Skip to main content
Log in

Relationship between muscle sympathetic nerve activity and rapid increases in circulating leukocytes during experimental muscle pain

  • Letter to the Editor
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

Data are available on reasonable request.

References

  1. Abboud FM, Harwani SC, Chapleau MW (2012) Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension 59:755–762

    Article  CAS  PubMed  Google Scholar 

  2. Besedovsky H, Del Rey A, Sorkin E (1985) Immune-neuroendocrine interactions. J Immunol 135:750s–754s

    Article  CAS  PubMed  Google Scholar 

  3. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000(52):595–638

    Google Scholar 

  4. Fazalbhoy A, Birznieks I, Macefield VG (2012) Individual differences in the cardiovascular responses to tonic muscle pain: parallel increases or decreases in muscle sympathetic nerve activity, blood pressure and heart rate. Exp Physiol 97:1084–1092

    Article  PubMed  Google Scholar 

  5. Fazalbhoy A, Birznieks I, Macefield VG (2014) Consistent interindividual increases or decreases in muscle sympathetic nerve activity during experimental muscle pain. Exp Brain Res 232:1309–1315

    Article  PubMed  Google Scholar 

  6. Graven-Nielsen T, Mense S (2001) The peripheral apparatus of muscle pain: evidence from animal and human studies. Clin J Pain 17:2–10

    Article  CAS  PubMed  Google Scholar 

  7. Jiang W, Li Y, Sun J, Li L, Li JW, Zhang C, Huang C, Yang J, Kong GY, Li ZF (2017) Spleen contributes to restraint stress induced changes in blood leukocytes distribution. Sci Rep 7:6501

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Kobuch S, Fazalbhoy A, Brown R, Macefield VG (2015) Inter-individual responses to experimental muscle pain: baseline physiological parameters do not determine whether muscle sympathetic nerve activity increases or decreases during pain. Front Neurosci 9:471

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kobuch S, Fazalbhoy A, Brown R, Macefield VG (2016) Inter-individual responses to experimental muscle pain: baseline anxiety ratings and attitudes to pain do not determine the direction of the sympathetic response to tonic muscle pain in humans. Int J Psychophysiol 104:17–23

    Article  PubMed  Google Scholar 

  10. Kobuch S, Fazalbhoy A, Brown R, Henderson LA, Macefield VG (2017) Central circuitry responsible for the divergent sympathetic responses to tonic muscle pain in humans. Human Brain Mapp 38:869–881

    Article  Google Scholar 

  11. Pernett F, Schagatay F, Vildevi C, Schagatay E (2021) Spleen contraction during sudden eupneic hypoxia elevates hemoglobin concentration. Front Physiol 12:729123

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nature Med 16:1267–1276

    Article  CAS  PubMed  Google Scholar 

  13. Saito M, Mano T, Iwase S, Koga K, Abe H, Yamazaki Y (1988) Responses in muscle sympathetic activity to acute hypoxia in humans. J Appl Physiol 65:1548–1552

    Article  CAS  PubMed  Google Scholar 

  14. Seravalle G, Grassi G (2022) Sympathetic nervous system and hypertension: new evidences. Auton Neurosci 238:102954

    Article  PubMed  Google Scholar 

  15. Straub RH (2004) Complexity of the bi-directional neuroimmune junction in the spleen. Trends Pharmacol Sci 25:640–646

    Article  CAS  PubMed  Google Scholar 

  16. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo J-L, Kohler RH, Chudnovskiy A, Waterman P (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vasamsetti SB, Florentin J, Coppin E, Stiekema LC, Zheng KH, Nisar MU, Sembrat J, Levinthal DJ, Rojas M, Stroes ES (2018) Sympathetic neuronal activation triggers myeloid progenitor proliferation and differentiation. Immunity 49:93–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verlinden TJM, van Dijk P, Hikspoors J, Herrler A, Lamers WH, Köhler SE (2019) Innervation of the human spleen: a complete hilum-embedding approach. Brain Behav Immun 77:92–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

VGM was supported by a Baker Fellowship from the Baker Heart and Diabetes Institute, who also provided funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaughan G. Macefield.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daria, C., Lancaster, G., Murphy, A.J. et al. Relationship between muscle sympathetic nerve activity and rapid increases in circulating leukocytes during experimental muscle pain. Clin Auton Res 34, 227–231 (2024). https://doi.org/10.1007/s10286-023-01012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-023-01012-1

Keywords

Navigation