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Abstract
Purpose We have re-evaluated the anatomical arguments that underlie the division of the spinal visceral outflow into sym-
pathetic and parasympathetic divisions.
Methodology Using a systematic literature search, we mapped the location of catecholaminergic neurons throughout the 
mammalian peripheral nervous system. Subsequently, a narrative method was employed to characterize segment-dependent 
differences in the location of preganglionic cell bodies and the composition of white and gray rami communicantes.
Results and Conclusion One hundred seventy studies were included in the systematic review, providing information on 389 
anatomical structures. Catecholaminergic nerve fibers are present in most spinal and all cranial nerves and ganglia, including 
those that are known for their parasympathetic function. Along the entire spinal autonomic outflow pathways, proximal and 
distal catecholaminergic cell bodies are common in the head, thoracic, and abdominal and pelvic region, which invalidates 
the “short-versus-long preganglionic neuron” argument.
Contrary to the classically confined outflow levels T1-L2 and S2-S4, preganglionic neurons have been found in the resulting lumbar 
gap. Preganglionic cell bodies that are located in the intermediolateral zone of the thoracolumbar spinal cord gradually nest more 
ventrally within the ventral motor nuclei at the lumbar and sacral levels, and their fibers bypass the white ramus communicans and 
sympathetic trunk to emerge directly from the spinal roots. Bypassing the sympathetic trunk, therefore, is not exclusive for the sacral 
outflow. We conclude that the autonomic outflow displays a conserved architecture along the entire spinal axis, and that the perceived 
differences in the anatomy of the autonomic thoracolumbar and sacral outflow are quantitative.
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Abbreviations
Important note  Nerves and ganglia are not homoge-

neous collections of neurons. Nerves 
and ganglia themselves therefore 
are not exclusively sympathetic, 
parasympathetic, or somatic. For 
example, the white and gray rami 
communicantes are not dedicated 
“sympathetic nerves,” just as the 
vagus nerves are not exclusively 
“parasympathetic,” or the spinal 
ganglia “somatic.”

Neuron  Nerve cell
Cell body  
(soma, perikaryon)  Part of neuron containing the 

cell nucleus
Nucleus  Collection of cell bodies in 

the central nervous system
Nerve fiber  Extension of the neuron that 

propagates the electrochemi-
cal stimulus from (axon) or 
to (dendrite) the cell body

Preganglionic neuron 
(visceral efferent neuron)  Autonomic neuron with its  

cell body 
in the central nervous system
Postganglionic neuron  Autonomic neuron with its  

cell body in the peripheral 
nervous system
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Autonomic outflow  
(visceral outflow)  The group of preganglionic 

neurons leaving the central 
nervous system at a certain 
level

Ganglion  Collection of cell bodies in  
the peripheral nervous 
system

Nerve  The nerve fibers and cell 
bodies that are  
embedded in connective tis-
sue called epineurium

Nerve branch  Branched extension of a 
nerve

Sympathetic trunk, also 
known as paravertebral 
ganglionic chain  Collection of nerves  

and ganglia located on  
either side of the  
vertebral column

Preaortic (prevertebral) 
ganglia  Collection of nerves and 

ganglia located ventral to the 
abdominal aorta

Pelvic ganglion 
(inferior hypogastric plexus)  Collection of nerves and gan-

glia located in the pelvic wall

Introduction

The universally accepted model of the sympathetic and 
parasympathetic efferent limbs of the autonomic nervous 
system was formulated at the turn of the nineteenth to 
the twentieth century [1]. In addition to physiological and 
pharmacological criteria, anatomical arguments have been 
invoked to define the sympathetic-parasympathetic model 
[2–4]. These anatomical arguments have three main com-
ponents. The first argument relates to the bimodal distri-
bution of peripheral cell bodies, with the sympathetic cell 
bodies located in ganglia close to the central nervous sys-
tem, and the parasympathetic cell bodies in a distal posi-
tion, within or close to the wall of target organs. A second 
argument involves the absence of white rami communi-
cantes at the sacral level. In contrast to the thoracolumbar 
sympathetic outflow, preganglionic neurons at the sacral 
level bypass the sympathetic trunk. Pelvic splanchnic 
nerves arise, therefore, directly from the sacral plexus. The 
third argument concerns the gap in the autonomic outflow 
at the lumbar level. As the autonomic outflow is concen-
trated around the T1-L2 and S2-S4 levels, the cell bodies 

of the preganglionic neurons do not appear as a continuous 
cell column. A parallel is therefore often drawn between 
the parasympathetic cranial and sacral outflows [2].

In this review, we re-evaluate the anatomical arguments that 
divide the spinal visceral outflow in sympathetic and parasym-
pathetic partitions. A systematic literature search permitted us 
to map the location of catecholaminergic neurons throughout 
the entire mammalian peripheral nervous system. Subsequently, 
a narrative method was employed to characterize segment-
dependent differences in the location of preganglionic cell bod-
ies and the composition of white and gray rami communicantes. 
In total, it becomes apparent that the differences between the 
thoracolumbar and sacral outflow are not binary. The anatomy of 
the autonomic outflow displays a conserved architecture along 
the entire spinal axis, albeit with a quantitative gradient in char-
acteristic features. This finding is compatible with recent data 
indicating that the molecular signature of preganglionic cells in 
the thoracolumbar and sacral region is highly similar [5].

Methods

This study meets the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses guidelines (see Supplemental 
Word document and Supplemental interactive Tables 1 and 2). 
Literature was searched for studies dealing with the anatomi-
cal arguments that are used to divide the spinal visceral out-
flow into sympathetic and parasympathetic divisions. Using 
a systematic literature search, we first mapped the location of 
catecholaminergic neurons throughout the entire mammalian 
peripheral nervous system. The outcome of the systematic 
literature prompted us to look more closely into the location 
of the preganglionic neurons and the white and gray rami 
communicantes along the spinal cord. This search followed 
a narrative strategy and included studies from the nineteenth 
and twentieth centuries. We ensured that only findings that 
comply with current scientific understanding are included in 
this review. Languages were restricted to English, German 
and French.

Data source and study selection for the systematic 
literature search

Abstracts, titles, and Medical Subject Headings (MeSH) 
entry terms in PubMed were searched to identify original 
studies that either established the existence of catechola-
minergic neurons histologically by demonstrating the pres-
ence of the enzymes tyrosine hydroxylase or dopamine 
β-hydroxylase, or confirmed communication between nerves 
and sympathetic structures using validated techniques such 
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as neural tract tracing, experimental neural degeneration, 
crushing or denervation, and neural recording. Studies rely-
ing on macroscopic dissections alone were not included. 
Search terms included every nervous structure listed in Ter-
minologia Anatomica [Anatomical Terminology] [6] under 
the headings “cranial nerves,” “spinal nerves” and “para-
sympathetic part of autonomic part of peripheral nervous 
system.” The last search was performed on July 11, 2023. 
The reference lists of retrieved articles were also reviewed 
for additional studies that fulfilled the search criteria.

Search strategy for the systematic literature search

The search for each structure consisted of two separate 
approaches. The first approach looked for the histologically 
confirmed presence of catecholaminergic neurons, and was 
executed by combining the entry terms of tyrosine hydroxy-
lase or dopamine β-hydroxylase with (query term: AND) the 
nervous structure of interest. The second approach searched 
for communication between nerves and sympathetic struc-
tures, using the entry terms of sympathetic structures listed 
in Terminologia Anatomica [6] AND the nervous structures 
from search 1, AND neuroanatomical tract-tracing tech-
niques (MeSH) OR horseradish peroxidase (MeSH) OR 
communication OR communicating OR communications 
OR anastomosis OR anastomosing OR connecting OR 
connection.

Findings and Discussion

For the systematic approach, a total of 43 queries for the 
cranial and 101 for the spinal nerves were performed, which 
provided information on 389 anatomical structures in 996 
and 243 identified studies, respectively. All abstracts were 
screened for the inclusion criteria with respect to applied 
techniques, language, and species, resulting in 170 eligi-
ble studies (Table 1 and supplemental interactive Table 1 
[extended Microsoft Excel-based Table]).

The narrative approach produced 60 relevant references 
from the nineteenth and twentieth centuries. Supplemen-
tal interactive Table 2 provides an overview of the find-
ings extracted from these studies. Although the scientific 
views put forward in these studies often no longer meet cur-
rent models, they do frequently present research findings 
that were made with still accepted techniques. The recent 
molecular studies of the development of cranial ganglia from 
Schwann cell precursors and their source [7–9], for instance, 
were preceded by specific histological observations in the 
early twentieth century [10, 11]. These classical observa-
tions have the advantage of including human embryos.

The distribution of catecholaminergic neurons

Nerve fibers

Throughout the mammalian body, catecholaminergic nerve 
fibers have been demonstrated in many spinal and all cranial 
nerves and ganglia (Table 1). Catecholaminergic nerve fib-
ers are also present in established parasympathetic nerves 
[4, 6], such as the greater petrosal nerve in mice, rats, cats, 
and monkeys [12–15] and the pelvic splanchnic nerves in 
humans [16–18]. We found no species-specific differences. 
Although we focused on mammals, we also encountered 
similar observations in birds [19, 20] and amphibia [21, 
22], suggesting evolutionary conservation of the observed 
features.

Cell bodies

Catecholaminergic cell bodies have a more widespread dis-
tribution than generally acknowledged [2, 4, 6]. They are 
found in the trigeminal [23, 24], geniculate [25], inferior 
glossopharyngeal [26–37], superior [31, 38], and inferior 
[26, 28, 29, 31, 32, 34, 35, 37–47] vagal ganglia, and in 
dorsal root ganglia at all spinal levels [28, 31, 48–59]. 
Moreover, the generally accepted parasympathetic ganglia 
of the head [2], which include the ciliary [60–69], the otic 
[69], the pterygopalatine [69–72] and the submandibular 
ganglia [69, 73–78], all contain catecholaminergic cell 
bodies. Catecholaminergic cell bodies are found not only in 
ganglia, but also in the cranial nerves themselves, such as 
the (lingual branch of the) glossopharyngeal nerve [27, 79], 
the cervical [80] and laryngeal branches of the vagus nerve 
[81, 82], and the cranial root of the hypoglossal nerve [83]. 
In addition, catecholaminergic cell bodies are found in both 
the ventral and dorsal spinal nerve roots [84–99], and in the 
hypogastric and the (“parasympathetic”) pelvic splanchnic 
nerves [16, 17].

Argument 1: The short versus long preganglionic 
neuron

A commonly held concept in the classic subdivision of 
the autonomic outflow is the bimodal distribution of cell 
bodies, with the sympathetic cell bodies located in gan-
glia close to the central nervous system, and the parasym-
pathetic cell bodies in a distal position, within or close 
to the wall of target organs. Our systematic review, in 
contrast, demonstrates that both proximal and distal cat-
echolaminergic cell bodies are common throughout the 
entire spinal outflow (Fig. 1). The distribution of the cell 
bodies, therefore, cannot be used to subdivide the auto-
nomic outflow.
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Table 1  List of nerves containing catecholaminergic neurons

Nerve First author, year, and reference Species Extra signal

Oculomotor Oikawa, 2004 [198] Human
Maklad, 2001 [15] Mouse
Ruskell,1983 [199] Monkey

Trochlear Hosaka, 2014 [76] Human
Oikawa, 2004 [198] Human
Maklad, 2001 [15] Mouse

Trigeminal, ciliary, submandibular, pterygopala-
tine, otic, trigeminal ganglion

Teshima, 2019 [78] Mouse, human #, *(Hand2+)

Hosaka, 2016 [200] Human
Matsubayashi, 2016 [201] Human
Yamauchi, 2016 [77] Human #
Hosaka, 2014 [76] Human #
Szczurkowski,2013[72] Chinchilla #
Kiyokawa, 2012 [69] Human fetus #
Rusu, 2010 [206] Human
Thakker, 2008 [68] Human #
Kaleczyc, 2005 [67] Pig #, *(DBH+)
Reynolds, 2005 [24] Rat #, *(DBH+)
Maklad, 2001 [15] Mouse
Grimes, 1998 [66] Rhesus monkey #, *(DBH+)
Kirch, 1995 [64] Human #
Ng, 1995 [75] Rat, monkey #
Tan, 1995 [65] Cat, monkey #
Simons, 1994 [71] Rat #, *(DBH+)
Marfurt, 1993 [23] Rat, guinea pig #
Tyrrell, 1992 [63] Rat #
Shida, 1991 [74] Rat #
Soinila, 1991 [73] Rat #
Yau, 1991 [213] Cat
ten Tusscher, 1989 [214] Rat
Kuwayama, 1988 [70] Rat #
Landis,1987 [61] Rat #, *(DBH+)
Uemura,1987 [62] Japanese monkey, cat, dog #
Jonakait, 1984 [49] Rat (embryo) #
Lackovic, 1981 [166] Human *(NA+)

Abducens Oikawa, 2004 [198] Human
Maklad, 2001 [15] Mouse
Lyon,1992 [202] Cynomolgus monkey
Johnston, 1974 [203] Human

Facial, geniculate ganglion Tereshenko, 2023 [204] Human
Tang, 2022 [25] Mouse #
Ohman-Gault, 2017 [205] Mouse
Matsubayash, 2016 [201] Human
Yamauchi, 2016 [77] Human
Hosaka, 2014 [76] Human
Reuss, 2009 [207] Rat
Maklad, 2001 [15] Mouse
Johansson, 1998 [208] Rat
Shibamori, 1994 [14] Rat
Takeuchi, 1993 [209] Cynomolgus monkey
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Table 1  (continued)

Nerve First author, year, and reference Species Extra signal

Fukui, 1992 [210] Cat
Anniko, 1987 [167] Mouse *(NA+)
Matthews, 1986 [13] Cat
Wilson, 1985 [12] Cynomolgus, rhesus monkeys
Thomander, 1984 [211] Cat
Schimozawa, 1978 [212] Mouse

Vestibulocochlear, vestibular ganglion Yamauchi, 2016 [77] Human
Shibamori, 1994 [14] Rat
Hozawa, 1993 [155] Guinea pig *(DBH+)
Yamashita, 1992 [215] Guinea pig
Hozawa, 1990 [154] Cynomolgus monkey *(DBH+)
Anniko, 1987 [167] Mouse *(NA+)
Paradiesgarten, 1976 [216] Cat
Densert, 1975 [168] Rabbit and cat *(NA+)

Glossopharyngeal, petrosal ganglion Oda, 2013 [79] Human #
Ichikawa, 2007 [37] Rat #
Matsumoto, 2003 [217] Rat
Wang, 2002 [36] Rat #
Satoda, 1996 [220] Cynomolgus monkey
Ichikawa, 1995 [34] Rat #
Ichikawa, 1993 [33] Rat #
Helke, 1991 [32] Rat #
Helke, 1990 [29] Rat #
Katz, 1990 [30] Rat #
Kummer, 1990 [31] Guinea pig #
Katz, 1987 [28] Rat #
Katz, 1986 [27] Rat #
Jonakait, 1984 [49] Rat (embryo) #, *(DBH+)
Katz, 1983 [26] Rat #

Vagus, superior and inferior (nodose) ganglion Bookout, 2021 [47] Mouse *(DBH+, Hand2+)
Verlinden, 2016 [80] Human #, *(DBH+)
Hosaka, 2014 (75) Human
Seki, 2014 [218] Human
Onkka, 2013 [219] Dog
Ibanez, 2010 [82] Human #
Kawagishi, 2008 [38] Human #
Ichikawa, 2007 [37] Rat #
Matsumoto, 2003 [217] Rat
Nozdrachev, 2003 [221] Cat
Forgie, 2000 [222] Mouse
Yang, 1999 [150] Rat #, *(DBH+)
Gorbunova, 1998 [45] Rabbit
Ichikawa, 1998 [35] Rat #
Sang, 1998 [46] Mouse #
Ichikawa, 1996 [43] Rat #
Uno, 1996 [44] Dog #
Fateev, 1995 [223] Cat
Ichikawa, 1995 [34] Rat #
Zhuo, 1995 [42] Rat #
Zhuo, 1994 [41] Rat #
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Table 1  (continued)

Nerve First author, year, and reference Species Extra signal

Yoshida, 1993 [40] Cat #
Ruggiero, 1993 [228] Rat
Dahlqvist, 1992 [81] Rat #, *(DBH+)
Helke, 1991 [32] Rat #
Helke, 1990 [29] Rat #
Kummer, 1990 [31] Guinea pig #
Ling, 1990 [230] Hamster
Baluk, 1989 [232] Guinea pig
Katz, 1987 [28] Rat #
Dahlqvist, 1986 [171] Rat *(NA+)
Lucier, 1986 [235] Cat
Matthews, 1986 [13] Cat
Smith, 1986 [237] Guinea pig
Blessing, 1985 [238] Rat
Smith, 1985 [240] Guinea pig
Jonakait, 1984 [49] Rat (embryo) #, *(DBH+)
Katz, 1983 [26] Rat #
Hisa, 1982 [241] Dog
Lackovic, 1981 [166] Human *(NA+)
Ungváry, 1976 [243] Cat
Nielsen, 1969 [169] Cat *(NA+)
Kummer, 1993 [39] Rat #
Lundberg, 1978 [242] Cat, Guinea pig

Accessory Hosaka, 2014 [76] Human
Hypoglossal Hosaka, 2014 [76] Human

Tubbs, 2009 [83] Human #
Tseng, 2005 [224] Hamster
Tseng, 2001 [225] Hamster
Hino, 1993 [226] Dog
Fukui, 1992 [210] Cat
O’Reilly, 1990 [227] Rat

Greater auricular Matsubayashi, 2016 [201] Human
Phrenic Verlinden, 2018 [120] Human *(DBH+)

Lackovic, 1981 [166] Human *(NA+)
Suprascapular Hosaka, 2014 [76] Human
Mammary Eriksson, 1996 [229] Human, rat
Lateral antebrachial cutaneous nerve of forearm 

(musculocutaneous)
Marx, 2011 [231] Human

Marx, 2010 [233] Human
Radial Marx, 2010 [234] Human
Superficial branch of radial Marx, 2010 [234] Human

Marx, 2011 [231] Human
Palmar branch of ulnar Balogh, 1999 [236] Human
Medial antebrachial cutaneous nerve of forearm Marx, 2011 [231] Human

Marx, 2010 [239] Human
Intercostal Lackovic, 1981 [166] Human *(NA+)
Genitofemoral Lackovic, 1981 [166] Human *(NA+)
Ilioinguinal Lackovic, 1981 [166] Human *(NA+)
Sciatic Creze, 2017 [149] Human fetus

Hosaka, 2014 [76] Human
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Table 1  (continued)

Nerve First author, year, and reference Species Extra signal

Loesch, 2010 [147] Rat
Castro, 2008 [146] Rat
Wang, 2002 [244] Mouse
Li, 1999 [245] Rat
Li, 1996 [247] Rat
Li,1995 [248] Rat
Li, 1994 [250] Rat
Koistinaho, 1991 [249] Human fetus
D’Hooge, 1990 [174] Dog *(NA+)
Studelska, 1989 [254] Rat
Dahlström, 1987 [173] Rat *(NA+)
Dahlström, 1986 [172] Rat *(NA+)
Larsson, 1986 [165] Rat *(DBH+, NA+)
Schmidt, 1984 [164] Rat *(DBH+)
Larsson, 1984 [163] Rat *(DBH+, NA+)
Evers-Von Bültzingslöwen, 1983 [162] Rabbit *(DBH+)
Dahlström, 1982 [170] Rat *(NA+)
Jakobsen, 1981 [161] Rat *(DBH+)
Häggendal, 1980 [160] Rat *(DBH+)
Reid, 1975 [159] Rat *(DBH+)
Keen, 1974 [157] Rat *(DBH+, NA+)
Nagatsu, 1974 [158] Rat *(DBH+)
Dairman, 1973 [156] Rat *(DBH+)
Thoenen, 1970 [266] Rat

Fibular Tompkins, 1985 [148] Human
Jänig, 1984 [246] Cat
Ben-Jonathan, 1978 [175] Cat *(NA+)

Tibial Koistinaho, 1991 [249] Human fetus
Sural Fang, 2017 [251] Rabbit
Pudendal Nyangoh Timoh, 2017 [252] Human fetus

Bertrand, 2016 [253] Human fetus
Hinata, 2015 [255] Human
Hieda, 2013 [256] Human
Alsaid, 2011 [257] Human fetus
Alsaid, 2009 [258] Human fetus
Roppolo, 1985 [259] Monkey

Perineal Moszkowicz, 2011 [260] Human fetus
Colombel, 1999 [261] Human

Nerve to levator ani Hinata, 2014 [262] Human
Hinata, 2014 [263] Human

Pelvic splanchnic Jang, 2015 [18] Human #
Imai, 2006 [17] Human #
Takenaka, 2005 [16]

Spinal root, dorsal root ganglia Massrey, 2020 [99] Human #
Morellini, 2019 [269] Rat *(DBH+, NAT+)
Oroszova, 2017 [59] Rat #
McCarthy, 2016 [58] Mouse #
Brumovsky, 2012 [57] Mouse #
Li, 2011 [56] Mouse #
Dina, 2008 [55] Rat #, *(DBH+, NAT+)
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Proximal locations

Catecholaminergic neurons are descendants of neural crest 
cells [100–102]. Trunk neural crest cells consist of several 

migrating groups. The core of the developing ganglia is 
established by an early cohort of neural crest cells that 
migrate ventrally to the mesenchyme dorsolateral to the 
dorsal aorta [102–105]. Many of these proximal cell 

Table 1  (continued)

Nerve First author, year, and reference Species Extra signal

Brumovsky, 2006 [54] Mouse #
Ichikawa, 2005 [53] Mouse #
Holmberg, 2001 [52] Mouse #
Deng, 2000 [264] Rat
Jones, 1999 [265] Rat
Ma, 1999 [267] Rat
Shinder, 1999 [268] Rat
Thompson, 1998 [270] Rat
Karlsson, 1994 [271] Rat
Vega, 1991 [51] Rat #
Kummer, 1990 [31] Guinea pig #
Katz, 1987 [28] Rat #
Price, 1985 [50] Rat #
Jonakait, 1984 [49] Rat (embryo) #, *(DBH+)
Price, 1983 [48] Rat #
Lackovic, 1981 [166] Human *(NA+)

For each nerve, studies confirming tyrosine hydroxylase-positive nerve fibers are listed with first author, year of publication and species investigated. Stud-
ies that demonstrate catecholaminergic (CA) cell bodies are indicated by #. Studies that demonstrate additional “sympathetic” phenotypic properties are 
indicated by *. DBH: dopamine β-hydroxylase, NA: noradrenaline, NAT: noradrenaline transporter. A more extensive interactive Microsoft Excel-based 
Table, provided with filter tools for study characteristics and findings, is provided in supplemental interactive Table 1

Fig. 1  Definitive catecholaminergic cell positions. References are 
plotted showing the position of cell bodies along the cranio-caudal 
(Y) and proximo-distal (X) body axes. Altogether, the data show 
that both proximal and distal ganglia are common in the entire thora-

columbar and sacral autonomic outflow pathways. Other references 
indicate the levels at which preganglionic neurons bypass the sym-
pathetic trunk (curved arrows), or more frequently use the gray rami 
communicantes (brown stars)
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bodies subsequently nest in the sympathetic trunk. Other 
proximal locations, however, include the spinal nerve roots 
[84–99], dorsal root ganglia [28, 31, 48–59, 95], and white 
and gray rami communicantes [85–91, 95–98, 106–111]. 
In the pelvic area, usually characterized as parasympa-
thetic, these proximal locations of ganglionic cells also 
exist, both in sacral nerve roots [84, 93, 99] and in the 
proximal part of the pelvic splanchnic nerves [16, 17, 93, 
112–114].

Distal locations

Neural crest cells can run aground anywhere along their 
proximo-distal migration pathways. Cell bodies of trunk 
neural crest cell origin are found up to the walls of the tar-
get organs, as the vascular system keeps instructing these 
cells to migrate [115, 116]. In the abdomen, cell bodies are 
found in large numbers in all splanchnic nerves [90, 98, 
111, 117, 118], the preaortic ganglia [113, 114], all their 
periarterial extensions [119, 120], and within the walls of 
organs of both the urogenital and gastrointestinal tracts [114, 
121–130]. In the thorax, the situation is similar. Catecho-
laminergic cell bodies are found on the cardiopulmonary 
nerves [131–134], in small mediastinal ganglia [131–134] 
and the ganglion cardiacum [135, 136], and within the wall 
of the heart [131, 134]. Finally, the distal position of cell 
bodies that are of trunk neural crest cell origin extends to 
the head. Several thousands of cell bodies exist, for example, 
along the intracranial course of human internal carotid arter-
ies [110, 137–139].

(Catecholaminergic) cell bodies within the autonomic 
ganglia of the head are of mixed origin

The cell bodies within the cranial autonomic ganglia develop 
from neural crest cells and the related Schwann cell pre-
cursors [102, 140, 141], with the majority coming from 
Schwann cell precursors. Schwann cell precursors that are 
associated with the oculomotor nerve [8, 11, 141], chorda 
tympani [7, 10, 11], greater superficial petrosal nerve and 
geniculate ganglion [7, 10, 11], and tympanic nerve and pet-
rosal ganglion [9–11] populate the ciliary, submandibular, 
pterygopalatine, and otic ganglia, respectively. Small ganglia 
are also present along these nerve paths [9–11]. In some 
species, including humans, at least part of these autonomic 
ganglia originate directly from cranial neural crest cells. 
These migrate along the ophthalmic [10, 11, 141–143], max-
illary [11, 142], and mandibular nerves [11, 142], and also 
populate the ciliary, submandibular and pterygopalatine, and 
otic ganglia, respectively. Similarly, these trigeminal nerve 
branches also harbor small ganglia that represent grounded 
cell bodies [144, 145]. In addition, cells from the superior 
cervical ganglion were shown to populate the otic ganglion 
[10].

The partly catecholaminergic phenotype of the autonomic 
ganglia of the head may arise from cranial neural crest cells 
and Schwann cell precursors, as catecholaminergic cell 
bodies are present in both trigeminal [23, 24], and petrosal 
[26–37] and geniculate ganglia [25], respectively. Thus far, 
catecholaminergic cell bodies have not been reported to 
exist in the human geniculate ganglion, but here we demon-
strate a few (Fig. 2). Of relevance, TH-positive neurons were 

Fig. 2  Catecholaminergic neurons in the human geniculate ganglion 
and the greater superficial petrosal nerve. Example of a TH-positive 
cell body (A) and nerve fiber (B) in the geniculate ganglion and 
proximal course of the superficial petrosal nerve, respectively. Nerve 
tissue was harvested from a formalin-fixed cadaver (97 years of age) 
from the body donation program of the Department of Anatomy and 
Embryology, Maastricht University. The body was preserved by intra-

arterial infusion with 10 L fixative (composition (v/v): 21% ethanol, 
21% glycerin, 2% formaldehyde, 56% water, and 16 mmol/L thymol), 
followed by 4  weeks of fixation in 20% ethanol, 2% formaldehyde, 
and 78% water. Antibody: Abcam ab209487, 1:10,000. Antigen 
retrieval Tris–EDTA pH 9.0, 30 min. Secondary antibody GAR-bio, 
1:10,000. Chromogen: Vector NovaRED peroxidase substrate kit, 
SK-4805
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also present in the proximal course of the greater superficial 
petrosal nerve. The notion that the partly catecholaminergic 
phenotype of the submandibular ganglion may arise from 
cranial neural crest cells is supported by the finding that 
catecholaminergic cell bodies in this ganglion are already 
present prior to the arrival of postganglionic neurons from 
the superior cervical ganglion [78].

Caveats of using the catecholaminergic phenotype

In aggregate, our inventory convincingly shows that catecho-
laminergic fibers and cell bodies are present in the entire 
tracts of peripheral nerves and ganglia throughout the body. 
The reported prevalence of cell bodies per location varies 
greatly (supplemental interactive Table 1) [16, 18, 25, 27, 
30–35, 37, 39, 41, 42, 44, 46, 51, 53, 54, 62–67, 71, 72, 
74, 80, 122, 124, 126, 146–150]. We hypothesize that the 
reasons for this variation are both biological and techni-
cal. Most studies were not quantitative in design, because 
such studies would require random sampling of a sufficient 
number of histological sections across the entire structure 
of interest and, to deal with biological variation, a sufficient 
number of independent samples. In addition, the fraction 
of catecholaminergic cells that stain is influenced by such 
factors as the quality of the antibodies, the concentration of 
the neurotransmitter or enzyme, and the time between death 
and fixation. Even though it remains to be established what 
functions these cells have, their distribution pattern is too 
uncommon to dismiss as coincidental.

The catecholaminergic phenotype is not always associated 
with efferent (sympathetic) neurons, nor is it always 
permanent

Nerve cells with catecholaminergic phenotypic proper-
ties arise from the neural crest or the related Schwann cell 
precursor population. From these progenitors, different 
functional subtypes develop [151]. The catecholamines 
dopamine, noradrenaline, and adrenaline are derivates of 
phenylethylamine [152]. Tyrosine hydroxylase (TH) is the 
first enzyme in the biosynthetic pathway of (nor)adrenaline. 
This enzyme has received the most attention in biomedi-
cal research [153], and is often, incorrectly, associated with 
(nor-)adrenergic neurotransmission. Co-localization of TH 
with dopamine β-hydroxylase (DBH), which catalyzes the 
β-hydroxylation of dopamine to noradrenaline, provides 
stronger evidence for such neurotransmission. DBH-positive 
neurons have been reported in the ciliary [61, 66, 67], ptery-
gopalatine [71], trigeminal [24, 49], petrosal [49], nodose 
[47, 49, 150], and dorsal root ganglia [49], and the vestibu-
locochlear [154, 155], vagus [80, 150], recurrent laryngeal 
[81], phrenic [120], and sciatic [55, 156–165] nerves. Other 

studies measured concentrations of noradrenaline directly 
in the trigeminal [166] and nodose [45] ganglia, and in the 
facial [167], vestibulocochlear [167, 168], vagus [166], 
phrenic [166], ilioinguinal [166], genitofemoral [166], sci-
atic [157, 163, 165, 169–174], and fibular [175] nerves and 
spinal nerve roots [166]. TH-positive, but DBH-negative cell 
bodies have been observed in ciliary [62, 64, 67], petrosal 
[31], jugular [31], nodose [31, 39] and dorsal root ganglia 
[31, 48, 51]. Furthermore, TH-positive, but noradrenaline 
transporter type-1- [57] and phenylethanolamine-N-methyl-
transferase-negative cell bodies [31] were reported in dorsal 
root ganglia. Nerves in which solely TH but none of the 
downstream enzymes are present probably utilize dopamine 
as a neurotransmitter.

Tyrosine hydroxylase-positive staining has been observed 
in cell bodies that exhibit morphological features typical of 
primary sensory neurons in petrosal [26, 34], nodose [26, 
34], geniculate [25], and dorsal root ganglia [56, 57, 59]. 
Some TH-positive cell bodies in the nodose ganglion are 
also labeled following the injection of tracer material into 
the nucleus of the solitary tract [39, 44].

Within the developing ciliary and pterygopalatine gan-
glia, neurons are observed that express catecholamines 
transiently [176–178]. In the mouse, the nerve fibers of the 
vagus nerve arrive in the wall of the gastrointestinal tract 
only after the TH-positive cells of the vagal neural crest 
cells have settled there [179, 180]. The TH-positive cells 
have largely disappeared from the vagus nerve by embryonic 
day 16 in the mouse, which corresponds to ~9.5 weeks of 
development in human embryos. Our observations suggest 
that a subset of these transiently TH-positive cells might 
remain present.

Arguments 2 and 3: The absence of white rami 
communicantes at the sacral level and the “lumbar 
gap”

Two other anatomical arguments that have been used to define 
the sympathetic-parasympathetic model are the absence of 
white rami communicantes at the sacral level, and the gap in 
the autonomic outflow at the lumbar level.

The rami communicantes are part of a peripheral 
connection matrix

Macroscopic studies of the distribution pattern of the rami 
communicantes and sympathetic trunk have shown that the 
rami communicantes form a true mesh, with up to seven rami 
communicantes connecting the sympathetic trunk with the 
spinal nerves from corresponding and adjacent levels [2, 94, 
98, 181–184]. Interconnecting bundles of nerve fibers between 
the left and right sympathetic trunk are present at all levels 
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[98, 185]. In addition, the white and gray rami communicantes 
can share an epineurium, and then present as a single ramus 
communicans [91].

Mixed content of white rami communicantes

The rami communicantes are defined by their macroscopic 
appearance [186, 187] which, in turn, depends on the propor-
tion of myelinated nerve fibers present. Macroscopically iden-
tifiable white rami communicantes are present between ver-
tebral levels T1 and L2 in humans. Accordingly, the absence 
of white rami communicantes at the sacral level has been one 
of the anatomical arguments for separating the sacral from 
the thoracolumbar autonomic outflow [1]. However, the nerve 
fibers in the rami communicantes represent not only pregangli-
onic neurons, but also somatic neurons [87, 108, 188]. In addi-
tion, the white rami communicantes contain a great number of 
medium-sized and large myelinated afferent fibers, particularly 
in the lower thoracic region [189]. The number and size of 
these afferent fibers together far exceed the small myelinated 
efferent components, so that the white rami communicantes 
represent the thoracolumbar inflow as much as the outflow 
[189].

Mixed content of gray rami communicantes

Myelinated preganglionic neurons are also common in the 
gray ramus communicans [91, 95, 110, 190]. At the upper 
and lower margins of the thoracolumbar outflow, where the 
white rami communicantes gradually disappear, the number 
of myelinated nerve fibers in the gray rami communicantes 
actually increases tenfold [91, 108]. Sporadically, sacral gray 
rami communicantes are so heavily myelinated that they have 
been described as a “sacral white ramus communicans” [93].

Preganglionic neurons can bypass the rami communicantes 
at the thoracolumbar outflow margins

At the margins of the thoracolumbar outflow, a fraction of 
the preganglionic neurons bypass the rami communicantes 
and the sympathetic trunk [86–90, 92, 96, 97, 110] (Fig. 3). 
Lumbar splanchnic nerves can arise directly from the lum-
bar plexus [90, 191], such as pelvic splanchnic nerves arise 
from the sacral plexus. Bypassing the sympathetic trunk, 
therefore, is not exclusive for the sacral outflow.

The lumbar gap

The spinal preganglionic outflow levels vary among species 
[1, 84, 92, 112, 186, 192]. In humans, the spinal pregangli-
onic outflow has classically been confined to the segments 
T1-L2 and S2-S4 based on the absence of white rami com-
municantes caudal to segment L2, and on the perceived 

discontinuity of the spinal autonomic outflow cell column. 
The presence of this “lumbar gap” is often quoted when 
describing the parallel between the parasympathetic cra-
nial and sacral outflows. Preganglionic neurons have been 
described, however, at the lower lumbar level [95, 137, 190], 
which is in the middle of the “lumbar gap.” These pregangli-
onic neurons follow, as described in the previous paragraph, 
the spinal nerves and gray rami communicantes.

From the thoracolumbar outflow margin downwards, 
preganglionic cell bodies increasingly nest between the ven-
tral motor nuclei [193, 194] (Fig. 3). At the sacral level, the 
intermediolateral nucleus no longer forms a distinct lateral 
horn of gray matter [194], whereas the ventral motor nucleus 
becomes highly mixed with preganglionic neurons [195]. 
Apparently, preganglionic neurons with their cell bodies in, 
or near, the ventral motor horn prefer to follow the path of 
the motor neurons and branch away towards their targets 
only distal to the white rami communicantes. At the sacral 
level, this phenomenon is structural, and the white ramus 
communicans is absent.

Conclusion

We conclude that the anatomy of the autonomic outflow 
displays a conserved architecture along the entire spi-
nal axis, albeit with a gradient in characteristic features. 
Langley appears to have understood the limitations of the 
anatomical arguments that support his model, because he 
acknowledged the nonbinary distribution of postganglionic 
cell bodies [112, 196], the failure of the white-gray appear-
ance of the rami communicantes to convey their anatomi-
cal identity, and the presence of preganglionic fibers in the 
gray rami communicantes and within the lumbar gap [190]. 
Although Langley created an appealing concept, his binary 
model was hallowed by constant repetition in the literature. 
As a result, the textbook presentation of the division of the 
spinal visceral outflow in sympathetic and parasympathetic 
divisions became primarily based on the generalization of 
this concept.

The conserved architecture of the spinal visceral outflow 
that is presented in this review seems to be compatible with 
the finding that the molecular signature of cells in the thora-
columbar and sacral region of the autonomic nervous system 
is qualitatively highly similar [5, 197].

Perspective

The development of the peripheral nervous system is intri-
cate and diverse. Examples include the reciprocal interaction 
between neural crest cell migration and nerve formation. 
It is likely that neural crest cells with catecholaminergic 
fates emigrate from the CSN along pre-existing nerves to 
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differentiate on their way and/or at their final target site. 
This might result in the entwined anatomy that we observed. 
Nerves and ganglia are therefore not homogeneous collec-
tions of neurons (Fig. 4). Upon migrating to a distal loca-
tion, an appreciable number of these catecholaminergic cells 

apparently strand along the route. Such stranded cells could 
be very useful as left-behind markers of the migratory routes 
that were used. It is obvious that the mechanism underly-
ing these cell decisions is of key importance and should 
be explored experimentally. The involvement of chemotaxis 

Fig. 3  Cranio-caudal change in the position of the cell bodies and the 
course of the preganglionic neurons. Simplified representation. Left: 
Preganglionic outflow at the levels T1-L2 and S2-S4. The “lumbar 
gap” is indicated by an asterisk. Dashed outflow: preganglionic neu-
rons within the “lumbar gap.” Right: From the lower margin of the 
thoracolumbar outflow downward (panel 1), a gradually increasing 
number (represented by arrow thickness) of preganglionic neurons 
originate from cell bodies within or near the ventral motor nuclei and 
bypass the sympathetic trunk (panels 2 and 3, neuron Y). Bypassing 

the sympathetic trunk, therefore, is not exclusive for the sacral out-
flow. Lumbar splanchnic nerves can arise directly from the lumbar 
plexus (Panel 2, f), such as pelvic splanchnic nerves arise from the 
sacral plexus (Panel 3, f′). Panels 1 and 2, neuron X: Classic repre-
sentation of a preganglionic neuron with its cell body in the interme-
diolateral nucleus. Labels are identical in all panels; a: sympathetic 
trunk ganglion, b: spinal nerve, c: spinal ganglion, d: rami communi-
cantes, e: splanchnic nerves
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is probably a safe guess. Another intriguing question is 
whether the features now described for catecholaminergic 
cells also apply to other populations of nerve cells. If so, 
the CNS would prove an important source of the migratory 
nerve cells and the target site or cells an important attract-
ant. It would make the wiring diagram complex and subject 
worthy of separate study, after identifying the source and 
target of the neural signals.
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