 0} guarantee condition (iii). Indeed, take a finite subset A, 

H� =

n⋂
i=1

H�

i

H�

i
(x) =

{
F�(yi) if x ∈ G�(yi)

X� if x ∈ X� ⧵ G�(yi)

f (x, y) < 0 ⇒ ∃a ∈ A such that f (y, a) > 0;
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x ∈ convA and y ∈ X such that f (x, y) < 0 . By contradiction assume that f (y, a) ≤ 0 
for all a ∈ A . The convexity of the sublevel set implies that f (y, x) ≤ 0 which contra-
dicts the pseudomonotonicity of −f .

Theorem 5  Let X be a nonempty compact convex subset of a locally convex Haus-
dorff topological vector space and f be a real bifunction defined on X × X that satis-
fies the following assumptions: 

	 (i)	 for each y ∈ X , the set {x ∈ X ∶ f (x, y) ≥ 0} is closed;
	 (ii)	 for each x ∈ X , the set {y ∈ X ∶ f (x, y) ≤ 0} is closed and convex;
	 (iii)	 −f  is pseudomonotone;
	 (iv)	 the bifunction f has the finite solvability property on X.

Then, there exists x0 ∈ X such that f (x0, y) ≥ 0 for all y ∈ X.
Proof  By contradiction assume that X =

⋃
y∈X G(y) , where the sets

are open in X. Let G(y1),… ,G(yn) be a finite subcover and define

The sets F(yi) are closed and convex and the set-valued mapping H ∶ X ⇉ X,

is upper semicontinuous, nonempty closed convex-valued from the compact con-
vex set X to itself. The Kakutani-Fan-Glicksberg fixed point theorem guarantees 
the existence of a fixed point x of H. The fact that x ∈ G(yi) ∩ F(yi) for some index 
i ∈ {1,… , n} contradicts the pseudomonotonicity of −f  . 	�  ◻

Nasri and Sosa (2011) established an existence result (Theorem  2.3) for (EP) 
assuming that g(x, y) = −f (y, x) is properly quasimonotone. This condition is guar-
anteed by the convexity of the sublevel set {y ∈ X ∶ f (x, y) < 0} and f (x, x) ≥ 0 for 
all x ∈ X . They showed that this assumption, together with the closedness of the 
sets {x ∈ X ∶ f (x, y) ≥ 0} , imply the existence of solutions of the Ky Fan inequality. 
Their result has been proved when the space is finite dimensional and a coercivity 
condition is verified; anyway the proof works also in a locally convex Hausdorff top-
ological vector space if the domain is compact. Below we provide a simple example 
in which the assumptions of Theorem 5 are fulfilled but Theorem 2.3 in Nasri and 
Sosa (2011) is not applicable.

Example 2  Consider the bifunction f ∶ [−1, 1] × [−1, 1] → ℝ defined by

G(y) = {x ∈ X ∶ f (x, y) < 0}

Hi(x) =

{
F(yi) = {z ∈ X ∶ f (yi, z) ≤ 0} if x ∈ G(yi)

X if x ∈ X ⧵ G(yi)

H(x) =

n⋂
i=1

Hi(x)
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We prove that f satisfies all the assumptions of Theorem 5. The sublevel set

is open in [−1, 1] and the sublevel set

is closed and convex. Moreover f (x, y) < 0 if and only if (x, y) ∈ (−1, 1) × {±1} and, 
for every (x, y) ∈ {±1} × (−1, 1) , the bifunction f (x, y) > 0 . Finally, condition (iv) 
in Theorem 5 is fulfilled. Indeed, if system f (x, yi) < 0 , i = 1,… , n , is compatible 
then yi ∈ {±1} and f (±1, 1) = 0 hence also the system f (yi, x) ≤ 0 , i = 1,… , n , is 
compatible. Hence all the assumptions of Theorem 5 hold and the points x = ±1 are 
solutions of the equilibrium problem. Instead, Theorem 2.3 in Nasri and Sosa (2011) 
is not applicable: if A = {±1} and x = 0 ∈ (−1, 1) , then f (0,±1) = −1 < 0.

We provide below an example in which the assumptions of Theorem 5 are ful-
filled but Proposition 10 in Cotrina and Svensson (2021) is not applicable.

Example 3  Consider the bifunction f ∶ [0, 1] × [0, 1] → ℝ

It can be easily verified that

Consequently, the first two assumptions of Theorem 5 hold. Simple calculations lead 
to the following implication:

f (x, y) =

⎧
⎪⎨⎪⎩

−1 if x ∈ (−1, 1) and y ∈ {±1}

1 if x ∈ {±1} and y ∈ [−1, 1)

0 otherwise

{x ∈ [−1, 1] ∶ f (x, y) < 0} =

{
(−1, 1) if y ∈ {±1}

� otherwise

{y ∈ [−1, 1] ∶ f (x, y) ≤ 0} =

{
{1} if x ∈ {±1}

[−1, 1] otherwise

f (x, y) =

⎧
⎪⎨⎪⎩

1 − x − y if x ∈ [0, 1∕2)

1∕2 if x = 1∕2

x − y if x ∈ (1∕2, 1]

{x ∈ [0, 1] ∶ f (x, y) ≥ 0} =

�
[0, 1] if y ∈ [0, 1∕2]

[0, 1 − y] ∪ {1∕2} ∪ [y, 1] if y ∈ (1∕2, 1]

{y ∈ [0, 1] ∶ f (x, y) ≤ 0} =

⎧⎪⎨⎪⎩

[1 − x, 1] if x ∈ [0, 1∕2)

� if x = 1∕2

[x, 1] if x ∈ (1∕2, 1]
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The bifunction −f  is pseudomonotone. Indeed, if f (x, y) < 0 , in view of (4), we have 
f (y, x) = y − x > 0.

We prove that f has the finite solvability property. Assume that for a finite set 
A ⊆ [0, 1] there exists an x ∈ [0, 1] such that f (x, a) < 0 for all a ∈ A . Then, from 
(4) we infer that A ⊆ (1∕2, 1] . Choosing y0 = maxA , we have f (a, y0) = a − y0 ≤ 0. 
Hence, all the requirements of Theorem  5 are fulfilled. On the other hand, since 
f (1∕2, y) = 1∕2 for all y ∈ [0, 1] , f does not have the finite intersection property. 
Note that the solution set for the associated equilibrium problem is {0, 1}.

As usual, the absence of compactness of X can be overcome adding some coer-
civity conditions, as in the next theorem.

Theorem 6  Let X be a nonempty convex set in a locally convex Hausdorff topologi-
cal vector space and f ∶ X × X → ℝ be a bifunction satisfying conditions (i), (ii) 
and (iii) of Theorem 5. Moreover, assume that X contains a compact convex set C0 
and a compact set K0 such that 

	 (iv) 	 has the finite solvability property on each compact convex set C such that 
C0 ⊆ C ⊆ X;

	 (v) 	 for each x ∈ X ⧵ K0 there exists y ∈ C0 such that f (x, y) < 0.

Then, there exists x0 ∈ X such that f (x0, y) ≥ 0 for all y ∈ X.
Proof  The proof goes along the same lines as the one of Theorem  4.3 in Balaj 
(2013). Denote by

For every C ∈ C , Theorem 5 provides a point xC ∈ C such that f (xC, y) ≥ 0 , for all 
y ∈ C . In view of (v), xC ∈ K0.

If C�,C�� ∈ C , then the set conv
(
C� ∪ C��) belongs also to C , because the convex 

hull of the union of a finite family of compact convex sets is compact (Aliprantis and 
Border 2006, Lemma 5.29). Consequently, C is a directed set relative to the order 
relation ⊆ . Since the set K0 is compact, we may assume that the net {xC}C∈C con-
verges to some x0 ∈ K0.

We now prove that f (x0, y) ≥ 0 , for all y ∈ X . Take an arbitrary y ∈ X and denote 
by Cy = conv(C0 ∪ {y}) . Clearly, Cy ∈ C and for every C ∈ C satisfying Cy ⊆ C , 
we have f (xC, y) ≥ 0 . Since the set {x ∈ X ∶ f (x, y) ≥ 0} is closed, it follows that 
f (x0, y) ≥ 0 . 	�  ◻

Remark 1  One of the most used coercivity conditions in proving existence results 
for equilibrium problems when the set X is not compact is the following given in 
Bianchi and Pini (2005): there exists a compact convex subset K0 of X such that 
for each x ∈ X ⧵ K0 there exists y ∈ K0 such that f (x, y0) < 0 . Observe that the 

(4)f (x, y) < 0 ⇒ x ≠
1

2
and max{x, 1 − x} < y ≤ 1

C = {C ∶ C0 ⊆ C ⊆ X, C is compact and convex}
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coercivity condition (v) of Theorem  6 reduces to the aforementioned condition 
when K0 = C0.

The following example illustrates the applicability of Theorem 6.

Example 4  Consider the bifunction f ∶ (−∞, 1] × (−∞, 1] → ℝ defined by

and take C0 = K0 = [0, 1] . We prove that the assumptions of Theorem 6 are satisfied. 
The set

is closed, for each y ∈ (−∞, 1] , and

is a closed convex set, for every x ∈ (−∞, 1] . The bifunction −f  is pseudomonotone, 
because

For every x ∈ (−∞, 1] , f (x, 1) ≤ 0 . Consequently, on every compact interval 
C ⊆ (−∞, 1] containing the interval [0, 1], f has the finite intersection property and, 
implicitly, the finite solvability property.

Condition (v) is also verified, since for every x < 0 , f (x, 1) < 0 . From Theorem 6, 
the associated equilibrium problem has solutions. It can be easily verified that the 
solution set is the interval [0, 1]. Note that, for every x < −1 , the sublevel set

is not convex. As the convexity of the sublevel sets is a standard condition, almost 
all known existence results do not work for this example. Let us also mention that 
f is not pseudomonotone, because f (−2, 0) = 0 , f (0,−2) > 0 . Consequently, exist-
ence results in which the pseudomonotonicity of f is needed (for instance, Theo-
rem 3.1 and Theorem 3.2 in Bianchi and Pini (2005), Theorem 3.12 in Iusem and 
Sosa (2003) and Proposition 4.1 in Bianchi and Schaible (1996)), are not applicable 
in this case.

f (x, y) =

{
0 if |x − y| ≤ 1

y2(x − y) if |x − y| > 1

{x ∈ (−∞, 1] ∶ f (x, y) ≥ 0} = [y − 1, 1]

{y ∈ (−∞, 1] ∶ f (x, y) ≤ 0} = [x − 1, 1]

f (x, y) < 0 ⇒|x − y| > 1, y ≠ 0, y > x

⇒x < y − 1 ≤ 0

⇒f (y, x) = x2(y − x) > 0

{y ∈ (−∞, 1] ∶ f (x, y) < 0} = (1 + x, 0) ∪ (0, 1]
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4 � Quasiequilibrium problems

Let X be a nonempty convex subset of a topological vector space, f ∶ X × X → ℝ 
and T ∶ X ⇉ X . The quasiequilibrium problem associated to X, f and T consists in 
finding a point x0 which is simultaneously a fixed point for T and an equilibrium 
point for f∣T(x0)×T(x0) . More precisely, this problem reads as follows:

Often the proof of the existence of solutions for problem (QEP) is done by trans-
forming this problem into a fixed point problem. For instance, (Aussel et al. 2017; 
Balaj and Khamsi 2019; Mosco 1976) and Tan (1985) obtain existence theorems for 
problem (QEP) exploiting the following observation: consider the set-valued map-
ping S ∶ X ⇉ X , defined by

then, x0 is a solution of the problem (QEP) if and only if it is a fixed point for S. The 
same idea will be used for proving Theorem 7.

Theorem 7  Assume that X is a nonempty convex subset of a locally convex Haus-
dorff topological vector space, T ∶ X ⇉ X is a compact continuous set-valued map-
ping with nonempty closed and convex values and f ∶ X × X → ℝ is a bifunction 
satisfying the following conditions: 

(i) 	the set {(x, y) ∈ X × X ∶ f (x, y) ≥ 0} is closed in X × X;
(ii) 	for every y ∈ X , the set {x ∈ X ∶ f (x, y) ≥ 0} is convex;
(iii) 	for every x ∈ X the set {y ∈ X ∶ f (x, y) ≤ 0} is closed and convex;
(iv) 	−f  is pseudomonotone;
(v) 	for each x ∈ X , the bifunction f has the finite solvability property on T(x).

Then, there exists x0 ∈ X such that x0 ∈ T(x0) and f (x0, y) ≥ 0 , for all y ∈ T(x0).
Proof  Fix an arbitrary x ∈ X . From the hypotheses it follows that the restriction of f 
to T(x) × T(x) fulfills the assumptions of Theorem 5. From the mentioned theorem, 
there exists x� ∈ T(x) such that f (x�, y) ≥ 0 , for all y ∈ T(x) . Consequently, S(x) ≠ � . 
If x�, x�� ∈ S(x) and � ∈ [0, 1] , since T(x) is a convex set, �x� + (1 − �)x�� ∈ T(x) . 
Moreover, from (ii), f (�x� + (1 − �)x��, y) ≥ 0 for any y ∈ T(x) , hence S(x) is a con-
vex set.

Further, we prove that S is a closed mapping. Let (x, x�) ∈ clS and {(x� , x��)} be a 
net in the graph of S converging to (x, x�) . Then, for each index � , x�

�
∈ T(x�) and, 

since T is a closed mapping (by Lemma 1), x� ∈ T(x) . If y ∈ T(x) , since T is lower 
semicontinuous, there exists a net {y�} converging to y with y� ∈ T(x�) , for all � . As 
x�
�
∈ S(x�) , f (x�� , y�) ≥ 0 . From (i), we infer that f (x�, y) ≥ 0 , hence x� ∈ S(x).

Reviewing what we proved until now, we see that S is a closed mapping with 
nonempty convex values. Moreover, since T is compact, so will be S. From the fixed 
point theorem in Himmelberg (1972), S has a fixed point and thus we get the desired 
conclusion. 	�  ◻

find x0 ∈ X such that x0 ∈ T(x0) and f (x0, y) ≥ 0, ∀y ∈ T(x0) (QEP)

S(x) = {x� ∈ T(x) ∶ f (x�, y) ≥ 0, ∀y ∈ T(x)}



1 3

New criteria for existence of solutions for equilibrium… Page 13 of 16  2

Remark 2  It could be of interest to compare our previous result with Theorem  2 
proved by Balaj (2021). In the mentioned theorem, instead of condition (iii), it is 
required the convexity of the sublevel sets {y ∈ X ∶ f (x, y) < 0} and conditions (iv) 
and (v) are replaced by the following one:

The quasioptimization problem is an example of a quasiequilibrium problems, 
where the bifunction f is defined by f (x, y) = �(y) − �(x) . The next result can be 
derived from Theorem  7 and it improves slightly Corollary 3.2 in Cotrina and 
Zúñiga (2018) which in turn generalizes Propositions 4.2 and 4.5 in Aussel and Cot-
rina (2013). In the mentioned corollary, X is assumed to be compact, while in Theo-
rem 8 is needed only that the mapping T is compact.

Theorem  8  Let X be a nonempty convex subset of a locally convex Hausdorff 
topological vector space, T ∶ X ⇉ X be a compact continuous set-valued map-
ping with nonempty closed and convex values and � ∶ X → ℝ be a quasicon-
vex and continuous function. Then, there exists x0 ∈ X such that x0 ∈ T(x0) and 
�(x0) = miny∈T(x0) �(y).

We conclude the paper giving a particular application of Theorem  7 when the 
quasiequilibrum problem is a generalized quasivariational inequality which allows 
one to model and study several complex phenomena as generalized Nash equilib-
rium problems in economy or contact problems with deformation in mechanics.

In this last part, let E be a real normed space endowed with the norm topology, 
E∗ be its dual equipped with the weak∗ topology, and ⟨⋅, ⋅⟩ the duality pairing. Recall 
that, if X is a nonempty subset of E, a set-valued mapping F ∶ X ⇉ E∗ is said to be:

•	 pseudomonotone if for every (x1, x∗1), (x2, x
∗
2
) ∈ grF , the following implication 

holds: 

•	 properly quasimonotone if for each finite set A ⊆ X , and any y ∈ convA there 
exists x ∈ A such that 

•	 cyclically quasimonotone if for every x0, x1,… , xn ∈ X , there exists an index 
i ∈ {0, 1,… , n} such that 

 where xn+1 = x0.
If F has compact values with respect to the weak∗ topology, the representative 
bifunction of F is defined by

x ∈ X, y ∈ T(x) ⇒ f (u, y) ≥ 0, for some u ∈ T(x)

⟨x∗
1
, x2 − x1⟩ ≥ 0 ⟹ ⟨x∗

2
, x2 − x1⟩ ≥ 0;

⟨x∗, y − x⟩ ≤ 0, ∀x∗ ∈ F(x);

⟨x∗
i
, xi+1 − xi⟩ ≤ 0, ∀x∗

i
∈ F(xi),
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Directly from the definition, F is pseudomonotone (properly quasimonotone, cycli-
cally quasimonotone, respectively) if and only if fF is pseudomonotone (properly 
quasimonotone, cyclically quasimonotone, respectively).

Theorem 9  Let X be a convex subset of E and T ∶ X ⇉ X , F ∶ X ⇉ E∗ be two set-
valued mappings. Assume that 

	 (i) 	 T is compact, continuous and has nonempty closed and convex values;
	 (ii) 	 F is upper semicontinuous and compact-valued;
	 (iii) 	 for every y ∈ X , the set 

 is convex;
	 (iv) 	 −F is pseudomonotone;
	 (v) 	 F is either properly quasimonotone or cyclically quasimonotone.

Then, there exists (x0, x∗0) ∈ grF such that x0 ∈ T(x0) and ⟨x∗
0
, y − x0⟩ ≥ 0 for all 

y ∈ T(x0).
Proof  We intend to apply Theorem 7 when the involved bifunction is the representa-
tive bifunction of F. Denote by M = {(x, y) ∈ X × X ∶ fF(x, y) ≥ 0} . Let (x, y) ∈ clM 
and (x� , y�) be a net in M converging to (x, y). For each index � , since fF(x� , y�) ≥ 0 , 
there is an x∗

�
∈ F(x�) such that ⟨x∗

�
, y� − x�⟩ ≥ 0 . Since F is upper semicontinuous 

and compact-valued, there is a subnet {x∗
��
} of {x∗

�
} converging to some x∗ ∈ F(x) . 

From (ii) we infer that F(X) is a compact subset of E∗ and particularly, norm 
bounded. From Lemma 4.3 in Balaj (2018), the duality pairing is continuous on 
F(X) × E . Passing to the limit in ⟨x∗

��
, y�� − x��⟩ ≥ 0 , we get ⟨x∗, y − x⟩ ≥ 0 . Sum-

ming up the above, the set M is closed, hence fF satisfies condition (i) of Theorem 7. 
By (iii), for every y ∈ X , the set {x ∈ X ∶ fF(x, y) ≥ 0} is convex. For every x ∈ X 
the set {y ∈ X ∶ fF(x, y) ≤ 0} is closed and convex, because

Taking into account the aforementioned equivalence, the bifunction fF satisfies the 
last two conditions of Theorem 7.

From Theorem  7, there exists x0 ∈ X such that fF(x0, y) ≥ 0 for all y ∈ T(x0) . 
This means that miny∈T(x0) maxx∗∈F(x0)⟨x∗, y − x0⟩ ≥ 0 . By Sion’s minimax theorem

hence there exists x∗
0
∈ F(x0) such that ⟨x∗, y − x0⟩ ≥ 0 , for all y ∈ T(x0) . 	�  ◻

fF(x, y) = max
x∗∈F(x)

⟨x∗, y − x⟩.

{x ∈ X ∶ ∃x∗ ∈ F(x) such that ⟨x∗, y − x⟩ ≥ 0}

{y ∈ X ∶ fF(x, y) ≤ 0} =
�

x∗∈F(x)

{y ∈ X ∶ ⟨x∗, y − x⟩ ≤ 0}.

max
x∗∈F(x0)

min
y∈T(x0)

⟨x∗, y − x0⟩ = min
y∈T(x0)

max
x∗∈F(x0)

⟨x∗, y − x0⟩ ≥ 0,
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Theorem  10  Condition (iii) of Theorem  9 is fulfilled when F and −F are both 
pseudomonotone.

Proof  For an arbitrary y ∈ X , define

and take x1, x2 ∈ A and � ∈ [0, 1] . Since F is pseudomonotone, for all y∗ ∈ F(y) , 
⟨y∗, y − x1⟩ ≥ 0 , ⟨y∗, y − x2⟩ ≥ 0 , whence ⟨y∗, y − (�x1 + (1 − �)x2)⟩ ≥ 0 . As −F is 
pseudomonotone, ⟨x∗, y − (�x1 + (1 − �)x2)⟩ ≥ 0 for every x∗ ∈ F(�x1 + (1 − �)x2) . 
Consequently, the set A is convex. 	�  ◻

The mappings F for which F and −F are both pseudomonotone are called in 
Bianchi et al. (2003) pseudoaffine. Notice that a mapping F ∶ ℝ

n
→ ℝ

n is pseudoaf-
fine if and only if there exist a skew-symmetric linear mapping A, a vector u and a 
positive function g ∶ ℝ

n
→ ℝ such that F(x) = g(x)(Ax + u).

5 � Conclusions

In this paper we show how it is possible to obtain some versions of the Ky Fan 
minimax inequality in finite and infinite dimensional setting avoiding the quasicon-
vexity of the function in its second variable. The results involve the so called finite 
solvability property which is weaker than the recently introduced finite intersection 
property and in turn, weaker than most common cyclic and proper quasimonotonic-
ity. Some examples are presented to illustrate the various results and cases in which 
other existence results for equilibrium problems do not apply. An open topic for 
future work could be the use of the finite solvability property in case of variational 
inequalities.

Funding  Open access funding provided by Università degli Studi dell’Aquila within the CRUI-CARE 
Agreement.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Aliprantis C, Border K (2006) Infinite dimensional analysis. A hitchhiker’s guide, Springer, Berlin
Aussel D, Cotrina J (2013) Quasimonotone quasivariational inequalities: existence results and applications. J 

Optim Theory Appl 158:637–652. https://​doi.​org/​10.​1007/​s10957-​013-​0270-3

A = {x ∈ X ∶ ∃x∗ ∈ F(x) such that ⟨x∗, y − x⟩ ≥ 0}

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10957-013-0270-3


	 M. Balaj et al.

1 3

2  Page 16 of 16

Aussel D, Cotrina J, Iusem A (2017) An existence result for quasi-equilibrium problems. J Convex Anal 
24:55–66

Balaj M (2013) Three types of variational relation problems. Taiwan J Math 17:47–61. https://​doi.​org/​10.​
11650/​tjm.​17.​2013.​1558

Balaj M (2018) Stampacchia variational inequality with weak convex mappings. Optimization 67:1571–
1577. https://​doi.​org/​10.​1080/​02331​934.​2018.​14822​99

Balaj M (2021) Existence results for quasi-equilibrium problems under a weaker equilibrium condition. Oper 
Res Lett 49:333–337. https://​doi.​org/​10.​1016/j.​orl.​2021.​02.​005

Balaj M, Khamsi M (2019) Common fixed point theorems for set-valued mappings in normed spaces. 
Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM 113:1893–1905. https://​doi.​org/​10.​1007/​
s13398-​018-​0588-7

Bianchi M, Pini R (2001) A note on equilibrium problems with properly quasimonotone bifunctions. J Global 
Optim 20:67–76. https://​doi.​org/​10.​1023/A:​10112​34525​151

Bianchi M, Pini R (2005) Coercivity conditions for equilibrium problems. J Optim Theory Appl 124:79–92. 
https://​doi.​org/​10.​1007/​s10957-​004-​6466-9

Bianchi M, Schaible S (1996) Generalized monotone bifunctions and equilibrium problems. J Optim Theory 
Appl 90:31–43. https://​doi.​org/​10.​1007/​BF021​92244

Bianchi M, Hadjisavvas N, Schaible S (2003) On pseudomonotone maps T for which −T is also pseu-
domonotone. J Convex Anal 10:149–168

Bigi G, Castellani M, Pappalardo M et al (2019) Nonlinear programming techniques for equilibria. Springer, 
Cham

Brézis H, Nirenberg L, Stampacchia G (1972) A remark on Ky Fan’s minimax principle. Boll Un Mat Ital 
6:293–300

Castellani M, Giuli M (2016) Ekeland’s principle for cyclically antimonotone equilibrium problems. Nonlin-
ear Anal Real World Appl 32:213–228. https://​doi.​org/​10.​1016/j.​nonrwa.​2016.​04.​011

Cotrina J, Svensson A (2021) The finite intersection property for equilibrium problems. J Global Optim 
79:941–957. https://​doi.​org/​10.​1007/​s10898-​020-​00961-5

Cotrina J, Zúñiga J (2018) A note on quasi-equilibrium problems. Oper Res Lett 46:138–140. https://​doi.​org/​
10.​1016/j.​orl.​2017.​12.​002

Fan K (1972) A minimax inequality and applications. In: Shisha O (ed) Inequalities III. Academic Press, 
New York, pp 103–113

Himmelberg C (1972) Fixed points of compact multifunctions. J Math Anal Appl 38:205–207. https://​doi.​
org/​10.​1016/​0022-​247X(72)​90128-X

Iusem A, Sosa W (2003) New existence results for equilibrium problems. Nonlinear Anal 52:621–635. 
https://​doi.​org/​10.​1016/​S0362-​546X(02)​00154-2

Khanh P, Quan N (2019) Versions of the Weierstrass theorem for bifunctions and solution existence in opti-
mization. SIAM J Optim 29:1502–1523. https://​doi.​org/​10.​1137/​18M11​63774

Mehta G, Tan K, Yuan X (1997) Fixed points, maximal elements and equilibria of generalized games. Non-
linear Anal 28:689–699. https://​doi.​org/​10.​1016/​0362-​546X(95)​00183-V

Mosco U (1976) Implicit variational problems and quasi variational inequalities. Nonlinear operators and the 
calculus of variations. In: Dold A., Eckmann B. (eds) Lecture Notes in Math., vol 543. Springer, Berlin, 
pp 103–113

Muu L, Oettli W (1992) Convergence of an adaptive penalty scheme for finding constrained equilibria. Non-
linear Anal 18:1159–1166. https://​doi.​org/​10.​1016/​0362-​546X(92)​90159-C

Nasri M, Sosa W (2011) Equilibrium problems and generalized Nash games. Optimization 60:1161–1170. 
https://​doi.​org/​10.​1080/​02331​934.​2010.​527341

Shioji N (1991) A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem. Proc Amer 
Math Soc 111:187–195. https://​doi.​org/​10.​1090/​S0002-​9939-​1991-​10456​01-X

Tan N (1985) Quasi-variational inequality in topological linear locally convex Hausdorff spaces. Math Nachr 
122:231–245. https://​doi.​org/​10.​1002/​mana.​19851​220123

Zhou J, Chen G (1988) Diagonal convexity conditions for problems in convex analysis and quasi-variational 
inequalities. J Math Anal Appl 132:213–225. https://​doi.​org/​10.​1016/​0022-​247X(88)​90054-6

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.11650/tjm.17.2013.1558
https://doi.org/10.11650/tjm.17.2013.1558
https://doi.org/10.1080/02331934.2018.1482299
https://doi.org/10.1016/j.orl.2021.02.005
https://doi.org/10.1007/s13398-018-0588-7
https://doi.org/10.1007/s13398-018-0588-7
https://doi.org/10.1023/A:1011234525151
https://doi.org/10.1007/s10957-004-6466-9
https://doi.org/10.1007/BF02192244
https://doi.org/10.1016/j.nonrwa.2016.04.011
https://doi.org/10.1007/s10898-020-00961-5
https://doi.org/10.1016/j.orl.2017.12.002
https://doi.org/10.1016/j.orl.2017.12.002
https://doi.org/10.1016/0022-247X(72)90128-X
https://doi.org/10.1016/0022-247X(72)90128-X
https://doi.org/10.1016/S0362-546X(02)00154-2
https://doi.org/10.1137/18M1163774
https://doi.org/10.1016/0362-546X(95)00183-V
https://doi.org/10.1016/0362-546X(92)90159-C
https://doi.org/10.1080/02331934.2010.527341
https://doi.org/10.1090/S0002-9939-1991-1045601-X
https://doi.org/10.1002/mana.19851220123
https://doi.org/10.1016/0022-247X(88)90054-6

	New criteria for existence of solutions for equilibrium problems
	Abstract
	1 Introduction
	2 Preliminaries
	3 Equilibrium problems
	4 Quasiequilibrium problems
	5 Conclusions
	References




