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Abstract
Ultrasound is a widespread imaging modality, with special application in medical fields such as nephrology. However, 
automated approaches for ultrasound renal interpretation still pose some challenges: (1) the need for manual supervision by 
experts at various stages of the system, which prevents its adoption in primary healthcare, and (2) their limited considered tax-
onomy (e.g., reduced number of pathologies), which makes them unsuitable for training practitioners and providing support 
to experts. This paper proposes a fully automated computer-aided diagnosis system for ultrasound renal imaging addressing 
both of these challenges. Our system is based in a multi-task architecture, which is implemented by a three-branched con-
volutional neural network and is capable of segmenting the kidney and detecting global and local pathologies with no need 
of human interaction during diagnosis. The integration of different image perspectives at distinct granularities enhanced the 
proposed diagnosis. We employ a large (1985 images) and demanding ultrasound renal imaging database, publicly released 
with the system and annotated on the basis of an exhaustive taxonomy of two global and nine local pathologies (including 
cysts, lithiasis, hydronephrosis, angiomyolipoma), establishing a benchmark for ultrasound renal interpretation. Experiments 
show that our proposed method outperforms several state-of-the-art methods in both segmentation and diagnosis tasks and 
leverages the combination of global and local image information to improve the diagnosis. Our results, with a 87.41% of 
AUC in healthy-pathological diagnosis and 81.90% in multi-pathological diagnosis, support the use of our system as a help-
ful tool in the healthcare system.

Keywords  Ultrasound renal imaging · Computer-aided diagnosis · Pathology detection · Machine learning · Convolutional 
neural networks

Introduction

Ultrasound (US) is one of the most versatile and widely use 
medical imaging techniques due to its advantages such as 
low-cost, real-time operation ability, and lack of ionizing 

radiation [1]. Although US imaging is used in many medical 
fields (abdominal, fetal, etc.), it still poses major challenges to 
interpretation due to several factors, such as varying pressure 
applied to the emitter and level of gain, speckle noise, shadows 
caused by hyper-echoic areas, or boundary ambiguities [2].

In particular, US imaging is the prevalent technique for 
visualizing kidneys in nephrology. Nevertheless, in clinical 
practice, it shows a significant inter- and intra-practitioner 
variability, and its interpretation for diagnosis purposes is 
challenging. This has prompted the creation of reference 
texts, such as the comprehensive atlas written by O’Neill [3], 
which provides descriptions of various kidney abnormalities 
in US images. As a result, the current approach requires 
training experts to interpret US renal images, which limits 
the task scope to specialists.

On the other hand, computer-aided diagnosis (CAD) 
systems have emerged as one of the areas of significant 
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interest for the medical community [4]. In the field of 
nephrology, standard CAD systems still rely on traditional 
image descriptors: Haar [5] or Gray Level Co-ocurrence 
Matrix, GLCM [6], which are fed to a classification algo-
rithm, for both segmentation and diagnosis of the kidney 
[7, 8]. Convolutional neural networks (CNNs) have shown 
significant potential in other US imaging tasks such as 
breast nodule classification [9, 10], thyroid nodule detec-
tion and classification [11, 12], or diagnosis of focal liver 
lesions [13]. However, in the case of US renal imaging, 
the lack of large and annotated datasets hinder the training 
of CNN-based CAD systems. The existing CAD systems 
in this field either rely on small datasets [14, 15] or do not 
tackle the full problem of segmentation and diagnosis of 
a complete taxonomy of pathologies [16–19].

In this paper, we present URI-CADS, a fully automated 
computer-aided diagnosis system for ultrasound renal 
imaging. To the best of our knowledge, this is the first 
attempt to simultaneously segment and perform a compre-
hensive characterization of a complete kidney pathology 
taxonomy in a real scenario and to establish a benchmark 
in this field. The main goal of the system is twofold: (1) 
it can be used in primary healthcare by non-expert practi-
tioners to filter out clinical cases that need to be referred 
to specialists, improving clinical workflow and reducing 
specialist workload; and (2) due to the comprehensive set 
of pathologies it addresses, it can serve as a useful tool 
for training practitioners and supporting experts. For that 
purpose, we have developed a robust framework, based on 
Mask-RCNN [20] and Faster R-CNN [21], able to detect 
areas of interest and fuse global and local information to 
perform a tentative diagnosis of the images, which enables 
the medical community to gain some insights into the dif-
ferent pathologies of the clinical cases.

As we will show in the experimental section, our 
approach segments the kidney and provides a complete ten-
tative diagnosis that can offer valuable insights to practition-
ers in their daily activity. Moreover, the fact that the system 
considers both global and local pathologies in the diagnostic 
process improves performance and identifies areas of inter-
est that should be analyzed by experts for the final diagnose 
of the case.

We next detail the main contributions of our work:

–	 We introduce a fully automated computer-aided diagno-
sis system for US renal imaging, which seamlessly inte-
grates segmentation, detection of areas of interest, and 
global diagnosis into a single architecture.

–	 The model incorporates a segmentation task as a regu-
larizer for the main classification tasks, resulting in an 
improved performance during diagnosis.

–	 The system integrates image- and region-based analyses 
at multiple resolutions to enhance the performance by 

jointly leveraging the advantages of both perspectives at 
different granularities. This multi-perspective approach 
has been shown to yield much better results than those 
of several state-of-the-art methods.

–	 The proposed system has the ability to provide two comple-
mentary diagnoses: a binary (healthy vs. pathological) diag-
nosis and a multi-class diagnosis with two global categories 
(hyper-echoic cortex and poor corticomedullary differentia-
tion) and four local categories (cyst, stone, hydronephrosis, 
and others). The local ones can be easily expanded to nine 
classes if the database is extended accordingly.

–	 We additionally release our database, which will become 
the first public benchmark in the field of diagnosis from 
US renal imaging, promoting the advancement of knowl-
edge in the field and contributing to the improvement of 
diagnosis and existing therapies.

The remainder of this paper is organized as follows: 
“Related Work” section briefly reviews the related litera-
ture. In “Method” section, we first provide the details about 
our data acquisition process and then a general description 
of our method for segmentation and diagnosis of renal US 
imaging, followed by a more detailed description of each 
module. “Results” and “Discussion” sections describe and 
discuss the experimental results that support our method, 
respectively, and, finally, in “Conclusion” section, we sum-
marize our conclusions and outline future lines of research.

Related Work

In this section, we briefly describe the state-of-the-art meth-
ods for kidney US segmentation and classification found in 
the literature, and we compare our approach with the most 
recent methods for biomedical disease detection.

2D Kidney Ultrasound Segmentation

The lack of open, annotated, and large-scale datasets in 2D 
kidney US segmentation hinders the performance compari-
son among the methods in the literature. Consequently, all 
the literature results presented in this section are accompa-
nied by the number of US images in the test set.

Traditional approaches for kidney automatic segmenta-
tion have handled the ill-posed nature of the segmentation 
problem using supervised algorithms based on conven-
tional features or level-set methods. Vaish et al. proposed 
to crop the rectangular region that contains the kidney by 
adapting the cascade classifier by Viola-Jones [5], which 
uses the AdaBoost algorithm over Haar features to detect 
faces [7]. The main disadvantage of this approach is that 
rectangular regions are not expressive enough to represent 
properly the major and minor axis of the kidney, which are 
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variables correlated with some illnesses. Other methods 
relied on energy minimization of some image properties 
(gradients, curvatures, etc.) to generate a pixel-wise seg-
mentation of the kidney [22, 23]. Zheng et al. proposed a 
new graph-cut-based method to segment kidney US images 
by integrating image intensity information and texture fea-
ture maps extracted using Gabor filters [24]. However, all 
these approaches are computationally expensive, and they 
have been assessed using test sets restricted to tens of US 
images, which strongly limits the significance of the results.

Regarding the CNN-based methods, some were focused 
on learning the shape and boundaries of the kidney. Ravis-
hankar et al. proposed a generative model of image formation 
to jointly learn the appearance, i.e., texture (foreground and 
background) and the kidney shape for US kidney segmenta-
tion [25]. They proposed the use of U-Net [26] with a loss 
function that models the contextual interactions of foreground 
and background with shared parameters. The proposed archi-
tecture obtained a 8% improvement (reaching 74%) in terms 
of the Dice coefficient with respect to the baseline system, 
in a test set composed of 131 US images. Additionally, the 
same authors used a shape-regularization (SR) network to 
complete the failure modes of a FCN, i.e., the low-quality 
segmentations [27]. The best results (84%) were obtained with 
a complex setup when the SR network was pre-trained with 
predictions sampled in different epochs before convergence, 
and the weights of the first network were updated with the 
results of back-propagating a custom loss which made use of 
both the preliminary and shape-regularized predictions and 
the encoded predictions obtained from the low-dimension 
bottom layer of U-Net. In this case, the test set consisted of 
171 US images. A recent approach by Chen et al. proposed 
a multi-scale fusion network of structural features (with a 
boundary detection module) and detailed features (SDFNet) to 
extract structural features, capture texture details, and merge 
features, respectively [28]. The mean Jaccard coefficient in a 
test set of 50 US images was 91%.

Another set of approaches used pretraining in natural 
image databases, or ad-hoc databases created for this pur-
pose. In particular, Deepthy et al. used a backbone pretrained 
in ImageNet [29] as a basis for training the system on 560 
US images in [30]. The resulting Dice coefficient was 62%. 
Yin et al. first used deep neural networks pretrained for clas-
sification in ImageNet to extract high-level image features 
from US images. These features were used as input to learn 
kidney boundary distance maps using a boundary distance 
regression network, and the predicted boundary distance 
maps were classified as kidney pixels or non-kidney pixels 
using a pixel-wise classification network in an end-to-end 
learning fashion. In 289 US images, the Jaccard coefficient 
reached a value of 87% [31]. Finally, Song et al. adopted a 
cycle generative adversarial network (CycleGAN) to syn-
thesize US images from CT data and construct a transition 

dataset to mitigate the immense domain discrepancy between 
US and CT. Mainstream convolutional neural networks were 
pretrained on the transition dataset and then transferred to 
real US images. They tested their approach over two sets of 
30 and 82 US images, achieving a Dice coefficient of 95% 
and 87%, respectively [32].

2D Kidney Ultrasound Classification

Kidney US classification has been traditionally tackled in 
two steps, feature extraction and classification. In particu-
lar, some features, such as statistics over the Gray Level 
Co-ocurrence Matrix (GLCM) or the histogram, have been 
broadly used for pathology detection in renal ultrasound. 
Due to the fact that many of the kidney pathologies (as cysts 
of stones) appear in the images as hypo- or hyper-echoic 
areas, these features are useful to describe the texture and 
gray-level distribution in the images. Krishna et al. used 
these kinds of features as an input for a SVM classifier to 
distinguish between healthy-stone/cyst kidney images [33]. 
Other approaches used a k-NN classifier to classify healthy 
and cystic images [34]. Attia et al. increased the taxonomy 
to healthy, cyst, stone, tumor, and renal failure and used a 
neural network classifier [35]. However, all of those methods 
were tested in only tens of images, and given that statistics 
over the GLCM matrix or the histogram are prone to overfit 
small sets of data, their generalization to more demanding 
and complete datasets is not proven.

In recent years, the research trend based on CNNs has 
also focused on US kidney classification. Texture- and gray 
level-based features do not take into account the global 
shape of the lesions, their position inside the kidney, or com-
plex relationships between parts of the image. In this sense, 
the task can leverage the CNN ability to extract complex 
relationships among different areas of the image.

Regarding CNN-based methods, Shi proposed a hybrid 
deep learning architecture for accurate kidney injury predic-
tion, with patient data and US kidney images as input. Its 
reported accuracy was 90% on a test set of 122 images, but 
the system uses an ensemble of three different CNNs [18]. 
Another recent approach by Smail et al. used a five layer 
CNN over 2.420 sagittal hydronephrosis US images to grade 
their severity. They obtained a classification accuracy of 51% 
[19]. Finally, Sudharson and Kokil proposed an approach 
similar to the one presented in this paper, where the predic-
tions of three different CNNs were combined as input to an 
SVM to distinguish four categories of kidney images: normal, 
cyst, stone, and tumor [16, 17]. Their best reported accuracy 
is 95%, but over a set of high-quality images (selected from 
an original database) corrupted by synthetic speckle noise to 
generate a test set of 520 augmented images.

Inspired by this kind of approaches, in this paper, we pro-
pose to develop a framework to jointly segment and provide 
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a preliminary diagnose to 2D kidney US images. Although 
other approaches have tried to diagnose different pathologies 
in US renal images, to our knowledge, this is the first attempt 
to simultaneously segment and perform a comprehensive char-
acterization of a complete kidney pathology taxonomy in a real 
US scenario. Other very recent approaches have performed 
this kind of study in tomography images, with radiation expo-
sure and higher cost, but significantly better resolution (it is, 
therefore, a less demanding scenario). For example, Özdaç 
et al. classify 3 different retinal diseases in optical coherence 
tomography (OCT) images [36], and Uysal detects monkey-
pox in skin images [37]. In the field of kidney disease detec-
tion, in [38], they diagnose chronic kidney disease (CKD) 
with histopathological images with an AUC of 96.3% in 2935 
patients, but the procedure is invasive, as it requires a biopsy. 
Lastly, the methods described in [39, 40] classify large sets 
of 2D computed tomography (CT) kidney images (1812 and 
12,664, respectively) into healthy, cyst, stone, and tumor. Their 
reported accuracy is 99.8% and 82.52%, respectively.

In contrast to these approaches, we have developed a 
robust framework for low resolution US images, based on 
Mask-RCNN [20] and Faster R-CNN [21], able to detect 
areas of interest and fuse global and local information to 
perform a tentative diagnosis of the images. Our system ena-
bles the medical community to gain some insights into the 
different pathologies of the clinical cases with a low-cost, 
non-invasive, and risk-free imaging technique. Furthermore, 
the nonexistence of a benchmark for US renal imaging hin-
ders the performance comparison among the state-of-the-art 
approaches, unlike other imaging modalities, such as 2D CT 
renal imaging [41, 42]. We expect our dataset to become a 
benchmark in the field of US renal imaging.

Method

In this section, we first describe the problem and the taxonomy 
of pathologies addressed by URI-CADS, our computer-aided 
diagnosis system for ultrasound renal imaging. Then, we pro-
vide a general description of our fully automated system and 
subsequently a detailed explanation of its constituent processing 
blocks in the following subsections.

Patient Population and US Image Acquisition

A total number of 1985 sex-balanced US B-mode renal images 
were collected retrospectively, with 450 healthy and 1535 
pathological kidneys, from patients over 18 years of age. Left 
and right kidneys are also balanced in the collection, and both 
transversal (93%) and longitudinal (7%) images are present. 
Images were anonymized to ensure that they do not contain any 
personal information that could lead to the identification of the 
patients and were collected during the years 2009 and 2018 at 
the rate of one image per clinical case.

Images were acquired through a Toshiba Xario-660a 
ecographer with 3MHz and 3.5MHz convex multi-frequency 
probes and different capture parameters: field of view, zoom, 
etc. The varied collection of images were written in JPG for-
mat, with variable sizes ranging from [375 − 600, 382 − 810] 
height-width pixels.

US Image Annotation and Interpretation

A US renal image depicts a kidney (either in transversal or 
longitudinal position) which may exhibit pathologies at two 
different levels: global and/or local. This hierarchical point 

Fig. 1   Illustrative example of 
the annotation of an image of 
the database
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of view, with two different levels of granularity, is inherent 
to the interpretation of the US kidney image and provides 
valuable information.

Two experienced nephrologists (M. R. G.  and V. B. V., 
with 25 and 10 years of experience in US renal interpretation, 
respectively) from Hospital Ramón y Cajal, Madrid (Spain), 
have independently annotated each clinical case, and consen-
sus was reached by discussion in the event of disagreement. 
Both facultatives were blinded to the patient record. The anno-
tation process has been performed manually through an ad-hoc 
annotation application. The annotation of each image includes 
the following fields: an associated segmentation mask of the 
kidney (a polygonal segmentation delineated over an ellipse 
drawn by the nephrologists); an indicator of whether it contains 
global pathologies and, if so, which ones; and, if present, the 
bounding box coordinates of the local lesions and their indica-
tors. An example of the annotation is shown in Fig. 1.

Table 1 summarizes the complete taxonomy of patholo-
gies considered in this paper, designed by the two expert 
nephrologists. In summary, they propose a set of 2 global 
categories: poor corticomedullary distinction and hyper-
echoic renal cortex; 9 local pathologies: simple and com-
plicated cysts, hydronephrosis, pyramids, lithiasis, angio-
myolipoma, solid renal mass, cortex thinning, and cortex 
eschar; and an additional category for healthy kidneys. In 

addition, Fig. 2 shows a representative example for each one 
of the considered pathologies.

General Overview of URI‑CADS

The high-level pipeline of URI-CADS is depicted in Fig. 3. 
The architecture can be divided into two main blocks: the first 
one is called SCD-CNN (where SCD stands for segmentation, 
classification, and detection) and is responsible for obtaining 
the kidney segmentation mask and pathology predictions from 
both image- and region-based approaches, and the second one 
is the Diagnosis Generation Module, which, from the descrip-
tion provided by the SCD-CNN, combines the predictions 
coming from image- and region-based perspectives to provide 
a tentative diagnosis for each clinical case.

Segmentation, Classification, and Detection CNN 
(SCD‑CNN)

The proposed system is a hybrid architecture based on Mask 
R-CNN [20] for segmentation and Faster R-CNN [21] for 
region-based pathology detection. The choice of these net-
works allows us to share the most part of their architectures 
while efficiently solving kidney segmentation and region 
detection and is consistent with the results presented in [11] 

Table 1   Taxonomy of the considered global and local pathologies with 
their description. For practical purposes, we distinguish among seven 
categories: healthy (H), poor corticomedullary distinction (PCD), 

hyper-echoic cortex (HC), cyst (C), pyramid (P), hydronephrosis 
(HYD), and others (O)

Category 
acronym

Taxonomy 
acronym

Type Description

H H Global Healthy kidney. Two concentric parts are distinguished: renal cortex, the darker external part, and renal 
sinus, the brightest internal part.

PCD PCD Global Poor corticomedullary distinction. In this case, renal cortex and sinus can not be distinguished cor-
rectly.

HC HC Global Hyper-echoic cortex. Renal cortex is hyper-echoic, which causes a low contrast in the internal part of 
the kidney.

C SCY Local Simple cyst. Simple cysts are usually hypo-echoic (darker), uniform, and spherical areas within the 
kidney.

CCY​ Local Complicated cyst. Complicated cysts are very similar to simple ones, but can have a less uniform 
texture.

PYR PYR Local Pyramid. Pyramids are kidney areas with a regular position, between renal cortex and sinus, and, if 
they are hypo-echoics may be a symptom of chronic kidney disease. They usually have a less spherical 
shape than the cysts.

HYD HYD Local Hydronephrosis. Hydronephrosis is a difficulty to remove the urine. Hence, the urine provoques hypo-
echogenia in renal sinus, and in many cases, that the urine via becomes visible.

O LIT Local Lithiasis. Lithiasis appears as a hyper-echoic area (brightest) in the internal part of the kidney that 
shades a part of the image in the direction of ultrasound capture.

ANG Local Angiomyolipoma. Angiomyolipoma is a benign tumor that appears as a hyper-echoic area in the US 
image, generally in renal cortex.

SRM Local Solid renal mass. It is a possibly malignant tumor that is hypo-echoic in appearance and is not easy to 
distinguish from cysts.

CT Local Cortex thinning. Renal cortex reduces its thickness in a specific part of the contour of the kidney.
CE Local Cortex eschar. Renal cortex has scars in some areas; it is not uniform.
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for a similar task (thyroid nodule detection). Furthermore, it is 
worth noting that we keep the boundary between the two archi-
tectures because we have information to segment the kidney, 
but we lack region masks to perform pixel-wise segmentation 
of the local pathologies. To be more specific, our system is 
built on a ResNet-50 backbone [43], which has been shown 
to be the most efficient backbone for image-based pathology 

classification in US [44]. In addition, we rely on Faster R-CNN 
and Mask R-CNN pre-trained with this backbone in Pytorch 
[45]. The backbone module is followed by two Feature Pyra-
mid Networks, FPN, [46], one for kidney segmentation and 
the other for region-based local pathology detection. Figure 4 
illustrates the detailed architecture of the network. Each com-
ponent of the SCD-CNN is described below. 

Fig. 2   Illustrative examples of 
several global and local patholo-
gies. Black: kidney location. 
Colored bounding boxes: local 
pathology locations. From 
left to right, first row: healthy 
kidney, poor corticomedullary 
differentiation, and hyper-echoic 
renal cortex; second row, lithi-
asis, simple cyst, complicated 
cyst; third row: pyramids, 
angiomyolipoma, solid renal 
mass; and fourth row: hydro-
nephrosis, cortex thinning, and 
cortex eschar

Fig. 3   Processing pipeline 
of URI-CADS. Each 2D US 
image is fed into the automated 
system, which produces a 
kidney segmentation mask, an 
image-based set of global and 
local predicted pathologies and 
region-based proposed local 
pathologies with their locations. 
Then, the region-based pathol-
ogy scores are combined with 
those coming from the image-
based classification branch to 
generate the tentative diagnosis
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1.	 We use ResNet-50 backbone to compute a multi-scale 
representation of the input images, composed of 4 maps 
Tl ∈ ℝ

Hl×Wl×Cl , l = 1...4 , each one at a given spatial 
resolution Hl = H∕2l;Wl = W∕2l defined by the accu-
mulated spatial stride of the sub-network until its cor-
responding layer (e.g., stride=2, 4, 8, and 16), and with 
a given number of channels Cl = 128 ⋅ 2l (e.g., 256, 512, 
1024, and 2048). Our two FPNs receive these tensors 
as inputs and transform them into a set of multi-scale 
feature maps, each one specifically tailored for a task 
of interest: Fimage = {F

image

l
∈ ℝ

Hl×Wl×C} for kidney seg-
mentation and Fregion = {F

region

l
∈ ℝ

Hl×Wl×C} for region-
based local pathology detection. The multi-resolution 
approach (image-based and region-based features) will 
allow our system to exploit coarse-to-fine granularities 
in the image (e.g., using RoI-Pooling layers [47]) and 
only requires that the number of channels C is fixed 
along the scales (in our case, C = C0 = 256 channels).

2.	 The kidney segmentation branch, inherited from Mask 
R-CNN, generates a binary mask K ∈ ℝ

H×W defining 
the region of the 2D image corresponding to the kidney, 
after performing the kidney detection with a Region Pro-
posal Network over the FPN features Fimage . This branch 
is trained using the multi-task loss Lseg proposed in the 
original Mask-RCNN paper [20].

3.	 The image-based classification branch analyzes the top 
ResNet-50 feature tensor, T4 , and outputs an image-
based pathology probability vector pi = {pi

k
}, k ∈ [0,P] 

being P the total number of considered pathologies (both 
global and local). In particular, k = 0 is reserved for the 
healthy category, the range k ∈ [1, L] corresponds with 
the L local pathologies, and k ∈ [L + 1,P] with the G 
global ones. Hence, P = G + L (see Table 1 and, in our 
particular case, L = 4 and G = 2).

	   It should be noticed that the classification system does 
not only focus on the kidney area, because some of the 
pathologies are based on echoic differences between 
the kidney and its surroundings (they need more global 
contexts). Therefore, we are not using the segmentation 
branch to define the RoI for the classifier, but to regu-
larize its operation. It is also worth mentioning that this 
classification branch is trained using a Lclas that in turn 
accumulates a set of P + 1 binary cross-entropy losses, 
each one associated with one pathology (and the healthy 
category), to take into consideration that a single clinical 
case may present several concurrent pathologies.

4.	 The region-based detection branch produces a descrip-
tion of each clinical case through a set of N regions in 
which local pathologies have been detected. It is based 
on a Faster R-CNN object detection module and, for 
each region n ∈ [1,N] identified as containing a local 
pathology, produces a 6-d region descriptor rn , which 
has the following form: 

 where the first 4 elements represent the coordinates 
of the bounding box containing the local pathology, 
idn ∈ [1, L] the identifier for the category of the local 
pathology, and sn the score for the local pathology con-
tained in the region (in the form of a probability). Hence, 
each detected local region is associated with just one 
local pathology (the one with the maximum probabil-
ity), and the region descriptor contains an indicator of 
this pathology and its predicted probability. This branch 
is trained through a multi-class loss Lreg , described in 
detail in [21]. The obtained region representations 
rn are finally stacked to form a matrix R ∈ ℝ

N×6 . It 

(1)rn =
[
xmin
n

xmax
n

ymin
n

ymax
n

idn sn
]

Fig. 4   Architecture of the 
SCD-CNN and the loss func-
tions employed for training. It 
is composed of three branches: 
one for kidney segmentation, 
one for image-based pathology 
detection, and one for region-
based pathology detection; and 
outputs a tuple composed of 
the kidney segmentation mask 
K , the global scores p , and the 
region descriptors R
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is noteworthy that N varies from one clinical case to 
another, as only those candidate detections in which the 
value sn is above a threshold are considered.

Hence, for each clinical case C , our SCD-CNN outputs a 
triplet 

{
K, ��,RN×6

}
 , containing the kidney segmentation 

mask ( K ), the pathology probabilities predicted by the 
image-based classification branch ( �� ), and the description 
of the detected regions potentially exhibiting local patholo-
gies ( RN×6 ), respectively.

Fusing Image‑ and Region‑Based Predictions: 
Diagnosis Generation Module

The Diagnosis Generation Module, depicted in Fig. 5, is 
responsible for combining image- and region-based informa-
tion to make a tentative diagnosis of the kidney. To that end, 
our objective is to leverage the different granularities of the 
information in the 2D US renal images by fusing the infor-
mation at two levels: (1) at an image level, considering the 
entire kidney and their surroundings (useful for the detection 
of both global pathologies and local ones, particularly those 
that involve a significant percentage of the kidney’s area), 
and (2) at a region level, considering local information at 
regions detected as potentially exhibiting local pathologies 
(this helps with detecting pathologies of smaller size, which 
may be difficult to notice at the image level). In doing so, 
we can effectively address the two-level taxonomy of our 
scenario.

The fusion process follows three stages, which are 
described in detail below: we first generate a probability 
vector associated with each considered local pathology 
relying on the region-based branch of the network; then we 
assign a healthy probability to the clinical case relying also 
on information from this branch; and finally, we combine 
the probabilities coming from the image- and region-based 
branches of the network.

First, it is necessary to define an aggregation mechanism 
to transform the scores of the local pathologies contained in 
RN×6 into global image-level probability vector �� of length 
L (the total number of local pathologies). We have consid-
ered several aggregation mechanisms:

–	 Max-aggregation: for each pathology consider the maxi-
mum probability among those provided by the detected 
regions (for the regions belonging to each category k). 

–	 Mean-aggregation: considering the mean of the prob-
abilities of the detected regions for each pathology. 

–	 LME-aggregation (Log-Mean-Exp): it is a intermediate 
version between max- and mean-aggregation. 

–	 Area-aggregation: taking into account both the area and 
the probability of each detected region with the kidney 
area as a reference. 

 with hn = ymax
n

− ymin
n

 and wn = xmax
n

− xmin
n

 and 
∑

xy K 
the kidney area, as the number of non-zero pixels in the 
binary mask.

We will comprehensively assess the performance of each 
aggregation method in “Assessment of the Aggregation 
Method”.

Second, in addition to the scores for each local pathology, 
we form the final vector �� by adding:

–	 A score for a healthy kidney (first position in the vector). 
If a clinical case has a low score for every local pathol-
ogy, its probability to be healthy must be high, and vice 
versa. Thus, the local probability for a clinical case to be 
healthy, pr

0
 , is computed as 

–	 The probabilities for global pathologies at the end of the 
vector, which are all set to zero: pr

k
= 0, k ∈ [L + 1,P] as 

they are not considered in the local branch of our system.
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Fig. 5   Block diagram of the Diagnosis Generation Module. The region-
based pathology scores R are aggregated per pathology (resulting the 
vector pr = {pr

k
}, k ∈ [0,P] ) and combined with the image-based ones 

(denoted by �� ) to compose the final tentative diagnosis of the clinical 
case
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This yields a P + 1-dimensional vector pr with the local 
probabilities of the different pathologies.

Once we have the two vectors of predictions, �� and �� , 
coming from the image- and region-based branches of our 
system, we perform a convex combination to generate the 
fused vector with final predictions p = {pk}, k ∈ [0,P]:

where 0 ≤ � ≤ 1 is a learnable parameter that controls the 
influence of global and local predictions in the fusion, set-
ting their influences over the final system decision. The opti-
mum values for � are learned through the loss Ldgm (in the 
form of a set of P + 1 binary cross-entropy losses as Lclas ). 
We assume that � will take different values depending on the 
pathology, leading to a system adaptation to each particular 
disease.

In particular, we have considered two strategies to learn 
the values of the �:

–	 Category-level fusion: the first strategy considers a 
global set of category-dependent �k , which remain fixed 
for every image in the database. This approach provides 
an interpretable result of the importance of the global 
and local predictions for each category of the taxonomy, 
i.e., a local category k defined by small regions will have 
a corresponding smaller value of the �k parameter than 
the same local category characterized by bigger regions. 
The fusion parameter � is defined as a parameter of the 
neural network and is learned through the loss Ldgm.

–	 Attention-based fusion: attention mechanisms allow 
networks to focus on specific information in each situ-
ation. In our case, we propose to use attention to auto-
matically set the value of � according to the particular 
features of each clinical case. This strategy allows prac-
titioners to analyze each case considering the specific � 
weights estimated by the CAD system. In addition, we 
can still perform a category-level examination by analyz-
ing the distributions of the � parameter over the entire 
dataset. In particular, we have proposed a simple atten-
tion module in which � is predicted by a linear layer 
working over the concatenation of global and local pre-
dictions: 

 where the parameters Watt and batt are learned using the 
loss Ldgm.

Both fusion strategies and the obtained values of � will be 
deeply discussed in “Ablation Study and Analysis of the 
Fusion Parameters”.

Finally, the losses used to train our SDN-CNN deserve a 
comment. The system is trained through a multi-class loss L 
that incorporates a significant number of losses, as shown in 

(7)p = � ⊙ �� + (1 − �)⊙ �� ,

(8)� ∝ Watt[p
i;pr] + batt

Figs. 4 and 5 and described above. We expect multi-task act-
ing as a regularizer that allows learning a better global CAD 
system, in the sense that each one of the branches benefits 
from the knowledge learned by the rest, specially the image-
based classification and region-based detection branches. 
For simplicity and to avoid biases towards any specific task, 
we have used a simple sum of the corresponding losses so 
L = Lseg + Lclas + Lreg + Ldgm . With this approach, the 
whole system is trained in an end-to-end basis, with all the 
losses contributing in the same degree to the total loss.

Results

Experimental Setup

To assess URI-CADs, we have built a 2D US imaging data-
base containing the kidney location and complete diagno-
sis of 1985 images (with 450 healthy and 1535 pathologi-
cal kidneys), annotated by two experienced nephrologists 
from Hospital Ramón y Cajal, Madrid (Spain), through 
the annotation procedure described in Subsection 3.2. The 
dataset is publicly available with the goal of promoting 
future developments and research in the field1. Proportions 
between healthy and pathological cases are those common 
in patients that are referred by physicians in primary care 
to nephrologists. The annotations for each clinical cases 
include: a polygonal segmentation mask of the kidney, indi-
cators of presence of global pathologies, and also indica-
tors and bounding boxes of the local lesions (when present). 
The distribution of the pathologies in the database is shown 
in Fig. 6. Due to the scarcity of samples of several of the 
pathologies, and for practical purposes, we have decided to 
group some of them according to these guidelines: 1) some 
pathologies are grouped if they have something in com-
mon (for example, the category cyst does not distinguish 
between simple and complicated cysts); 2) some categories 
are grouped if their individual number of samples is insuf-
ficient to properly train the system: the category others (O) 
groups all the pathologies whose number of samples is very 
low: lithiasis, angiomyolipoma, solid renal mass, cortex 
thinning and cortex schar. This leads to a final set of P=6 
categories, two global: hyper-echoic cortex (HC) and poor 
corticomedullary differentiation (PCD), and four local: cyst 
(C), stone (S) , hydronephrosis (HYD), and others (O). We 
have demonstrated that the uneven distribution of the dataset 
has no negative impact in the results and that our system is 
not biased to any kind of errors through the error analysis 
(see “Error Analysis and Discussion”).

1  Code and link to the dataset repository are available at https://​
github.​com/​migue​l55/​URI-​CADS/

https://github.com/miguel55/URI-CADS/
https://github.com/miguel55/URI-CADS/
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We have followed a 5-fold cross-validation strategy in our 
experiments, using a three folds for training, one for validation, 
and one for testing in each repetition. Realistic data augmen-
tation techniques, supervised by the nephrologists (rotation, 
gamma adjustment, translation, and zoom), were randomly 
applied to the images during training in all the experiments. 
Our code was developed using Python (we employed Pytorch 
[45], torchvision, and OpenCV for data augmentation).

We have selected two broadly adopted performance 
metrics to evaluate our system capability to segment the 
kidney area: IoU and Dice coefficients, and other specific 
two to assess its capability to diagnose: (1) the area under 
the Sensitivity-Specificity (SP) Receiver-Operating Char-
acteristic (ROC) curve: AUCSENS−SP , for each category, by 
considering a binary problem “category vs non-category,” 
indicating how well the images are ranked in terms of the 
soft score for a specific pathology provided by the system 
under evaluation, and specially useful for medical applica-
tions [48, 49]; and (2) the specificity at a sensibility of 95% 
( SPSENS−95 ) [48, 49]. This last metric is particularly helpful 
if the proposed system is used as a filter for referring patients 
from primary care to specialists, as it indicates how many of 
the non-referred cases are truly healthy, or equivalently (if 
we take its complementary value), how many of the healthy 
(non relevant) cases will be referred, assuming a minimum 
referral rate of 95% for pathological (relevant) cases. In this 
way, we can assess the capacity of our system for each mar-
ginal classification problem and extract conclusions disre-
garding the potential database imbalance.

The experiments in this section are organized as follows: 
first, we select the optimum aggregation method for our sys-
tem in “Assessment of the Aggregation Method”. Then, we 
analyze and discuss the results obtained by the proposed 

fusion strategies in “Ablation Study and Analysis of the 
Fusion Parameters”. Finally, we present the results of the 
proposed system in terms of segmentation and classification 
performance, in comparison with those of several state-of-
the-art systems, in “Comparison with the State-of-the-Art”.

Assessment of the Aggregation Method

This section focuses first on determining the best-per-
forming aggregation method for the Diagnosis Genera-
tion Module among the methods proposed in “Fusing 
Image- and Region-Based Predictions: Diagnosis Gen-
eration Module”. The validation process is performed 
using the first fold of our 5-fold cross-validation strategy, 
assuming that the optimal hyperparameters for this fold 
will be also suitable for the remaining data, and minimiz-
ing the risk of overfitting. In fact, our method turns out 
to be quite robust, and results in distinct folds are not 
significantly different.

Regarding the aggregation method, Table 2 shows the 
AUCSENS−SP for the local categories of the database. Accord-
ing to the results, max-aggregation is the best performing 
aggregation method (with similar performance to the area-
aggregation method). It turns out to be slightly better to rely 
on the detected regions with high scores to decide on each 
local pathology. Hence, max-aggregation will be used from 
now on the rest of the experiments.

Ablation Study and Analysis of the Fusion 
Parameters

This section is devoted to perform an ablation study and 
analyze the optimum values of the fusion parameter for each 
one of the fusion strategies presented in “Fusing Image- and 
Region-Based Predictions: Diagnosis Generation Module”, 
for the sake of explainability.

Table 3 shows an ablation study of several ablated ver-
sions of our system, namely URI-CADS-I, a version of our 
system that only includes the image-based branch; URI-
CADS-R, a version that only incorporates the region-based 
branch; and the two fusion strategies: URI-CADS-C, using 
the category-based fusion strategy and URI-CADS-Att, 
employing the attention-based fusion.

Fig. 6   Distribution of the pathologies in the dataset. SCY and CCY 
compose the “cyst” category (C), and LIT, ANG, SRM, CT, and CE 
are grouped in the “others” category (O)

Table 2   Average AUCSENS−SP for the different aggregation methods 
over the considered local categories. Results are computed using in 
the first fold as test set

Type of aggregation AUC����−�� (%)

Max-aggregation ��.��

Mean-aggregation 79.31
LME-aggregation 79.28
Area-aggregation 80.59
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Results in Table 3 account for the need of multiple reso-
lutions in our ultrasound renal imaging diagnosis task. Our 
URI-CADS-C and URI-CADS-Att approaches successfully 
integrate the two-level information to provide notably bet-
ter diagnosis for almost all the categories in except of the 
“others.” For this last category, it is very difficult to set a 
proper value of � , as due to the varying nature, appearance, 
and shape of the different pathologies aggregated into this 
category. In addition, it is remarkable that even in the case of 
global pathologies (HC and PCD) that, a priori, are detected 
through the global classifier, the URI-CADS-Att multi-task 
approach performs better than the URI-CADS-I ablated ver-
sion which takes into account only the global information of 
the clinical case. Although this result may seem surprising, 
the rationale behind is that our attention module is being 
able to modulate the scores of global pathologies by ana-
lyzing the information of the remaining ones (see Eq. (8)).

Furthermore, despite the URI-CADS-R (the region-based 
ablated version) results show a more modest performance 
(it is the most challenging task), their integration with the 
global predictions of the network substantially improves the 
performance (around 3% of AUC for every category of the 
taxonomy except the global pathologies and more than 6% 
in the case of cysts or pyramids).

The fusion parameters per category for each one of the 
fusion strategies are gathered in Table 4. Their values provide 
meaningful insights regarding the significance of each type 
of information for the diagnosis. In the case of the healthy 
vs. pathological diagnosis, global (image-level) information 
clearly dominates over local information. According to the 
nephrologists, a kidney is considered healthy when the cor-
tex and sinus can be properly distinguished, its shape is ellip-
tical, and it does not present any lesion. These features can 
be inferred from the complete ultrasound image (i.e., from 

the global view), so its fusion parameters tend to one. The 
same reasoning can be employed for the global features (HC 
and PCD). However, in the case of the local pathologies, the 
fusion parameter value depends on the area occupied by the 
pathology: on the one hand, cysts (C) and hydronephrosis 
(HYD) present greater areas, so they can be inferred from 
the local view and their fusion parameters tend to one, on the 
other hand, pyramids (PYR) and other pathologies (O) have 
smaller sizes in general, thus, balancing the two perspectives 
of the proposed approach results in the best performance. 
Even in such cases, the weight of the global view becomes 
dominant, because, thanks to the regularization ability of the 
multi-task approach, the backbone can learn some activa-
tions that indicate the presence or absence of local lesions.

Furthermore, regarding the fusion parameters resulting 
in URI-CADS-C and URI-CADS-Att approaches, the val-
ues for the latter are less extreme. Depending on the clini-
cal case, the system can balance the diagnosis towards the 
region-based decision (for example, for small local patholo-
gies). In addition, it is remarkable that the URI-CADS-Att 
approach applies a non-zero weight to the local view of the 
global pathologies ( �HC and �PCD parameters are not zero). 
As we have already mentioned, our attention-based module 
is able to re-modulate the score of the global pathologies 
through the analysis of the remaining ones (e.g. by reducing 
the scores of global categories if some local pathologies are 
found in the lesion). This very interesting behavior cannot 
be achieved by the category-level fusion, which fixes the � 
values for the entire dataset.

The previous point, together with the ability of adapting 
the fusion to the particular characteristics of each clinical 
case, allows URI-CADS-Att to yield an average performance 
improvement of a 2.28% over URI-CADS-C and become the 
reference model to be used in the rest of this paper.

Table 3   Ablation study: 
different fusion strategies for the 
system proposed in this paper. 
Ultrasound kidney classification 
results in terms of AUCSENS−SP 
(%) for each category in the 
taxonomy. Categories are 
labeled as global (G) or local 
(L)

Multi-pathological Binary 
(healthy/path-
ological)

Method HC (G) PCD (G) C (L) PYR (L) HYD (L) O (L) Average H
URI-CADS-I 77.33 82.57 73.30 71.10 89.75 66.90 76.83 85.34
URI-CADS-R − − 72.72 79.27 87.08 51.01 72.52 77.53
URI-CADS-C 76.56 81.70 78.43 82.00 91.69 67.34 79.62 87.21
URI-CADS-Att ��.�� ��.�� ��.�� ��.�� ��.�� ��.�� ��.�� ��.��

Table 4   Values of the fusion parameters per category. *URI-CADS-C: averaged in the five different folds, a set of values per fold. *URI-CADS-
Att: averaged for each clinical case, one set of values per each clinical case

Method �
H

�
HC

(G) �
PCD

(G) �
C
(L) �

PYR
(L) �

HYD
(L) �

O
(L)

URI-CADS-C 1.0000 1.0000 1.0000 0.9904 0.7539 1.0000 0.8103
URI-CADS-Att* 0.9833 0.8637 0.8281 0.9166 0.6563 0.8329 0.6736
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Discussion

In order to provide more insight into the capabilities and 
limitations of the proposed system, we first compare its 
results with the ones from the state of the art in “Compari-
son with the State-of-the-Art” and then examine the errors 
made by the system by analyzing the results of each indi-
vidual module (segmentation and classification) in “Error 
Analysis and Discussion”.

Comparison with the State‑of‑the‑Art

The goal of this section is to assess the proposed system 
in comparison to relevant systems in the literature. It is 
noteworthy that, in comparison with the systems presented 
in “Introduction”, which reported results using test sets of 
tens or few hundreds of images, our performance metrics are 
obtained over a dataset of 1985 US images using a 5-fold 
cross-validation strategy.

The experiments are organized into two blocks: segmen-
tation and classification.

2D Kidney Ultrasound Segmentation

Although segmentation is not the focus of our approach, in this 
first set of experiments, we aim to assess the performance of 
our method to segment the kidney in US images. We have com-
pared our approach to the most relevant state-of-the-art systems, 
showing their results in the reported scenarios. To make this 
comparison meaningful, we also provide the performance of 
Deeplabv3+ [50], as it has been reported in all cases and consti-
tutes the reference that allows comparing results over different 
datasets. Additionally, we have also included the performance 
in our scenario of the winner solution of the thyroid nodule seg-
mentation and Classification grand challenge TN-SCUI2020, 
which performs segmentation and classification in US images 
using the same architecture [51]. All the results are presented in 
terms of IoU and Dice coefficient in Table 5. It should be noted 
that, to perform an ablation study, we also include a simplified 

version of our system (URI-CADS-Segmentation) which only 
detects and segments the kidney and not provides a diagnosis to 
evaluate if improvements in classification and detection come 
at the cost of a slight decrease in segmentation performance.

As observed in Table 5, the version of our system that 
focuses on kidney detection and segmentation (URI-CADS-
Segmentation) provides a 3% improvement in terms of IoU 
compared to Deeplabv3+ in our dataset. This allows us to 
conclude that the kidney detection approach (with subse-
quent segmentation through Mask R-CNN) is more effective 
for our segmentation task. Furthermore, the performance 
of Deeplabv3+ in our scenario is always lower than that 
on other datasets (sometimes by a significant margin [28]), 
which reveals that our database is not only larger than the 
others, but also more challenging. In general, the perfor-
mance of our proposed system is similar to that achieved by 
the rest of the compared methods in the state-of-the-art, even 
when the focus of our approach is not segmentation, which 
remains an auxiliary task. Indeed, when including the global 
and local branches for classification (URI-CADS-C and 
URI-CADS-Att), the performance decreases slightly (about 
3%) in comparison with the only-segmentation system 
(URI-CADS-Segmentation). However, this slight decrease 
in the auxiliary task (segmentation) is compensated by a 
significant improvement in the main objective of our system: 
pathology classification (as will be seen in the next section).

Finally, we present some illustrative examples of kidney 
segmentation with our system and Deeplabv3+ in Fig. 7. 
The results reveal that Deeplabv3+ struggles to segment 
PCD kidneys (due to their low contrast with the background) 
and poly-cystic ones (because their unique appearance com-
pared to the rest of the kidneys). On the other hand, URI-
CADS and URI-CADS-Segmentation (not included in the 
figure), produce more consistent and accurate results by 
incorporating the detection process. It is worth noting that 
our system successfully detects all but one kidney in the 
database, indicating that the main decrease in performance 
is primarily attributed to the segmentation of the kidney 
boundaries, particularly in challenging ones.

Table 5   Comparison of US kidney segmentation results with the state-of-the-art methods in terms of IoU and Dice coefficients in several data-
sets, which are described by their size

Database (# of images) DB [32] ( 80) DB [28] ( 50) DB [31] ( 289) DB ours (1985)
Method IoU/Dice (%)

Deeplabv3+ [50] −∕92.8 88.69∕− 81.87/89.85 81.80/89.34
CT2US [32] −∕95.2 (+2.4) − − −
SDFNet [28] − 91.24 (+2.55)∕− − −
Bnet [31] − − 87.29 (+5.42)∕93.03 (+3.18)−
TN-SCUI2020 [51] − − − 79.31 (−1.49)∕87.23 (−2.11)

URI-CADS-Segmentation − − − ��.�� (+�.��)∕��.�� (+�.��)

URI-CADS − − − 81.41 (−0.39)∕89.38 (+0.04)
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2D Ultrasound Kidney Classification

In order to evaluate the performance of our proposed 2D 
US kidney classification system, we have compared it to the 
state-of-the-art by Sudharson and Kokil [16], which deals 
with a similar scenario to ours (multi-class classification: 
normal, cyst, stone, and tumor, in their case), with promising 
results in their database. It is worth noting that in their sce-
nario, each clinical case belongs to only one category of the 
taxonomy, whereas in our scenario, the same clinical case 
can present one or more pathologies (images are sampled 
from real-world studies without bias).

In the work of Sudharson and Kokil [16], they use an 
ensemble of 3 CNNs pre-trained on ImageNet to classify 
images into a single class out of multiple classes (single-label 
multi-class classification). They train one SVM per CNN, 
where each SVM is trained on a set of features extracted 
from the corresponding CNN. However, in our scenario, 
where a single image can exhibit multiple pathologies, we 
have adapted their approach by training one binary SVM per 
pathology category. In addition, Sudharson and Kokil combine 
the hard scores of the SVMs using majority voting, whereas 
in our implementation of their system, we found that aver-
aging the soft scores yielded better results. We refer to this 
adapted approach as SUDHARSON-ORIG and also propose 
an improved version (SUDHARSON-IMP) where each CNN 
is fine-tuned in our task before averaging their scores. In this 
way, we can demonstrate that our approach outperforms an 
ensemble of several CNNs with a single multi-task architecture 
which concurrently addresses the tasks of segmentation, clas-
sification and pathology detection in US images.

Furthermore, we have also included in our comparison 
the results of the winner method of the TN-SCUI2020 Grand 
Challenge [51], which was initially designed for thyroid nod-
ule segmentation and binary classification in US images. In 
order to adapt this method to our scenario, we have replaced 
the binary classification loss with our set of binary cross-
entropy losses to address our multi-class classification task.

The results for 2D kidney US classification are presented in 
Table 6. We have also conducted an ablation study, in which 
we analyzed the performance of our method when relying only 
on image-level features (URI-CADS-I) or region-level features 
(URI-CADS-R), just before the Diagnosis Generation Module, 
which is the one that combines both scores to provide the final 
tentative diagnosis. This study aimed to understand how the 
region-based branch improves the overall classification per-
formance of the system.

The proposed system demonstrates superior performance 
compared to Sudharson’s 2D US classification systems, as 
evidenced by its notable margin of improvement in AUC 
(+20%) in every category of our database. When compared 
to the TN-SCUI2020 system, which is designed for nodule 
detection, our approach shows a relative improvement of 10% 
in terms of AUC in binary classification and approximately 6% 
in multi-pathological classification. These results suggest that 
a multi-task regularized framework, such as the one proposed 
in this paper, can effectively leverage both local and global 
information extracted from images in a challenging scenario. 
Furthermore, our system’s use of both kidney location and seg-
mentation information through the detection and segmenta-
tion branch was found to be crucial in differentiating pyramid 
pathologies from other hypo-echoic areas, such as cysts.

Fig. 7   Illustrative examples 
of kidney US segmentation. 
First column: original volume; 
second column: ground-truth 
segmentation; third column: 
Deeplabv3+ and fourth column: 
URI-CADS
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In terms of real-world applicability, the proposed system 
shows promising results. The binary pathological vs. healthy 
classification achieved an AUC of 87% and a SPSENS−95 
value of 60%. This suggests that, when used in a primary 
healthcare setting for identifying cases that require referral 
to specialists, less than 40% of healthy kidneys would be 
referred while ensuring that 95% of pathological cases are 
correctly referred. Additionally, the multi-class classification 
results for most categories are around 80% AUC, which is 
considered to be helpful for expert practitioners.

Error Analysis and Discussion

Figure 8 shows some illustrative examples of the most serious 
errors of the kidney segmentation branch. These errors mainly 
occur when there is a lack of contrast between the kidney and the 
background, such as in cases of hyper-echogenia or poor corti-
comedullary differentiation. Additionally, cases with ambiguities, 
such as other organs that resemble the kidney, can also cause 
errors (although these cases are not common in our database). 

As we already mentioned, the system only failed to detect the 
kidney in one case. Moreover, as can be inferred from the other 
examples, even in these worst cases, the system provides a more 
regularized solution than Deeplabv3+. These extreme cases have 
associated an error in the healthy-pathological diagnosis, but, 
when the segmentation covers a significant kidney area (above 
0.3 of IoU), the diagnosis is accurate.

Regarding the binary classification of the US renal 
images (the main objective of our system), it is important 
to ensure that the system’s output is consistent. This means 
that the scores given to clearly pathological cases are high, 
the scores given to clearly healthy cases are low, false posi-
tives (healthy kidneys that are incorrectly classified as patho-
logical) do not have a clear differentiation between the renal 
cortex and sinus, and false negatives (pathological kidneys 
that are not detected) have unclear or difficult pathologies. 
Figure 9 illustrates some representative examples of these 
categories. For our system, healthy kidneys with a clear 
differentiation between the renal cortex and sinus and no 
visible pathologies are classified as healthy, while kidneys 

Table 6   Comparison of US kidney classification results with state-of-the-art methods in terms of AUC-PR and SP-95 for each category in the 
taxonomy

Multi-pathological Binary 
(healthy/path-
ological)

Method Measurement HC PCD C PYR HYD O Average H

SUDHARSON-ORIG [16] AUCSENS−SP (%) 47.70 50.80 49.76 48.39 50.02 49.37 49.34 47.14
SPSENS−95 (%) 6.04 8.20 5.49 4.39 4.55 3.70 5.40 6.71

SUDHARSON-IMP AUCSENS−SP (%) 59.29 63.95 52.10 53.99 67.79 58.18 59.22 64.37
SPSENS−95 (%) 10.43 12.67 6.90 11.57 9.17 11.56 10.38 29.19

TN-SCUI2020 [51] AUCSENS−SP (%) 70.30 75.34 73.89 74.91 85.85 64.54 74.14 77.39
SPSENS−95 (%) 20.86 29.68 15.88 12.50 38.13 11.97 21.50 27.11

URI-CADS AUCSENS−SP (%) ��.�� ��.�� ��.�� ��.�� ��.�� ��.�� ��.�� ��.��

SPSENS−95 (%) ��.�� ��.�� ��.�� ��.�� ��.�� ��.�� ��.�� ��.��

Fig. 8   Illustrative examples of 
the most serious errors made by 
the 2D kidney US segmentation 
system. First column: original 
image; second column: ground-
truth segmentation; third 
column: Deeplabv3+ and fourth 
column: URI-CADS



Journal of Imaging Informatics in Medicine	

with obvious pathologies such as hydronephrosis and cysts 
are classified as pathological. Additionally, the errors in our 
system come from the classification of some kidneys with 
subtle global pathologies (HC and PCD) as false positives 
and some kidneys with small, barely visible local patholo-
gies as false negatives (both are difficult cases). Overall, 
our system demonstrates robust and consistent performance.

Conclusion

In this paper, we present URI-CADS, a fully automated com-
puter-aided diagnosis system for ultrasound renal imaging that 
concurrently performs kidney segmentation and tentative diag-
nosis of 2D US renal images within a single framework.

The system aims to achieve two objectives: z91) to assist 
non-expert practitioners in primary healthcare by improving 
clinical workflow and reducing specialist workload; and 2) 
due to the comprehensive taxonomy used, it could become a 
helpful tool for training and supporting expert practitioners, 
reducing human biases, and providing meaningful insights.

Our experimental results demonstrate that a joint 
approach to segmentation, global classification, and local 
detection of pathologies in each clinical case notably 
improves the diagnosis performance compared to state-of-
the-art methods. Our strategy outperforms more complex 
systems based on ensembles of CNNs and the state-of-the-
art hybrid system for segmentation and classification of 
thyroid nodules. Our proposed multi-task regularization is 
crucial for performance improvement as each branch learns 

from the other branches, particularly the classification 
branch. Additionally, the system provides kidney segmen-
tation results comparable to the state of the art. To the best 
of our knowledge, this is the first time that such a compre-
hensive automatic analysis of ultrasound renal clinical cases 
has been performed with notable performance.

Moreover, we found that our system’s results are consist-
ent, which is crucial for the future deployment of CAD sys-
tems in the healthcare system. Our method can be applied to 
primary health as a first filter to reduce specialist workload 
and accelerate diagnosis, or used by expert practitioners to 
support their hypotheses and receive meaningful suggestions 
during their daily activity. In addition, we have established a 
benchmark for ultrasound renal imaging analysis (segmenta-
tion, binary diagnosis and multi-pathological diagnosis) by 
publicly releasing our dataset, thus helping to promote the 
future research in the field.

Our envisaged further research includes enriching the 
current database, especially with pathologies in the “oth-
ers” category, and extending the system to other scenarios. 
With the completion of the database, the 69% AUC that we 
obtained for the “others” category could be substantially 
improved, and even a marginal detection of pathologies 
under the “others” category could be proposed. Addition-
ally, our proposed methodology could be extended to other 
scenarios to prove its versatility. Finally, the diagnosis of 
renal clinical cases often includes a kidney shape/size study. 
We will research how to incorporate a shape/size description 
into our system to enhance the results while maintaining its 
end-to-end trainability.

Fig. 9   Illustrative examples of 
the consistency of the binary 
healthy vs. pathological classifi-
cation. First row: true positives 
(pathological kidneys correctly 
classified); second row: true 
negatives (healthy kidneys 
correctly classified); third 
row: false positives (healthy 
kidneys incorrectly classified as 
pathological), and fourth row: 
false negatives (pathological 
kidneys incorrectly classified as 
healthy). Color boxes mark off 
the local pathologies: cysts and 
hydronephrosis in the first row, 
and angiomyolipoma, pyramid, 
lithiasis, and solid renal mass in 
the last row
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