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Abstract
The purpose of this study was to develop a computerized segmentation method for nonmasses using ResUNet++ with a 
slice sequence learning and cross-phase convolution to analyze temporal information in breast dynamic contrast material-
enhanced magnetic resonance imaging (DCE-MRI) images. The dataset consisted of a series of DCE-MRI examinations 
from 54 patients, each containing three-phase images, which included one image that was acquired before contrast injection 
and two images that were acquired after contrast injection. In the proposed method, the region of interest (ROI) slice images 
are first extracted from each phase image. The slice images at the same position in each ROI are stacked to generate a three-
dimensional (3D) tensor. A cross-phase convolution generates feature maps with the 3D tensor to incorporate the temporal 
information. Subsequently, the feature maps are used as the input layers for ResUNet++. New feature maps are extracted 
from the input data using the ResUNet++ encoders, following which the nonmass regions are segmented by a decoder. A 
convolutional long short-term memory layer is introduced into the decoder to analyze a sequence of slice images. When 
using the proposed method, the average detection accuracy of nonmasses, number of false positives, Jaccard coefficient, Dice 
similarity coefficient, positive predictive value, and sensitivity were 90.5%, 1.91, 0.563, 0.712, 0.714, and 0.727, respectively, 
larger than those obtained using 3D U-Net, V-Net, and nnFormer. The proposed method achieves high detection and shape 
accuracies and will be useful in differential diagnoses of nonmasses.

Keywords Nonmass · Slice sequence learning · Cross-phase convolution · Convolutional neural network · Breast magnetic 
resonance imaging

Introduction

Breast cancer is the most commonly diagnosed cancer 
among women. In 2020, approximately 684,000 women 
died of breast cancer globally [1]. The early detection and 
treatment of breast cancer are critical. For example, Reyn-
olds et al. [2] reported that 95% of patients were completely 
cured when breast cancer was detected and treated early. 

A nonmass where a mass has not yet formed is an impor-
tant indicator for breast cancers in breast dynamic contrast 
material-enhanced magnetic resonance imaging (DCE-MRI) 
images. However, distinguishing whether a nonmass lesion 
is malignant or benign is difficult for radiologists [3]. For 
example, Baltzer et al. [4] reported that the positive predic-
tive value (PPV) of nonmasses in DCE-MRI was quite low. 
Unnecessary biopsies can also cause physical problems and 
financial burdens on patients.

Researchers have developed computer-aided diagnosis 
(CADx) schemes to distinguish between benign and malig-
nant breast nonmasses to improve the PPV of nonmasses 
in breast DCE-MRI. Newell et al. [5] developed a CADx 
scheme based on an artificial neural network with morpho-
logical, textural, and kinetic features to distinguish between 
benign and malignant nonmasses on DCE-MRI. Tan et al. 
[6] and Ayatollahi et al. [7] also used machine learning 
techniques with texture features on DCE-MRI images to 
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distinguish between benign and malignant nonmasses. Li 
et al. [8] and Zhou et al. [9] developed computerized clas-
sification methods for benign and malignant nonmasses 
using radiomic features. In these methods, all features are 
extracted from segmented nonmass regions. Thus, it is nec-
essary to segment the nonmasses on DCE-MRI images to 
evaluate the likelihood of malignancy of the nonmasses.

Cancer patterns tend to show rapid early enhancement 
(wash-in), followed by a loss of enhancement (wash-out) 
on DCE-MRI images over time [10]. Nonmasses exist in 
the slice images and through-plane direction in DCE-MRI 
images. Therefore, to segment nonmass regions accurately, 
it is necessary to use a computerized method to analyze the 
dynamic changes in the signal intensity and the relationship 
between consecutive slices in both lesions. The main objec-
tive of this study was to develop a computerized segmenta-
tion method for nonmasses in breast DCE-MRI images using 
ResUNet++ and a combination of slice sequence learning  
to analyze the sequential information of consecutive slices 
and cross-phase convolution to incorporate the dynamic 
changes in the lesion signal intensity. The main contribu-
tions of this study can be summarized as follows:

(1) We propose a computerized segmentation method for 
nonmasses using ResUNet++ [11, 12] using cross-
phase convolution to analyze the temporal information 
among DCE-MRI images acquired at different times 
and slice sequence learning to examine the sequential 
information between continuous slices.

(2) We show that cross-phase convolution can analyze the 
temporal information, whereas slice sequence learning 
can analyze the sequential information between con-
tinuous slices.

(3) We demonstrate that the segmentation accuracies 
are improved using the proposed network, ResU-
Net++ with the cross-phase convolution and slice 
sequence learning, compared with those obtained by 
the original ResUNet++, ResUNet++ with cross- 
phase convolution, ResUNet++ with slice sequence 
learning, 3D U-Net [13], V-Net [14], and nnFormer 
[15].

The remainder of this paper is organized as follows. The 
“Related Work” section presents an overview of related 
studies on the segmentation task of masses/nonmasses on 
DCE-MRI images. Our dataset is outlined in the “Materials” 
section, and a detailed explanation of the proposed method is 
presented in the “Methods” section. The results are described 
in detail in the “Experimental Results” section. The “Discus-
sion” section provides a comparative analysis with previous 
methods. Finally, the conclusion and limitations of this paper 
are described in the “Conclusions” section.

Related Work

As mass lesions in DCE-MRI generally have clear bounda-
ries, they can be detected and segmented in a relatively 
straightforward manner. However, the specificity of masses  
in DCE-MRI is low, typically ranging from 30 to 70% [16, 
17]. In contrast, nonmass lesions exhibit a heterogeneous 
appearance in DCE-MRI because the tumorous tissues 
and stroma are mixed. In addition, the boundaries of non-
masses are generally indistinct. Therefore, the detection 
and segmentation of nonmasses is extremely challenging 
[18]. The PPV of nonmasses has also been reported to be 
lower than that of masses [4, 19].

Several researchers have attempted to develop CADx 
schemes to distinguish between benign and malignant 
breast lesions [5–9]. As the first step, segmentation meth-
ods for breast lesions in DCE-MRI images have been 
established [9, 20–29]. These methods are primarily 
divided into image-processing-based and deep-learning-
based methods, including convolutional neural networks 
(CNNs). 

In terms of image-processing-based methods, Zhou et al. 
[9] used a fuzzy C-means clustering method to segment mass 
regions. Shokouhi et al. [20] also proposed a segmentation 
method for masses in DCE-MRI using region growing based 
on the fuzzy C-means clustering method, which enables each 
pixel to belong to multiple classes with varying degrees 
of membership. However, in the aforementioned studies, 
regions of interest (ROIs) containing masses were required 
in advance. Zheng et al. [21] proposed a graph cut–based 
method for mass segmentation. This method segments mass 
regions by minimizing the energy function related to the sim-
ilarity and segmentation smoothness of the pixels. One limi-
tation of this method is that it requires manual initialization to 
provide the seeds or ROI for the foreground and background. 

In terms of deep learning–based methods, Carvalho et al. 
used SegNet [22] and U-Net [23] for mass segmentation 
[24]. Dalmış et al. [25] proposed a computerized segmenta-
tion method for breast and fibroglandular tissue in DCE-MRI 
using two consecutive U-Nets. This method first segments 
the breast in the entire DCE-MRI image, which is followed 
by segmentation of the fibroglandular tissue inside the seg-
mented breast. Haq et al. [26] employed conditional genera-
tive adversarial networks for mass segmentation. However, 
one critical limitation of these studies is that two-dimensional 
(2D) axial slice images were only used as inputs for the net-
works in the DCE-MRI. Thus, these methods cannot analyze 
the sequential information between continuous slices. On the 
other hand, Khaled et al. [13] developed an automated mass 
segmentation method using a 3D U-Net to analyze the axial 
direction information. The 3D U-Net was extended by replac-
ing 2D operations with 3D equivalents. In this method, the 
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DCE-MRI volumes are divided into small patches of certain 
sizes for the 3D U-Net. Other researchers have also proposed 
3D CNN-based segmentation methods [14, 27, 28]. Recently, 
some researchers have developed transformer-based networks 
for the segmentation task. The transformer can capture the 
global interactions between contexts. Qin et al. [29] proposed 
a two-stage breast mass segmentation model. In this method, 
the rough outline of the breast region is first segmented by 
U-Net. Based on the segmented rough outline of the breast 
region, a TR-IMUnet model is employed for accurate seg-
mentation of the shape of masses. This model is based on 
U-Net. A transformer module, an improved dynamic recti-
fied linear unit module, and a multi-scale parallel convolu-
tion fusion module are newly employed. Moreover, Zhou 
et al. [15] developed nnFormer using a 3D transformer for 
volumetric medical image segmentation. In this model, the 
local and global volume–based self-attention mechanism is 
newly introduced to the nnFormer for learning volume repre-
sentation. The authors showed that the segmentation perfor-
mance of the nnFormer was improved compared to those of 
previous segmentation models. However, these methods have 
numerous trainable parameters compared to 2D CNN, which 
is disadvantageous for smaller datasets. Most of the afore-
mentioned studies focused on the segmentation of masses. To 
the best of our knowledge, few studies exist on segmentation 
methods for nonmasses [9]. In [9], radiologists determined the 
location and slice range of the nonmasses in breast DCE-MRI 
images. It would be tedious for clinicians to determine them 
manually in clinical practice.

Materials

DCE-MRI images from February 2010 to July 2022 were 
acquired using a 3-T MRI scanner (Magnetom Skyra; Sie-
mens Healthcare) with a dedicated 16-channel breast coil 
at the University Hospital, Kyoto Prefectural University 
of Medicine (Kyoto, Japan). The inclusion criteria for this 
study were as follows: patients who were diagnosed as hav-
ing non-mass enhancement by a board-certified radiologist 
with 15 years of experience in breast MRI and histopatho-
logically confirmed to be malignant via biopsy or benign 

via biopsy or follow-up (at least 2 years). A total of 59 
consecutive patients were identified. The exclusion criteria 
were patients receiving any prior treatment for breast cancer 
(n = 2), insufficient image quality (n = 2), and breast lym-
phoma (n = 1). Finally, the database consisted of 54 DCE-
MRI examinations, which contained three sequential phase 
images from 54 patients (mean age: 55.2 years, age range: 
21–85 years).

A 3D MRI was obtained as a DCE-MRI before and two 
times after bolus injection of a contrast agent. Two post-
contrast scans were performed with the k-space centered 
at 90 s (early phase) and 300 s (delayed phase) following 
contrast injection. The one pre-contrast and two post-con-
trast series generated images with a spatial resolution of 
0.91 × 0.91 × 1.0  mm3 and a data matrix of 352 × 352 pix-
els. Each of the three image scan series consisted of 144 
slices. A total of 63 nonmasses were included. A board-
certified radiologist with 15 years of experience in breast 
MRI manually determined the nonmass mask images using 
the 3D Slicer software (https:// www. slicer. org). Figure 1 
shows examples of a pre-contrast DCE-MRI image, post-
contrast DCE-MRI images of the early and delayed phases, 
and mask image.

A k-fold cross-validation method [30] with k = 5 and a 
patient-level split was used to train and test the proposed 
method. The dataset of 54 patients was randomly divided 
into five groups on the patient level, and the number of 
patients in each group was approximately equal. One group 
was used for the test dataset, whereas the remaining four 
were used for the training dataset. This process was repeated 
five times until each group was formed as a test dataset.

Methods

Figure 2 presents an overview of the proposed network, 
which primarily consists of three parts: ResUNet++ [11, 
12], a cross-phase convolution to analyze dynamic changes 
in the lesion signal intensity, and slice sequence learning 
to analyze the sequential information for consecutive slice 
images in DCE-MRI. The details of the proposed network 
are presented in the following section.

Fig. 1  Example of pre-contrast 
DCE-MRI image, post-contrast 
DCE-MRI images, and mask 
image

https://www.slicer.org
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Data Augmentation

A CNN requires sufficient training data to achieve high seg-
mentation accuracy. However, the number of training data 
in the database was limited. As a small amount of training 
data may cause the CNN to overfit; in this study, the amount 
of training data was doubled using horizontal flipping [31]. 
This data augmentation approach was employed only for the 
training datasets.

Extraction of Breast Region

The breast regions were extracted from the pre-contrast and 
two post-contrast DCE-MRI images to reduce the effects 
on other structures, such as the chest. The foreground, 
including the breast region, was segmented by applying a 
gray-level thresholding technique [31] to the post-contrast 

DCE-MRI early-phase images. The threshold was empiri-
cally set to a 10-pixel value. Figures 3a and b depict exam-
ples of the input and segmented foreground images, respec-
tively. Subsequently, the position ( py ) in the y-direction for 
the nipple regions was determined using the smaller value 
of the left nipple position in the y-direction ( pyleft ) and the 
right nipple position in the y-direction ( pyright ). The search 
range was 0–W∕2 in the x-direction, 0–H∕2 in the y-direc-
tion, and 0 for the number of slices ( S ) in the z-direction 
(through-plane), where W  , H , and S represent 352, 352, 
and 144 slice images, respectively. Conversely, the search 
range for the x-direction was set to W /2–W  to calculate the 
right nipple position ( pxright , pyright ). The search ranges for 
the y - and z-directions were identical to those used to cal-
culate the left nipple position. Subsequently, the top-center 
position ( cxtop , cytop ) between the left and right nipples was 
calculated using the following equation:

Fig. 2  Overview of the pro-
posed network

Fig. 3  Example of foreground 
segmentation
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The bottom center position ( cxbottom , cybottom ) of the 
breastbone with the minimum value in the y-direction was 
determined based on the top center position according to 
the segmented breast region using the raster scan tech-
nique. The search range was cxtop in the x-direction, cytop
–H in the y-direction, and 0–S in the z-direction. Figure 3c 
shows an example of the left nipple, right nipple, top center, 
and bottom center positions. The cropping area position 
for the breast region was determined in the range of 1–W 
in the x-direction, ( cytop-intervaltop)–(cybottom+intervaldown ) 
in the y-direction, and 1–S in the z-direction. In this case, 
intervaltop and intervaldown were empirically set to 5 and 50 
pixels, respectively. Based on the position, ROIpre , ROIearly , 
and ROIpost including the breast region were extracted from 
the pre- and post-contrast DCE-MRI images of the early and 
delayed phases, respectively. Figure 3d shows the clipping 
area range in light white. Each ROI was resized to 192 × 352 
pixels.

Cross‑Phase Convolution

The cross-phase convolution, which consisted of a 3D 
convolutional layer, rectified linear unit (ReLU) function, 
and batch normalization layer, was developed to obtain the 

(1)
(
cxtop, cytop

)
= (

nlxtop + nrxtop

2
, py)

optimal fusion among ROIs that were acquired at different 
times through the network training. Slice images of the same 
position from the ROIs at the pre-, early, and delayed phases 
were first stacked together to generate a 3D tensor. The size 
of the 3D tensor was three phases × 192 × 352 pixels. The 
3D convolution layer, ReLU function, and batch normaliza-
tion layer were sequentially applied to the 3D tensor. The 
3D convolution layer kernel size was 3 × 1 × 1, where 3 is 
the number of phases. The number of filters in the 3D con-
volution layer was 16. This 3D layer was designed to assign 
weights to each ROI by training and summing their values. 
New feature maps were generated based on optimal fusion 
among the ROIs acquired at different times by cross-phase 
convolution.

ResUNet++ 

Our database, which included 54 patient examinations, 
was relatively small. Jha et  al. [12] showed that ResU-
Net++ worked well with a smaller number of images. In 
their experiments, ResUNet++ also outperformed the well-
known segmentation architectures U-Net and ResUNet. 
Therefore, ResUNet++ was used as the baseline network to 
segment nonmasses in DCE-MRI images.

ResUNet++ contained four important components: a resid-
ual block, a squeeze and excitation (SE) block, atrous spatial 
pyramid pooling (ASPP), and an attention block. Figure 4 

Fig. 4  Architecture of ResUNet++ 
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shows the ResUNet++ architecture employed in this study. 
This network had an input layer, four encoder blocks, an SE 
block, ASPP, three decoder blocks, and an output layer. The 
feature maps that were generated by the cross-phase convolu-
tion were first input into ResUNet++. Each residual block 
consisted of two batch normalization layers, a ReLU function, 
and convolutional layers. Note that only the first residual block 
consisted of two convolutional layers: a batch normalization 
layer and a ReLU function. Skip connections connected the 
input and output of the residual blocks to prevent the vanish-
ing gradient problem. The residual block outputs, excluding 
the final residual block, were fed into the SE blocks. The SE 
block learned the importance of different feature channels and 
adaptively recalibrated them. The feature maps obtained by 
the encoders were passed through the ASPP, which acted as 
a bridge between the encoder and decoder and could effec-
tively aggregate contextual information at different scales 
without increasing the computational cost. The ASPP output 
was input into the decoder. The decoder consisted of attention 
and residual blocks and the ASPP. The attention block, which 
determined which parts of the images the network focused on, 
was executed before each residual block. The generated feature 
maps that were obtained by each attention block were upsam-
pled by the nearest neighbor and concatenated with feature 
maps from their corresponding encoding path. The decoder 
output was fed to the ASPP. Subsequently, the nonmasses 
were segmented by applying a 1 × 1 convolutional layer to the 
64-component feature vector that was obtained by the final 
ASPP.

Slice Sequence Learning

Convolutional long short-term memory (CLSTM) [32, 33] 
was introduced after the decoder in ResUNet++ to analyze the 
sequential information between consecutive slices. Compared 
to traditional LSTM, CLSTM replaces matrix multiplication 
with a convolutional operator to preserve long-term spatial 
information. The feature maps that were obtained from the 
second convolutional layer in the decoder were used as inputs 
for the CLSTM. The CLSTM consisted of an input gate it , 
forget gate ft , memory cell Ct , output gate ot , and hidden state 
ht , as follows:

(1)it = σ
(
Wxi ∗ xt +Whi ∗ ht−1 + bi

)

(2)ft = σ
(
Wxf ∗ xt +Whf ∗ ht−1 + bf

)

(3)Ct = ft◦Ct−1 + ittanh
(
Wxc ∗ xt +Whc ∗ ht−1 + bc

)

(4)ot = σ
(
Wxo ∗ xt +Who ∗ ht−1 + bo

)

where xt , ht , and Ct are the input, hidden state, and memory 
cell tensors, respectively, at time step t  . In this study, the 
time steps represented the DCE-MRI slice images. bi , bf  , 
bo , and bc are biased terms. Wx∗ and Wh∗ are the convolu-
tional kernels for the input and hidden states, respectively. 
The CLSTM with feature maps obtained by the second-last 
convolutional layer in the decoder was employed to learn 
the consecutive slice sequential information. Subsequently, a 
convolutional layer with a kernel of size 1 × 1 was employed 
to map the feature maps that were obtained from the CLSTM 
to a binary output image (nonmass region: 1, other: 0).

Loss Function for Training Proposed Network

The proposed network loss function is shown in Eq. (6):

where TLResUNet++ is defined as the Tversky loss [34] 
between the output images by ResUNet++ and the mask 
images and TLCLSTM is defined as the Tversky loss between 
the image output by the CLSTM and the mask images. The 
Tversky loss function [34] is expressed as

where pi and gi denote the nonmass regions segmented 
by the proposed network and the mask images at pixel i , 
respectively; N is the number of image pixels; and � and � 
are hyperparameters that control the tradeoff between false 
positives and negatives.

Comparison with Other Segmentation Networks

We compared the proposed network with a network using 
a space–time memory (STM) [35] and the cross-phase 
convolution ( networkSTM_CPC ). The STM calculates the 
spatio-temporal attention on every pixel in multiple slice 
images of DCE-MRI [35]. Here, the baseline network of 
the networkSTM_CPC was the same as the proposed network.

The proposed network was also compared with 3D-based 
CNN models, namely 3D U-Net,V-Net, and nnFormer. In 3D 
U-Net and V-Net, ROIpre , ROIearly , and ROIdelay were first 
divided into 64 × 64 × 64 patches (small regions), and the 
mask images were divided identically at the corresponding 
positions. Patches in ROIpre , ROIearly , and ROIdelay were used 
as the input layer in each network for training. The patches 
obtained from the mask images were used as the desired output 
values in the network output layer. Here, in nnFormer, ROIpre , 

(5)ht = ot◦tanh
(
Ct

)

(6)L = TLResUNet++ + TLCLSTM

(7)

TL = 1 −

∑N

i=1
pigi

∑N

i=1
pigi + �

∑N

i=1

�
1 − gi

�
pi + �

∑N

i=1
gi
�
1 − pi

�



Journal of Imaging Informatics in Medicine 

ROIearly , and ROIdelay were divided into 96 × 96 × 96 patches 
(small regions), and the mask images were divided identically 
at the corresponding positions.

Proposed Network Training and Testing

The proposed network was developed and evaluated using 
PyTorch 1.10.0 on a workstation (CPU: Intel Core i9-9900X 
processor, RAM: 128 GB, and GPU: NVIDIA GeForce RTX 
2080 Ti). Adam was employed to minimize the loss between 
the output values of the proposed network and mask images. 
In this case, �1 and �2 in Adam were 0.9 and 0.999, respec-
tively. The hyperparameters for training the proposed network 
were set to an epoch number of 20, an initial learning rate of 
1 ×  10–4, and a mini-batch size of 5. The � and � values in the 
loss function were set to 0.3 and 0.7, respectively. The same 
parameter values were used for networkSTM_CPC , 3D U-Net, 
V-Net, and nnFormer.

Evaluation of Detection and Shape Accuracy

The detection and shape accuracies of the proposed network 
were evaluated using the ensemble average from the test data-
sets over the five cross-validation methods. When the grav-
ity of a true nonmass region determined by a radiologist was 
within the segmented candidate for nonmasses by the proposed 
network, this candidate was considered to be “truly” detected. 
In contrast, when a true nonmass region was not within a seg-
mented candidate, the candidate was considered to be a false 
positive. The Jaccard coefficient (JC), PPV, sensitivity, and 
Dice similarity coefficient (DSC) were used to evaluate the 
shape accuracy of the segmented nonmass regions using the 
proposed network. These evaluation criteria are defined as 
follows:

(8)JC =
|A ∩ B|
|A ∪ B|

(9)PPV =
|A ∩ B|
|A|

(10)Sensitivity =
|A ∩ B|
|B|

where A represents the nonmass regions segmented by the 
proposed network, and B represents the mask images. The 
DSC, which is also known as the F1 score, also evaluates 
the PPV harmonic mean and sensitivity [36].

Experimental Results

Ablation Study

Ablation studies were conducted to investigate the effec-
tiveness of the cross-phase convolution and slice sequence 
learning in the proposed network. The experimental results 
are listed in Table 1. The sensitivity of ResUNet++ with 
cross-phase convolution (0.781) was slightly lower than that 
of the original ResUNet++ (0.797). However, the JC, PPV, 
and DSC, which indicate the harmonic mean of the PPV 
and sensitivity, of ResUNet++ with cross-phase convolu-
tion were improved compared to those of the original ResU-
Net++. The detection accuracy was identical for the original 
ResUNet++ and ResUNet++ with cross-phase convolu-
tion. We adopted slice sequence learning for ResUNet++ to 
obtain the feature representations between continuous slices. 
Although the sensitivity of ResUNet++ with slice sequence 
learning (0.757) was lower than that of the original ResU-
Net++ (0.797); it achieved a detection accuracy of 1.59%, 
DSC of 3.28%, and PPV of 7.23%. The number of false posi-
tives in ResUNet++ with cross-phase convolution (3.18) and 
ResUNet++ with slice sequence learning (2.22) was higher 
than that of the original ResUNet++ (2.17). Finally, the 
sensitivity of ResUNet++ with both cross-phase convolu-
tion and slice sequence learning (0.727, proposed network) 
was lower than that of the original ResUNet++ (0.797), that 
with cross-phase convolution (0.781), and that with slice 
sequence learning (0.757). However, the remaining evalua-
tion indices of the proposed network improved substantially, 
as presented in Table 1. 

Figure 5 compares the nonmass region images segmented 
by the original ResUNet++, ResUNet++ with cross-phase 
convolution, ResUNet++ with slice sequence learning, 
and the proposed network. The segmented regions for the 

(11)DSC =
2|A ∩ B|
|A| + |B|

=
2 ⋅ PPV ⋅ Sensitivity

PPV + Sensitivity

Table 1  Ablation study results

Backbone Cross-phase 
convolution

Slice sequence 
learning

Detection accuracy Number of false 
positive per patient

JC DSC PPV Sensitivity

ResUNet++ - - 87.3% (55/63) 2.17 0.479 0.647 0.545 0.797
✓ 87.3% (55/63) 3.19 0.515 0.692 0.620 0.781

✓ 88.9% (56/63) 2.22 0.529 0.680 0.617 0.757
✓ ✓ 90.5% (57/63) 1.91 0.563 0.712 0.714 0.727
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original ResUNet++, ResUNet++ with cross-phase con-
volution, and ResUNet++ with slice sequence learning 
included parts of the normal tissue that were misclassified 
as nonmasses. However, the proposed network correctly seg-
mented nonmasses compared to the other networks.

Comparison Results of Conventional  
Segmentation Networks

Figure 6 shows an example of segmented nonmass regions 
using the proposed network, networkSTM_CPC , 3D U-Net, 

Fig. 5  Examples of nonmasses segmented by ResUNet++, ResUNet++ with cross-phase convolution, ResUNet++ with slice sequence learning, 
and the proposed network

Fig. 6  Examples of segmented nonmasses by network
STM_CPC , 3D U-Net, V-Net, nnFormer, and the proposed network
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V-Net, and nnFormer. Table 2 shows the comparison results 
for networkSTM_CPC , 3D U-Net, V-Net, nnFormer, and the 
proposed network.

The evaluation indices of the proposed network (90.5% 
detection accuracy, 1.91 false positives, 0.563 JC, 0.712 
DSC, 0.714 PPV, and 0.727 sensitivity) were improved 
compared to networkSTM_CPC (88.9%, 4.81, 0.468, 0.610, 
0.668, and 0.707). In networkSTM_CPC , the number of training 
images may have been relatively small for the STM because, 
in [35], many of the training data compared to this study 
were used to train the STM. Therefore, the segmentation 
accuracy of networkSTM_CPC may be improved by using more 
training data. However, collecting a large number of DCE-
MRI images containing nonmasses is generally difficult.

In the comparison of the proposed network with 3D-based 
CNN models, the sensitivity of the proposed network 
(0.727) was lower than that of V-Net (0.742). In contrast, 
the remaining evaluation indices of the proposed network 
(90.5% detection accuracy, 1.91 false positives, 0.563 JC, 
0.712 DSC, and 0.714 PPV) were higher than those of 3D 
U-Net (82.5%, 1.93, 0.463, 0.654, and 0.694, respectively), 
V-Net (90.5%, 3.76, 0.479, 0.661, and 0.668, respectively), 
and nnFormer (85.7%, 2.13, 0.489, 0.656, and 0.669, respec-
tively). These 3D-based CNN models cannot enhance the 
regions for temporal enhancement changes in the DCE-MRI 
images. Therefore, we believe that the proposed network 
is more appropriate for segmenting non-masses on breast 
MRI images.

Discussion

In this study, we developed a method to improve the seg-
mentation performance of nonmasses in DCE-MRI images. 
Cross-phase convolution is used to analyze the temporal 
information among DCE-MRI images acquired at different 
times, and slice sequence learning is utilized to examine 
the sequential information between continuous slices. Seg-
mented images of nonmass regions can be generated with 
higher accuracy than those obtained using conventional 
methods by employing the proposed method.

According to Table 1 and 2, the detection accuracy, JC, 
and DSC of the original ResUNet++ were lower than those 

of V-Net. Nonmasses existed in the slice images as well as in 
the through-plane direction in the DCE-MRI. Therefore, the 
original ResUNet could not capture the volumetric informa-
tion of nonmass lesions.

We compared ResUNet++ with the cross-phase convolu-
tion to the original ResUNet++ to investigate the benefits 
of the cross-phase convolution. As shown in Table 1, the 
sensitivity of ResUNet++ with cross-phase convolution 
was slightly lower than that of the original ResUNet++, 
whereas the PPV of ResUNet++ with cross-phase convolu-
tion was higher than that of the original ResUNet++. The 
DSC, which evaluated the balance between the sensitivity 
and PPV of ResUNet++ with cross-phase convolution, was 
higher than that of the original ResUNet++. The remaining 
evaluation indices for ResUNet++ with cross-phase con-
volution were also improved compared with those of the 
original ResUNet++. The network must learn the temporal 
enhancement changes of the nonmass regions to segment 
nonmass regions accurately. The original ResUNet++ could 
not be trained to focus on temporal enhancement changes 
in the nonmasses. By introducing cross-phase convolution 
to the original ResUNet++, the network could be trained 
by focusing on mass-enhancement changes that appeared 
in the DCE-MRI. Figure 7 shows the feature map with the 
highest mean value in the nonmass region among the fea-
ture maps that were obtained from the cross-phase convolu-
tion. It can be observed that the cross-phase convolution 
enhanced the regions for temporal enhancement changes in 
the DCE-MRI images. Some studies have used the differ-
ence images obtained by subtracting the pre-contrast DCE-
MRI images from the post-contrast DCE-MRI images as the 
network input to reflect the mass enhancement changes in 
the network [13]. However, the different images enhanced 
minute differences, including noise, between the DCE-MRI 
images that were acquired at different times. Therefore, the 
use of different images may have a negative impact on the 
network training.

ResUNet++ with slice sequence learning was compared 
with the original ResUNet++ in terms of the detection and 
shape accuracy to investigate the benefits of slice sequence 
learning in analyzing the sequential information between 
consecutive slices. Although the sensitivity of ResU-
Net++ with slice sequence learning was lower than that of 

Table 2  Comparison of results 
obtained by network

STM_CPC , 3D 
U-Net, V-Net, nnFormer, and 
the proposed network

Method Detection accuracy Number of false 
positive per patient

JC DSC PPV Sensitivity

network
STM_CPC 88.9% (56/63) 4.81 0.468 0.610 0.668 0.707

3D U-Net 82.5% (52/63) 1.93 0.463 0.654 0.694 0.720
V-Net 90.5% (57/63) 3.76 0.479 0.661 0.668 0.742
nnFormer 85.7% (54/63) 2.13 0.489 0.656 0.669 0.652
Proposed network 90.5% (57/63) 1.91 0.563 0.712 0.714 0.727
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the original ResUNet++, the remaining evaluation indices 
for ResUNet++ with slice sequence learning were improved. 
Figure 8 shows the feature maps that were obtained using the 
CLSTM. The mean value of each feature map was calculated 
and visualized with the highest mean value in the nonmass 
region among all feature maps. The results showed that the 
CLSTM enhanced the features between consecutive slices 
that contained nonmasses compared to the original ResU-
Net++. Therefore, analysis of the through-plane direction 
enables the network to consider 3D contextual information, 
which assists the network in better distinguishing between 
nonmasses and normal tissue, especially for nonmasses that 
appear similar to normal tissue when viewed in a single 
slice.

Some limitations of this study should be noted. One is 
that the JC of the proposed network was relatively low. It 
is well known that the detection and segmentation of non-
masses are extremely challenging for radiologists because 
of their poorly defined boundaries compared to masses. If 
radiologists slightly revise the segmented nonmass images 
that are obtained by the proposed network, we believe that 
these images can be used in CADx schemes to evaluate the 
likelihood of malignancy of nonmasses. Therefore, when 
radiologists use CADx schemes, the proposed method can 
decrease the burden compared to manual tracing. Another 
limitation is that hyperparameters such as the mini-batch 
size, epoch number, and learning rate in the proposed net-
work may not have been the most appropriate combination 

Fig. 7  Visualization of feature 
map from cross-phase convolu-
tion

Fig. 8  Visualization of feature maps from CLSTM and output of decoder in original ResUNet++ 



Journal of Imaging Informatics in Medicine 

for the detection and segmentation of nonmass regions. 
Thus, the detection and segmentation accuracy may be 
improved by using more suitable hyperparameter combina-
tions. Finally, data from only 54 patient examinations were 
used in this study. Therefore, future research will focus on 
expanding the database and evaluating the performance of 
the proposed network on this basis.

Conclusions

We developed a computerized segmentation method for 
nonmasses in breast DCE-MRI using ResUNet++ com-
bined with slice sequence learning and cross-phase con-
volution. The experiment results showed that the slice 
sequence learning analyzes the sequential information of 
consecutive slices, and the cross-phase convolution can 
capture the dynamic changes in the lesion signal intensity.

The proposed network exhibited a higher segmentation 
accuracy than the original ResUNet++, ResUNet++ with 
cross-phase convolution, and ResUNet++ with slice 
sequence learning. It also outperformed 3D U-Net, V-Net, 
and nnFormer. Thus, the proposed network may be useful 
for segmenting nonmasses in breast DCE-MRI.

Some CADx schemes for evaluating the likelihood of 
malignancy of nonmasses require nonmass mask images. 
Although radiologists manually determine the mass 
regions using the CADx schemes, it would be tedious for 
them to trace masses manually in clinical practice. Thus, 
when radiologists utilize CADx schemes, the proposed 
method can save time compared to manual tracing.

Future works will include improving the segmenta-
tion accuracy of the proposed network by optimizing the 
hyperparameters using Bayesian optimization. We also 
will introduce the proposed method into CADx schemes 
to evaluate the likelihood of malignancy of nonmasses and 
whether the classification performance is improved com-
pared to previous segmentation methods. Moreover, we 
will focus on expanding the database and evaluating the 
performance of the proposed network on this basis.
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