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Abstract
Purpose  The aims of this study were to evaluate the diagnostic accuracy of the dual imaging method combining cardiac 
iodine-123-metaiodobenzylguanidine single-photon emission computed tomography combined with low-dose chest computed 
tomography compared to routine cardiac scintigraphy, and assess regional differences in tracer distribution and the relation-
ships between imaging and autonomic function in Parkinson’s disease and multiple system atrophy.
Methods  A prospective study including 19 Parkinson’s disease and 12 multiple system atrophy patients was performed. 
Patients underwent clinical evaluation, iodine-123-metaiodobenzylguanidine single-photon emission computed tomography 
combined with chest computed tomography, planar scintigraphy, and cardiovascular autonomic function tests.
Results  Co-registration of single-photon emission computed tomography and chest computed tomography resulted in three 
groups with distinct patterns of tracer uptake: homogeneous, non-homogeneously reduced and absent. There was a signifi-
cant difference in group allocation among patients with multiple system atrophy and Parkinson’s disease (p = 0.001). Most 
multiple system atrophy patients showed homogeneous uptake, and the majority of Parkinson’s disease patients showed 
absent cardiac tracer uptake. We identified a pattern of heterogeneous cardiac tracer uptake in both diseases with reductions 
in the apex and the lateral myocardial wall. Sympathetic dysfunction reflected by a missing blood pressure overshoot during 
Valsalva manoeuvre correlated with cardiac tracer distribution in Parkinson’s disease patients (p < 0.001).
Conclusions  The diagnostic accuracy of the dual imaging method and routine cardiac scintigraphy were similar. Anatomical 
tracer allocation provided by the dual imaging method of cardiac iodine-123-metaiodobenzylguanidine single-photon emis-
sion computed tomography and chest computed tomography identified a heterogeneous subgroup of Parkinson’s disease and 
multiple system atrophy patients with reduced cardiac tracer uptake in the apex and the lateral wall. Sympathetic dysfunction 
correlated with cardiac imaging in Parkinson’s disease patients.
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Introduction

The Parkinson variant of multiple system atrophy (MSA-
P) and idiopathic Parkinson’s disease (IPD) are neuro-
degenerative disorders with distinct neuropathology and 
progression that share several clinical features hamper-
ing differential diagnosis, especially in the early stages of 
disease. While in IPD, degeneration of the cardiac post-
ganglionic sympathetic nervous system is a characteristic 
finding, MSA-P patients show preganglionic abnormalities 
[1–9]. Cardiac imaging using iodine-123-metaiodobenzyl-
guanidine (123I-MIBG), an inactive radiopharmaceutical 
sympathomimetic amine guanethidine, examines the sym-
pathetic innervation of the heart and thereby enables the 
quantification of the postganglionic cardiac sympathetic 
innervation [10]. Accordingly, reduced cardiac 123I-MIBG 
uptake has been associated with IPD, even in the early 
stages, but is preserved in the majority of MSA cases 
[1–3, 9, 11–19]. A meta-analysis reported pooled sensi-
tivity and specificity of 90% and 83%, respectively, for 
cardiac planar 123I-MIBG scintigraphy in differentiating 
parkinsonism associated with IPD from atypical parkin-
sonism [19]. Currently, 123I-MIBG scintigraphy is consid-
ered a supportive criterion within the diagnostic criteria of 
IPD [20]. However, up to 50% of de novo and early-stage 
IPD patients may show preserved cardiac sympathetic 
innervation, and reduced cardiac tracer uptake has been 
reported in one third of patients with MSA, consistent with 
a reduced number of postganglionic tyrosine hydroxylase 
immunoreactive axons and alpha-synuclein-positive inclu-
sions in sympathetic ganglia of patients with MSA [17, 
21–27]. Based on this knowledge gap, we sought to evalu-
ate regional differences in cardiac tracer uptake in IPD 
and MSA-P. To this end, we applied co-registration of 
123I-MIBG single-photon emission computed tomography 
and low-dose chest computed tomography (123I-MIBG-
SPECT-CT), enabling us to assign functional information 
to anatomically defined cardiac territories. Secondly, we 
compared the diagnostic accuracy of 123I-MIBG-SPECT-
CT to routine planar cardiac 123I-MIBG scintigraphy and 
determined the relationships between 123I-MIBG imaging 
and autonomic function.

Materials and methods

Study design and participants

We performed a cross-sectional study including 31 pro-
spectively recruited patients with diagnosis of either prob-
able MSA-P (n = 12) or probable IPD (n = 19) according to 

current consensus criteria [20, 28]. Medical records of all 
patients were counterchecked for diagnosis at the last visit 
at the outpatient clinics. All patients underwent a clinical 
interview and examination, echocardiography (ejection 
fraction > 54% for men, and > 52% for women), and planar 
123I-MIBG scintigraphy followed by 123I-MIBG SPECT-
CT. This study was approved by the ethics committee of 
the Medical University of Innsbruck (AN4687 311/4.25 
[4307a]), and all participants signed the informed consent 
before inclusion in the study.

Exclusion criteria were a history of any other major neu-
rological or psychiatric condition, a history of coronary 
heart disease, ischemic and non-ischemic cardiomyopathy, 
heart failure determined by echocardiography, cardiac den-
ervation unrelated to parkinsonism (e.g. diabetic neuropathy 
or heart transplantation as determined by history or labora-
tory findings [i.e. HbA1c]), known or suspected pregnancy 
or breastfeeding, dependence on any drug known to interact 
with 123I-MIBG [29]. All patients were treated with levo-
dopa alone or in combination with dopamine agonists.

Clinical examination and rating scales

The clinical interview included collection of basic demo-
graphics, medical history and current medication. Disease 
severity and motor symptoms were evaluated using the Uni-
fied MSA Rating Scale (UMSARS) for patients with MSA-P 
and the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) for IPD and patients with MSA-P [30, 31].

Cardiac 123I‑MIBG imaging

The radiopharmaceutical agent AdreView™ (GE Health-
care) corresponding to 123I-MIBG is an agent used to func-
tionally examine the sympathetic innervation of the heart. 
123I-MIBG was applied according to the manufacturer’s 
guidelines. Four hours after application a planar overview 
scan of the thorax was recorded in each patient in a supine 
position (= planar 123I-MIBG scintigraphy), followed by a 
single SPECT-CT (= 123I-MIBG SPECT-CT). Photon atten-
uation correction was performed by CT. The gamma camera 
used for imaging was a Philips BrightView XCT with a cone 
beam CT instead of a spiral CT. The longer revolution time 
compared to a spiral CT means that respiratory movement 
will also lead to a blurring of the CT.

123I‑MIBG SPECT‑CT

To perform the synchronized image registration, the 
Philips BrightView XCT gamma camera system was used. 
It utilizes a flat-panel detector CT to achieve highest reso-
lutions at low dosage. Low-dose CT imaging accounts for 
a radiation burden of 0.2 mSv according to manufacturer’s 
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statements. The latter technology generates a resolution of 
0.33 mm isotropic voxels. For image analysis, the obtained 
SPECT and low-dose CT image data were transferred to a 
Hermes Workstation (Hermes medical Solutions, Stock-
holm, Sweden) and displayed as 3-dimensional images 
using the multi-modality program Hybrid Viewer (Hermes 
medical Solutions, Stockholm, Sweden).

The first step was to manually place circular regions of 
interest (ROIs) comprising the entire left myocardial wall 
and the left ventricular chamber (ROI-H) and other circu-
lar ROIs comprising a representative part of the mediasti-
num (ROI-M) on the 2-dimensional coronal, transversal 
and sagittal sections for each patient. Inside these sectional 
ROIs the final volumes of interest of the heart (VOI-H) and 
the mediastinum (VOI-M) were generated by using the 
application data analysis VOI and the program “operation 
VOI threshold”. The former enables generating VOIs from 
the sectional ROIs and the latter enables the delineation 
of VOIs by digital thresholding based on voxel intensity 
within a defined range of tracer uptake intensity with a 
value set at 30%, which means all voxels above this value 
will be included in the VOIs. The value set represents 
counts per second per voxel.

Using these settings for each patient, different patterns 
of VOIs in the myocardial wall became visible and the 
patients were assigned to three distinct categories based 
on the tracer uptake profile:

Patients in group A had homogeneous 123I-MIBG 
uptake in the left ventricular wall and one VOI or two 
VOIs including the entire left ventricular wall were gener-
ated. Patients in group B had non-homogeneously reduced 
and partially absent 123I-MIBG uptake and more than two 
VOIs including portions of left ventricular wall were gen-
erated. Patients in group C had absent visible 123I-MIBG 
uptake in the left ventricular wall, which was discrimi-
nable from the background and no VOIs were generated.

In all patients, we determined the mediastinum as the 
reference VOI for the semi-quantitative evaluation. The 
mean counts per voxel of the final VOIs of the heart and 
the mediastinum were used to calculate the heart to medi-
astinum—VOIHeart/VOIMediastinum (VOIH/M) ratios.

The images of individuals of group B were inspected 
by one experienced nuclear medicine doctor (E.D.) and 
the tracer uptake was categorized into “normal”, reduced 
and absent within the territories the left ventricular wall.

Planar 123I‑MIBG scintigraphy

The regions of interest were defined on the heart myocar-
dium and the mediastinum. The mean heart uptake/mean 
mediastinum uptake (H/M) were calculated.

Cardiovascular autonomic function

Autonomic symptoms were evaluated using the COM-
PASS-31 and the SCOPA-AUT questionnaires [32, 33]. 
Sympathetic function was evaluated by assessment of the 
blood pressure (systolic and diastolic) and heart rate changes 
at 3-min tilt-table examination and active standing test, 
blood pressure (BP) overshoot during the Valsalva manoeu-
vre phase 4, and measurements of the total peripheral 
resistance (TPR) corresponding to peripheral sympathetic 
mediated vasoconstriction during tilt-table examination 
and active standing test [34, 35]. Orthostatic hypotension 
was diagnosed according to the consensus statement defin-
ing OH as a systolic blood pressure (BP) drop of at least 
20 mmHg and/or a reduction in diastolic blood pressure of 
at least 10 mmHg at 3 min tilting or active standing [36]. 
Neurogenic orthostatic hypotension (nOH) was defined 
by a ratio < 0.5 of the increase in heart rate divided by the 
decrease in systolic blood pressure during tilt-table examina-
tion [37, 38]. Prior to the test, patients were asked to avoid 
coffee, tea or taurine-containing beverages and have their 
last meals 2 h before the scheduled test. The tilt-table bat-
tery was performed in a quiet setting, with mean 22 °C room 
temperature, following standardised protocols as described 
previously [39]. Briefly, heart rate (HR) and blood pressure 
(BP) were continuously monitored by non-invasive beat-to 
beat BP recording and impedance cardiography (Task Force 
Monitor, CNSystems 2007). After lying for 10 min in the 
supine position, patients were passively tilted up to 60° for 
10 min. Oscillometric BP measurements were performed 
at the 10th minute of the supine phase and repeated 3 and 
10 min after head-up tilting, and at 3 min during the active 
standing test. For analysis, we only considered the blood 
pressure, heart rate, and TPR changes at 3-min tilt-table 
examination and standing test. Valsalva manoeuvre included 
blowing into a mouthpiece for 15 s at an expiratory pressure 
of 40 mmHg, and three trials with 60-s intervals in between 
were performed.

Statistical analyses

Statistical analyses were performed using IBM SPSS Sta-
tistics 25 software (SPSS, Inc., Chicago, IL, USA). All data 
are presented as mean ± standard deviation (SD) or as n (%). 
The Shapiro–Wilk test was applied to assess the distribution 
of data. For the two group comparisons between IPD and 
MSA-P, Mann Whitney U and t tests, and for the three group 
comparisons between the cardiac tracer uptake groups A–C, 
Kruskal Wallis test and ANOVA were conducted with post 
hoc Bonferroni test as appropriate. Frequencies and group 
differences in qualitative data were computed using cross-
tabs and Chi-square test. Fisher’s exact test was applied 
for small sample sizes. Linear regression was performed 
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to evaluate the relationship between heart to mediastinum 
ratios, diagnosis, disease duration, age, gender and a diag-
nosis of OH. Receiver operating curves were calculated 
for and compared between cardiac 123I-MIBG SPECT-CT 
and planar scintigraphy. Relationships between clinical and 
radiological data were performed using Pearson and Spear-
man correlations. Corrections for multiple comparisons were 
performed. The level of significance was set at p < 0.05.

Results

Demographic and clinical characteristics

Results of demographic and clinical characteristics are 
reported in Table 1.

While disease duration was significantly shorter in 
patients with MSA-P compared to IPD (p = 0.017), 

motor impairment was greater in patients with MSA-P, 
with higher MDS-UPDRS scores and a greater propor-
tion of advanced H&Y stages (p < 0.001). The UMSARS 
scores of the MSA-P group were as follows: UMSARS 
total 46.67 ± 9.17, UMSARS I 20.42 ± 4.83, UMSARS II 
(motor) 23.33 ± 4.03, UMSARS global 2: n = 3, 3: n = 3, 4: 
n = 5 (median 3 [CI 2.51–3.66]). In the MSA-P group the 
female gender was predominant. There was no difference 
in the frequency of orthostatic hypotension in patients 
with IPD or MSA-P (p > 0.05). Statistically significant dif-
ferences were observed in the total SCOPA-AUT scores 
between patients with IPD and MSA-P (p < 0.001). The 
latter had higher scores on the bowel function, urinary and 
cardiovascular domains (p < 0.05, Table 1). The score in 
the urinary domain of COMPASS-31 was also higher in 
the MSA-P compared to the IPD patients (p = 0.039). The 
other domains of COMPASS-31 were comparable between 
IPD and patients with MSA-P.

Table 1   Demographic and 
clinical characteristics

Data for IPD and patients with MSA-P are reported as mean (SD), median (25–75% quartile), numbers and 
percentage within diagnosis. The two groups were compared using Chi-square (§), Mann Whitney U (Δ), 
and t tests (°)
P designates the group test p-value, IPD idiopathic Parkinson’s disease, MSA-P multiple system atrophy 
Parkinson-variant, MDS-UPDRS Movement Disorder Society Unified Parkinson’s Disease Rating Scale, 
OH orthostatic hypotension, SCOPA-AUT​ scales for outcomes in Parkinson’s disease—autonomic dysfunc-
tion, COMPASS-31 Composite Autonomic Symptom Score-31, VOIH/M heart to mediastinum ratio of the 
volume of interest of 123I-MIBG SPECT-CT, H/M heart to mediastinum ratio of the planar scintigraphy

n = 31 IPD MSA-P P
n = 19 n = 12

Age at examination (years) 65.37 (7.80) 63.33 (8.52) p = 0.500°
Disease duration (months) 82.74 (29.63) 56.17 (26.09) p = 0.017°
Hoehn and Yahr stage (2/3/4) 11/8/0 0/9/3 p < 0.001Δ

Gender (F:M) 5:14 11:1 p < 0.001§

MDS-UPDRS total 72.61 (13.51) 96.00 (20.02) p = 0.003°
MDS-UPDRS I 11.39 (5.25) 17.14 (6.49) p = 0.030°
MDS-UPDRS II 15.56 (4.74) 21.59 (4.85) p = 0.007°
MDS-UPDRS III 40.39 (10.31) 52.86 (11.75) p = 0.007°
MDS-UPDRS IV 5 (1.5–9) 0 (0–8) p = 0.298Δ

OH, n (%) 5/16 (31) 4/12 (33) p = 0.612§

SCOPA-AUT gastrointestinal 3.5 (2.35) 8 (3.87) p = 0.003 Δ

SCOPA-AUT urinary 4.57 (4.55) 10 (6.23) p = 0.018Δ

SCOPA-AUT cardiovascular 1.07 (1.69) 2.73 (2.15) p = 0.024Δ

SCOPA-AUT total 13.79 (8.22) 21.47 (± 8.77) p ≤ 0.001°
COMPASS-31 urinary 1.51 (1.77) 3.95 (2.89) p = 0.039Δ

VOIH/M 123I-MIBG SPECT-CT 1.1 (0.97–2.40) 4.23 (2.81–4.82) p < 0.001Δ

H/M planar scintigraphy 1.18 (0.19) 1.79 (0.34) p < 0.001°
Group A, n (%) 2/19 (11) 8/12 (67) p = 0.001§

Group B, n (%) 4/19 (21) 3/12 (25)
Group C, n (%) 13/19 (68) 1/12 (8)
Group B + group C, n (%) 17/19 (90) 4/12(33) p = 0.002§
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123I‑MIBG SPECT‑CT

Results of the VOIH/M of 123I-MIBG SPECT-CT and the 
ROC curves of VOIH/M of 123I-MIBG SPECT-CT and pla-
nar scintigraphy are plotted in Fig. 1.

There were three categories of cardiac 123I-MIBG tracer 
uptake identified by SPECT-CT: Group A consisted of 10 
patients with homogeneous tracer uptake and was domi-
nated by eight patients with MSA-P. Group B consisted of 
seven patients showing non-homogeneously reduced tracer 
uptake including three patients with MSA-P and four IPD 
patients. All patients of group C with absent cardiac tracer 
uptake were IPD patients, except one patient with MSA-P 
(Table 1). Comparison of the diagnostic accuracy of the 
dual imaging method of 123I-MIBG SPECT-CT to pla-
nar scintigraphy did not show any significant difference 
(Fig. 1b).

VOIH/M of 123I-MIBG SPECT-CT and H/M of planar 
scintigraphy were significantly higher in MSA-P than in IPD 
(p < 0.001), and there was a significant association of the tracer 
uptake group and diagnosis (p < 0.01; Table 1). Overall, the 
planar scintigraphy-derived H/M ratio strongly correlated with 
the SPECT-CT-derived averaged VOIH/M-ratio (r = 0.942, 
p < 0.001 n = 31). A total of 89% of IPD and 33% of patients 
with MSA-P revealed a pathological MIBG scan (absent or 
reduced) (p = 0.001; Table 1). Absent or reduced tracer uptake 
resulted in an odds ratio (OR) of 17 for the diagnosis of IPD 
(sensitivity 89% and specificity 67%, accuracy 81%, the nega-
tive likelihood ratio for a diagnosis of IPD in the context of 
homogeneous cardiac MIBG uptake was 0.16). Missing car-
diac tracer uptake was significantly associated with a diagnosis 

of IPD (p = 0.0003); the corresponding OR was 24 (sensitivity 
93% and specificity 65%, accuracy 77%).

Myocardial tracer uptake was not correlated with age, 
gender, disease duration or disease severity (p > 0.05). Lin-
ear regression was carried out to investigate the relationship 
between VOIH/M and diagnosis, age at examination, disease 
severity (H&Y), gender and a diagnosis of OH. A strong asso-
ciation was identified between VOIH/M and diagnosis (n = 28; 
only diagnosis was a significant predictor: regression coef-
ficient 2.63; beta = 0.77; p = 0.005).

Patterns of regional differences 123I‑MIBG uptake 
in patients with non‑homogeneously reduced tracer 
uptake.

The patterns of regional tracer distribution in the patients of 
group B are illustrated in Fig. 2.

Four IPD and three patients with MSA-P were assigned to 
group B (three men and one female of the IPD and two female 
and one man in the MSA-P group). Reduced cardiac tracer 
uptake was most common in the apex (segment 17) and the 
lateral wall (segments 5, 6, 11, 12, 16) detected in all seven 
patients of group B, followed by the anterior wall (segments 1, 
7, 13) detected in 4/7 patients (57%), the septal wall (segments 
2, 3, 8, 9, 14) observed in 3/7 patients (43%), and the inferior 
wall (segments 4, 10 and 15) found in 3/7 patients (43%).

Cardiovascular autonomic function and cardiac 
123I‑MIBG uptake

Cardiovascular autonomic function parameters are summa-
rized in Table 2.

a b

***

Fig. 1   VOIH/M of 123I-MIBG SPECT-CT of groups A, B and C are 
illustrated as boxplots (a). The ROC curves of VOIH/M of 123I-MIBG 
SPECT-CT (grey) and planar scintigraphy (black) are shown on the 
right side (b). a The three groups were compared using Kruskal–
Wallis and appropriate post hoc test. VOIH/M differed significantly 
between groups A, B and C (for all group comparisons p < 0.001). 

b The area under the curve for the VOIH/M of 123I-MIBG SPECT-
CT was 0.934; the AUC for the planar scintigraphy was 0.945 
(p = 0.350). VOIH/M = heart to mediastinum ratio of the volume of 
interest. Group A = homogeneous, group B = non-homogeneously 
reduced, and group C = absent cardiac 123I-MIBG tracer uptake
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Orthostatic hypotension was diagnosed in 9/28 (32%) 
patients (three patients were excluded from analyses): 
5/16 (31%) of IPD and 4/12 (33%) of patients with MSA-P 
(p = 0.612, Table 1). The VOIH/VOIM were comparable in 
patients with and without a diagnosis of OH (p = 0.735). 
Neurogenic OH (nOH) was diagnosed in six cases with OH 
(2/5 (40%) IPD and 4/4 (100%) MSA-P cases with OH; 
p = 0.119).

Orthostatic hypotension and nOH were not associ-
ated with the cardiac tracer uptake groups (p > 0.05; 
Table 2), and no significant correlations of HR, BP or TPR 

during tilt-table examination or standing test with VOIH/M of 
123I-MIBG SPECT-CT could be identified. More than 80% 
of IPD patients without OH (9/11 IPD patients) showed 
pathological cardiac tracer uptake: 6/11 (55%) with absent 
and 3/11 (27%) with reduced levels. In MSA-P 5/8 (62.5%) 
showed normal and 3/8 (37.5%) had reduced tracer uptake. 
Among the patients without a diagnosis of OH, there was 
a significant association of a diagnosis and tracer uptake 
category (p = 0.030; Table 2).

Impaired sympathetic function reflected by a missing BP 
overshoot during Valsalva phase 4 was observed in 10/14 
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Fig. 2   The patterns of cardiac 123I-MIBG tracer uptake of patients 
1–7 of group B are illustrated. The numbers in the images reflect the 
17 cardiac territories as follows: 1: basal anterior, 2: basal anterosep-
tal, 3: basal inferoseptal, 4: basal inferior, 5: basal inferolateral, 6: 
basal anterolateral, 7: mid anterior, 8: mid anteroseptal, 9: mid infer-

oseptal, 10: mid inferior, 11: mid inferolateral, 12: mid anterolateral, 
13: apical anterior, 14: apical septal, 15: apical inferior, 16: apical 
lateral, 17; apical. red = completely, orange = incompletely reduced 
tracer uptake. Plain spaces indicate normal tracer uptake

Table 2   Cardiovascular 
autonomic function parameters

Data for groups A, B and C (group A = homogeneous; group B = non-homogeneously reduced; group 
C = absent) are reported as mean (SD), median (25–75% quartile), numbers and percentages. The three 
groups were compared with Chi-square (§), ANOVA (#), or Kruskal Wallis (^) tests with appropriate post 
hoc tests and correction for multiple comparisons (x)
P designates the overall group test p-value, OH orthostatic hypotension, nOH neurogenic OH, BP blood 
pressure, HR heart rate, TPR total peripheral resistance

MIBG tracer uptake P

Group A Group B Group C

OH, n (%) 3/9 (33)
3 MSA-P

1/9 (11)
1 IPD

5/9 (56)
1 MSA-P, 4

p = 0.758§x

Without OH, n (%) 7/19 (37)
2 IPD, 5 MSA-P

6/19 (32)
3 IPD, 3 MSA-P

IPD
6/19 (32)
6 IPD

nOH, n (%) 3/6 (50)
3 MSA-P

1/6 (17)
1 IPD

2/6 (33)
1 MSA-P, 1 IPD

p = 0.330§x

Valsalva
 Missing BP overshoot phase 4, n (%) 5/18 (28) 3/18 (17) 10/18 (56) p = 0.448§x

Tilt-table examination
 Δ systolic BP 3 min [mmHg] −5.60 (10.11) −11.71 (24.19) −8.09 (19.44) p = 1#x
 Δ diastolic BP 3 min [mmHg] 3.00 (8.79) −4.29 (18.29) 0.00 (14.78) p = 1#x
 Δ HR 3 min [beats/min] 7.80 (5.96) 6.86 (7.47) 11.09 (6.86) p = 1#x
 Δ TPR 3 min 455 (213) 220 (634) 112 (379) p = 1#x

Active standing test
 Δ systolic BP 3 min [mmHg] 3.50 (21.90) 6.33 (18.08) 0.45 (24.61) p = 1#x
 Δ diastolic BP 3 min [mmHg] 8 (−1.75–22.25) 12.5 (6.25–24.5) 15 (−10–21) p = 1^x
 Δ HR 3 min [beats/min] 12.70 (7.60) 15.00 (4.82) 17.00 (6.37) p = 1#x
 Δ TPR 3 min 442 (329) 455 (393) 13 (353) p = 0.144x
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(71%) IPD and 8/10 (80%) patients with MSA-P (p = 0.506). 
Considering all patients, no significant correlation of the 
missing blood pressure overshoot during Valsalva phase 
4 and tracer uptake group could be determined. However, 
looking into the subsets, there was a highly significant cor-
relation of tracer uptake group and a missing BP overshoot 
during Valsalva phase 4 in the IPD (r = 0.875 p < 0.001) 
but not in the patients with MSA-P (p = 1). This result was 
strengthened by a significant correlation of a missing BP 
overshoot during Valsalva phase 4 with the VOIH/M in the 
IPD group (r = −0.746 p = 0.036) but not in the patients with 
MSA-P (p = 1).

Discussion

This is the first study investigating (1) differences in regional 
tracer distribution using cardiac 123I-MIBG SPECT-CT, (2) 
its diagnostic accuracy compared to routine 123I-MIBG scin-
tigraphy, and (3) its relationship with sympathetic function 
tests in IPD and patients with MSA-P.

In contrast to previous studies investigating cardiac sym-
pathetic innervation in parkinsonism by planar 123I-MIBG 
scintigraphy, the dual imaging method combining 123I-MIBG 
SPECT and low-dose chest CT offers the possibility to 
map regional differences in cardiac tracer uptake indica-
tive of sympathetic innervation [1–3, 9, 11–19]. Thereby, 
we established three distinct groups of cardiac 123I-MIBG 
tracer distribution with homogeneous (group A correspond-
ing to normal cardiac tracer uptake), non-homogeneously 
reduced (group B, incomplete cardiac tracer uptake), and 
absent (group C) tracer uptake. The IPD patients dominated 
group C (68% of IPD patients), and the majority of patients 
with MSA-P belonged to group A (67% of patients with 
MSA-P). Pathological tracer uptake (groups B and C) was 
highly associated with a diagnosis of IPD, revealing an OR 
of 17 and corresponding to sensitivity of 89% and specificity 
of 67% (negative likelihood ratio 0.16), which is concordant 
with previous reports [1, 2, 12–15, 19]. Twenty-one per-
cent of IPD patients and one third of patients with MSA-P 
were assigned to group B with non-homogeneously reduced 
cardiac tracer uptake. In group B, the apex and the lateral 
wall of the myocardium were most commonly affected, 
irrespective of the underlying disease pathology. A similar 
pattern was identified by fluorine-18-fluorodopamine and 
11C-hydroxyephedrine positron emission studies in IPD 
patients [40, 41]. In contrast, Lebasnier et al. showed that 
the inferior wall of the myocardium was most affected by 
reduced tracer uptake in patients with Parkinson’s disease 
and dementia with Lewy bodies, followed by the apical, 
lateral, septal and anterior walls, and they speculated that 
regional cardiac sympathetic denervation is caused by Lewy 
body deposition [42]. However, other mechanisms may be 

involved, including physiological variation and liver and 
lung interference. Several reports have pointed out that sym-
pathetic innervation in healthy individuals is not uniform, 
but results are conflicting [43–57]. Most commonly, reduc-
tions in cardiac MIBG tracer uptake have been reported in 
the apex and the inferior wall of healthy individuals with 
associations to age and gender [45, 46]. No linkage between 
the VOIH/M and age or gender could be identified in our 
study. Histological quantification methods of post-mortem 
human tissue assessing cardiac sympathetic innervation are 
limited. In a study by Kawano and co-workers, the anterior 
wall of the left ventricle showed significantly higher density 
of adrenergic innervation compared to the inferior wall in 
healthy individuals [56], supporting the differences found by 
imaging studies. Nevertheless, it remains unclear whether 
these reductions accounting for approximately 20% can 
really explain the imaging differences, knowing that regional 
denervation needs to be severe before it becomes apparent in 
MIBG imaging [55]. Notably, the reductions in MIBG tracer 
uptake in the lateral wall of the left ventricle detected in the 
present study differ from what has been reported in healthy 
individuals and patients with IPD or dementia with Lewy 
bodies. Future studies assessing the temporal sequence of 
123I-MIBG SPECT-CT imaging combined with post-mortem 
studies could possibly clarify the evolution of sympathetic 
denervation. Moreover, histochemical analyses could resolve 
metabolic and storage deficiencies potentially contributing 
to the heterogeneity of tracer metabolism. Finally, a larger 
number of patients with regional differences in cardiac 
MIBG imaging may offer the possibility to more reliably 
distinguish PD patients from patients with MSA-P by their 
tracer uptake profile.

The proportion of patients with MSA-P (33%) with patho-
logical tracer uptake has been reported in previous studies 
[24, 25], and there is literature indicating histopathological 
postganglionic abnormalities in patients with MSA [17, 27].

As expected, the VOIH/M 123I-MIBG SPECT-CT and 
H/M of planar scintigraphy were higher in the patients with 
MSA-P than in the IPD patients. No correlations of VOIH/M 
123I-MIBG SPECT-CT and age, disease duration, disease 
severity, or blood pressure changes during cardiovascu-
lar autonomic function tests were determined, which has 
been shown before but contrasts with other reports [24, 59]. 
Despite the beneficial aspect of regional tracer mapping, the 
diagnostic accuracies of VOIH/M 123I-MIBG SPECT-CT and 
H/M of planar scintigraphy were comparable in this study.

It has been demonstrated that OH in IPD is associated 
with neuroimaging evidence of cardiac sympathetic dener-
vation in IPD patients [58]. We could not reproduce this 
association between OH and tracer uptake category, which 
may be because of the small number of IPD patients with a 
diagnosis of OH in the current study (n = 5). However, we 
were able to confirm that a diagnosis of IPD is associated 
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with pathological tracer uptake in the absence of OH (80%). 
Further, we show that cardiac sympathetic innervation 
assessed by the VOIH/M of 123I-MIBG SPECT-CT corre-
lates with sympathetic function tests [59]: the missing blood 
pressure overshoot during the Valsalva manoeuvre phase 4 
was associated with absent cardiac tracer uptake and cor-
related with the VOIH/M 123I-MIBG SPECT-CT in the IPD 
patients. A missing BP overshoot during phase 4 of the Vals-
alva manoeuvre indicates impaired sympathetic control over 
peripheral blood vessels. Given that the main site of lesions 
in the autonomic nervous system in people with IPD is at the 
level of post-ganglionic noradrenergic fibres, the observed 
association between absent cardiac 123I-MIBG tracer uptake 
and missing blood pressure overshoot at Valsalva manoeuvre 
phase 4 suggests that sympathetic impairment proceeds at a 
similar pace at the cardiac and vascular levels in people with 
IPD. This could not be shown for the MSA-P group, which 
can be explained by predominantly preganglionic sympa-
thetic degeneration in people with MSA [60].

In the light of controversial reports regarding the relation-
ships between a diagnosis of OH, blood pressure and heart 
rate changes during autonomic function test and cardiac 
123I-MIBG imaging, we did not find any significant correla-
tions in this study.

The severity of autonomic features as measured by the 
SCOPA-AUT and COMPASS-31 questionnaires did not 
correlate with clinical characteristics or cardiac123I-MIBG 
imaging as reported previously [23, 61, 62].

Very recently, a model of “brain first” versus “body first” 
Parkinson’s disease was introduced by abnormal cardiac 
123I-MIBG scintigraphy present before loss of putaminal 
dopamine storage capacity in IPD patients with REM sleep 
behaviour disorder (RBD) and idiopathic RBD in contrast 
to IPD patients without RBD, revealing deficits in dopamine 
storage prior to cardiac sympathetic denervation [63]. In the 
current study population, all except two IPD patients showed 
pathological cardiac tracer uptake representing the proposed 
final common path in almost all IPD patients [21, 22]. The 
two IPD cases with unremarkable cardiac MIBG imaging 
(age: 69 and 53 years, disease duration: 53 and 84 months; 
H&Y stage: 3 and 2) might be assigned to the “brain first” 
model of Horsager and coworkers [63].

Confounding factors such as cardiac insufficiency, cardio-
myopathy, cardiac denervation unrelated to parkinsonism, 
or medication known to possibly interfere with 123I-MIBG 
imaging were excluded in this study [29].

We acknowledge several limitations: The cross-sectional 
design of the current study lacks information about the evo-
lution of cardiac tracer uptake which would be of high inter-
est in the patients with non-homogeneously reduced cardiac 
tracer distribution. The sample size was modest, especially 
in group B, and the majority of patients were female. There 
was no post-mortem confirmation of clinical diagnosis of 

IPD or MSA-P. Cardiac tracer uptake categories including 
homogeneous, non-homogeneously reduced, and absent 
were established based on visual inspection of the SPECT-
CT images. Advanced statistical algorithms including super-
vised and unsupervised machine learning approaches may 
reveal additional patterns that were not recognized during 
visual reading in our study and should be further investi-
gated in future studies.

In conclusion, this is the first study offering a map of 
cardiac 123I-MIBG tracer allocation provided by the dual 
imaging method of 123I-MIBG SPECT-CT in IPD and 
patients with MSA-P. In both diseases, the apex and the lat-
eral wall of the myocardium are most affected by reduced 
tracer uptake in patients with non-homogeneous reductions 
in 123I-MIBG uptake. In IPD, cardiovascular sympathetic 
function indicates postganglionic imaging but is not associ-
ated with OH. Finally, the diagnostic accuracy of 123I-MIBG 
SPECT-CT is comparable to routine 123I-MIBG scintigra-
phy. Future longitudinal studies assessing cardiac 123I-MIBG 
tracer abnormalities in IPD and MSA patients with and with-
out neurogenic OH and advanced statistical analyses includ-
ing automated pattern recognition would be highly desirable, 
as such studies might help to better characterize the topo-
graphical evolution of cardiac noradrenergic denervation in 
neurodegenerative disorders.
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