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Abstract
Segmentation of glioma is crucial for quantitative brain tumor assessment, to guide therapeutic research and clinical manage-
ment, but very time-consuming. Fully automated tools for the segmentation of multi-sequence MRI are needed. We developed 
and pretrained a deep learning (DL) model using publicly available datasets A (n = 210) and B (n = 369) containing FLAIR, 
T2WI, and contrast-enhanced (CE)-T1WI. This was then fine-tuned with our institutional dataset (n = 197) containing ADC, 
T2WI, and CE-T1WI, manually annotated by radiologists, and split into training (n = 100) and testing (n = 97) sets. The Dice  
similarity coefficient (DSC) was used to compare model outputs and manual labels. A third independent radiologist assessed 
segmentation quality on a semi-quantitative 5-scale score. Differences in DSC between new and recurrent gliomas, and 
between uni or multifocal gliomas were analyzed using the Mann–Whitney test. Semi-quantitative analyses were com-
pared using the chi-square test. We found that there was good agreement between segmentations from the fine-tuned DL 
model and ground truth manual segmentations (median DSC: 0.729, std-dev: 0.134). DSC was higher for newly diagnosed 
(0.807) than recurrent (0.698) (p < 0.001), and higher for unifocal (0.747) than multi-focal (0.613) cases (p = 0.001). Semi-
quantitative scores of DL and manual segmentation were not significantly different (mean: 3.567 vs. 3.639; 93.8% vs. 97.9% 
scoring ≥ 3, p = 0.107). In conclusion, the proposed transfer learning DL performed similarly to human radiologists in 
glioma segmentation on both structural and ADC sequences. Further improvement in segmenting challenging postoperative  
and multifocal glioma cases is needed.
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Introduction

Adult-type diffuse gliomas represent a heterogeneous group 
of primary central nervous system (CNS) tumors with dis-
tinct molecular profiles, clinical behavior, and prognosis [1]. 
Segmentation of structural and physiologic/functional mag-
netic resonance imaging (MRI) sequences will be critical if 
recent advances in quantitative MRI assessment are to be 
translated to clinical research and care [2]. Quantification 
of changing tumor size, contrast enhancement, and cellular-
ity over time have been demonstrated to increase the preci-
sion of treatment monitoring in clinical trials, and advanced 
image analysis techniques including radiomics, have demon-
strated promise in glioma grading, molecular characteriza-
tion, and survival prediction [3–5]. However, manual seg-
mentation of gliomas by radiologists is time-intensive and 
prone to intra- and inter-observer variability [6, 7].

Convolutional neural networks (CNNs) have recently been 
demonstrated to improve the accuracy and efficiency of brain 
tumor segmentation [8–10]. Direct training of CNN using 
multimodal volumetric brain MRI requires prohibitively large 
amounts of manually labeled ground truth data and extensive 
computational resources, and is susceptible to overfitting when 
applied to smaller datasets [11]. Transfer learning enables 
researchers to adapt deep learning (DL) models pre-trained 
for image analysis using existing large labeled external sets 
of similar image data, enabling the creation of effective MRI 
brain tumor segmentation DL models without the need for 
large, labeled local ground truth datasets.

The publicly available Brain Tumor Segmentation 
(BraTS) database consists of multimodal brain MRI 
including T1, T2, FLAIR-T2, and contrast-enhanced T1 
(T1CE)-weighted images. Segmentation algorithms devel-
oped using BraTS data have reported improving segmenta-
tion performance in recent years [12], but clinical applica-
tion remains limited. In addition to technical barriers to 
implementation, most previous studies have focused on 
preoperative imaging, whereas the most important poten-
tial clinical use would be sensitive detection of longitudi-
nal change during postoperative treatment. Also, general-
izability, stability, and robustness in clinical use remain to 
be validated [13]. Finally, although the value of diffusion-
weighted imaging (DWI) and quantitative apparent diffu-
sion coefficient (ADC) has been established to improve 
initial evaluation and posttreatment assessment of brain 
tumors [14], with evidence showing that including DWI 
and/or ADC improves performance of radiomic models for 
tumor grading, prediction of IDH-mutation-status [15] and 
identification of pseudo-progression [16], automatic seg-
mentation of DWI and/or ADC have seldom been reported.

We report the development and validation of a trans-
fer learning-based automatic segmentation DL model for 

segmenting structural (T1CE, FLAIR) and physiologic/
functional (ADC) brain MRI. Pretraining with 2 publicly 
available BraTS datasets with conventional sequences and 
subsequent fine-tuning on local radiologist-annotated real-
world MRI data including ADC maps ensured a diverse 
set of MR images with well-annotated masks. Quantita-
tive and qualitative evaluation on an isolated local MRI test 
set demonstrated performance comparable to radiologist 
segmentations.

Method

This HIPAA-compliant, retrospective medical records 
study was approved by our institutional IRB. Figure 1 illus-
trates the 3 workflow stages: pre-training, fine-tuning and 
evaluation.

Dataset

We used the BraTS 2018[17–19] (n = 210) and BraTS 
2020[17–19] (n = 369) datasets for pretraining our model. 
Our institutional data included 197 patients with histopatho-
logically confirmed adult-type diffuse gliomas treated at our 
center from April 2014 to February 2019 (Table 1). This 
very heterogeneous, chronologically selected patient cohort 
received immune checkpoint inhibitors and underwent serial 
clinical MRI on 12 different scanners from two vendors 
(GE Medical Systems® and Siemens Healthineers®). Our 
data was randomly divided into training (n = 90), validation 
(n = 10), and test sets (n = 97).

Image Preprocessing

BraTS multimodal scans consisted of four sequences 
(T1WI, T2WI, FLAIR-T2, and T1CE), All images were 
skull-stripped, co-registered to the same anatomical frame 
of reference, and interpolated to the same resolution 
(1 × 1 × 1 mm3). From our institutional data, we selected 
three sequences (FLAIR-T2, T1CE, and ADC). ADC and 
FLAIR-T2 were co-registered to T1CE and resampled to 
match the original resolution of the T1CE (1 × 1 × 1 mm3). 
To match our 3-channel institutional data, we selected three 
sequences from the BraTS data (T2WI, FLAIR-T2, T1CE) 
and stacked them to create a three-channel input.

Tumor Annotation

Annotations included in the BraTS datasets consisted 
of three sub-compartmental segmentation masks: tumor 
core (TC), whole tumor (WT), and enhancing tumor (ET). 
Two radiologists (with 10 years and 7 years of experience 
respectively) manually annotated our local data to select 3D 
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ROIs on each of the three sequences (FLAIR-T2, T1CE, 
and ADC) using 3D Slicer® (Harvard Medical School, 
Boston, MA, USA, https://​www.​slicer.​org) [20], with each 

radiologist annotating a portion of the dataset. These annota-
tions included three segmentation labels matching the BraTS 
dataset: label “1” representing the enhancing tumor; label 
“2” representing the abnormal ADC area, which includes 
both the edema with high ADC values and the tumor with 
intermediate ADC values; label “3” representing the area 
of hyperintensity on the FLAIR-T2 images. Label “0” rep-
resenting the background image not included in any of the 
other masks. These 4 labels were stacked to construct a cor-
responding set of masks.

Deep Learning Model

We used the SegResNet [21] CNN, with the Adam opti-
mizer, a learning rate of 1e−4 and cosine annealing as the 
scheduler. We combined DiceLoss and CrossEntropy Loss as 
the loss functions for optimizing the model’s performance.

Fig. 1   Flowchart of this study

Table 1   Characteristics of our patient cohort

Pathology Grade IDH status Number 
of patients 
(n = 197)

Age

Glioblastoma 4 IDH-wt 176 57.7 ± 10.8
Astrocytoma 2-4 IDH-mut 19 39.4 ± 13.9
Oligoden-

droglioma 
(1p/19q co-
deletion)

3 IDH-mut 1 51

Diffuse mid-
line glioma 
(H3K27M-
altered)

4 IDH-wt 1 45

https://www.slicer.org
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Quantitative Evaluation

We evaluated the model performance on our datasets using 
the Dice similarity coefficient (DSC), which is commonly 
used to evaluate segmentation [22] and offers a quantitative 
measure of similarity between the predicted and manual seg-
mentations. It was calculated using the formula:

DSC = 2 * (area of overlap of both segmentations)/
(total area of both segmentations).

The value ranges from 0 to 1, with a higher DSC indicat-
ing better segmentation performance relative to the gold  
standard. DSC > 0.7 is generally considered to indicate good  
performance [23].

Model Training Process

We allocated 464 studies for training and 115 studies for 
validation (8:2 training: validation ratio). The training epoch 
was set to 100. At epoch 92, the model achieved the highest 
average DSC on the validation data. The DSC for the differ-
ent tumor sub-compartments were as follows: TC at 0.8684, 
WT at 0.8963, ET at 0.8214, and an overall average of 0.862. 
After pretraining, we fine-tuned the model using our private 
training and validation dataset (90 training and 10 validation 
cases) for 50 epochs, with the same optimizer, learning rate, 
and loss functions as used for pretraining. The DSC of our 
final model on our clinical validation data were as follows: 
WT at 0.7924, ET at 0.6789 and ADC at 0.5813.

Semi‑quantitative Evaluation

To evaluate the segmentation quality of our institutional 
dataset, we introduced an additional semi-quantitative five-
point scale, where the ratings are defined as 5 (“Excellent”), 

4 (“Very Good”), 3 (“Good”), 2 (“Fair”), and 1 (“Poor”). 
The flowchart of the assessment is illustrated in Fig. 2.

Initially, segmentations are reviewed for general consist-
ency with the lesion’s morphology across all sequences. If it 
is generally consistent with lesion morphology, the evalua-
tion advances to the second step with an initial score of 3 or 
higher. Otherwise, the segmentation is deemed inconsistent, 
and is given an initial score of 3 or lower.

In the second step, a detailed sequency-by-sequence 
review is conducted. For segmentations initially scored 3 or 
higher, the scale is as follows: A score of 5 is given for com-
plete consistency across all sequences. A score of 4 applies 
if a visual estimate indicates less than a quarter of the tumor 
volume is missing in any sequence. A score of 3 is assigned 
if it appears more than a quarter is missing in any sequence. 
For segmentations initially scored at 3 or lower: A score of 3 
is maintained if less than a quarter is visually missing in any 
sequence. A score of 2 is given when an estimated quarter 
to a half of the tumor volume is missing in any sequence. A 
score of 1 is reserved for cases where more than half of the 
tumor volume appears to be missing. Additionally, a penalty 
of 1 point is applied to any segmentation erroneously includ-
ing normal anatomy or artifacts.

To quantify the inter-rater reliability of these ordinal rat-
ings, we calculated the Intraclass Correlation Coefficient 
(ICC) using a two-way mixed model for consistency based 
on independent reviews of 30 randomly selected cases by 
two radiologists (with 10 and 7 years of experience, respec-
tively). Finally, the semi-quantitative evaluations on all cases 
were done by the radiologist with 10 years of experience.

Statistical Analysis

The DSC of different groups or subgroups was compared 
using the Mann–Whitney U test. The semi-quantitative 

Fig. 2   Flowchart of two-step 5-point scale assessment for evaluating segmentation quality
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scores of different groups or subgroups were compared 
using the Chi-squared test. Statistical analyses were per-
formed using SPSS Statistics for Windows, (Version 22.0, 
IBM Corp.). A two-sided p-value of < 0.05 was considered 
significant.

Results

Quantitative Evaluation

In our local 97 glioma test set, 74 were unifocal lesions and 
23 were multifocal; 16 were MRI at the time of initial diag-
nosis and 81 were MRI performed at the time of recurrence. 
Using the fine-tuned DL model, we achieved a median DSC 
of 0.729 with a standard deviation of 0.134 for the whole 
tumor mask, demonstrating good agreement between the DL 
and manual segmentations.

The DSC of DL model was superior for newly diagnosed 
cases (median (P25–P75): 0.807 (0.785–0.832) compared 

to recurrent cases (median (P25–P75): 0.698 (0.558–0.772), 
p < 0.001, and superior for unifocal cases (median 
(P25–P75): 0.747 (0.813–0.655) compared to multifocal 
cases (median (P25–P75): 0.613 (0.475–0.758), p = 0.001.

Semi‑quantitative Assessment

The ICCs between the two radiologists for assessing man-
ual and deep learning segmentation were 0.759 and 0.770 
respectively. Table 2 presents the semi-quantitative scores 
from all test cases. The average semi-quantitative score 
for DL segmentations was 3.639 ± 0.710, compared to 
3.567 ± 0.789 for manual segmentation. In the DL group, 
93.8% of the scores were 3 or higher, compared to 97.9% in 
the manual segmentation group. No statistically significant 
difference was observed between the two groups (p = 0.107). 
Two representative cases of DL and corresponding segmen-
tation are shown in Fig. 3 and Fig. 4.

Subgroup analysis of the semi-quantitative scores 
(Table 3) revealed no performance differences between 

Table 2   The semiquantitative 
scores of DL and manual 
segmentations

Semiquantitative score Manual segmentation (%) Total P value

2.0 3.0 4.0 5.0

Deep learning 2.0 0 (0.00) 1 (2.38) 5 (11.90) 0 (0.00) 6 (6.19) 0.107
3.0 0 (0.00) 23 (54.76) 17 (40.48) 2 (18.18) 42 (43.30)
4.0 2 (100.00) 15 (35.71) 13 (30.95) 7 (63.64) 37 (38.14)
5.0 0 (0.00) 3 (7.14) 7 (16.67) 2 (18.18) 12 (12.37)

Total 2 42 42 11 97

Fig. 3   A representative case for 
manual and deep learning seg-
mentation. Dice coefficient is 
0.816. Semi-quantitative score: 
DL segmentation is consistent 
with tumor morphology overall 
(score ≥ 3); individual sequence 
analysis shows uniform consist-
ency across all sequences, 
meriting a score of 5. Manual 
segmentation is inconsistent 
with overall tumor morphology 
(score ≤ 3); ADC and FLAIR 
sequences specifically exhibit 
roughly less than a quarter 
missing volume, leading to a 
score of 3
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newly diagnosed and recurrent gliomas, or between unifo-
cal and multifocal gliomas for the DL model (p = 0.367 and 
0.357 respectively). Analysis of manual segmentation did 
not reveal performance differences between newly diagnosed 
and recurrent gliomas (p = 0.315), but manual segmenta-
tion performed better for unifocal than multifocal glioma 
(p = 0.015).

Failure Analysis of DL Segmentation

Our analysis revealed two main situations where the DL seg-
mentation performs poorly with a DSC below 0.3.

The first is on segmenting post-surgery tumor, illustrated 
in Fig. 5. Here, the enhancing tumor is located within a 
surgical resection cavity. This unusual presentation differs 
markedly from typical glioma cases, making it challenging 
for the model to correctly identify the tumor boundaries. 
This reflects the difficulties faced by the DL model in post-
surgical situations.

The second is on segmenting small or faintly enhancing 
tumor, illustrated in Fig. 6, where a small, recurrent tumor 
with only slight enhancement was shown in the image. The 
tumor’s small size and low contrast enhancement posed sig-
nificant challenges for the model, impairing its ability to 
detect and segment the tumor effectively. This underscores 

Fig. 4   A representative case 
for manual and deep learning 
segmentation. Dice coefficient 
is 0.7636. Semi-quantitative 
score: DL segmentation is 
not consistent with overall 
tumor morphology (score ≤ 3); 
detailed analysis shows roughly 
a quarter to half missing in CE 
sequence, leading to a score 
of 2. Manual segmentation 
is generally consistent with 
tumor morphology (score ≥ 3); 
sequence-by-sequence assess-
ment reveals less than a quarter 
missing in ADC sequence, 
resulting in a score of 4

Table 3   The subgroup analysis 
of semi-quantitative scores

* denotes p < 0.05

Method Semi-
quantitative 
score

Single (%) Multiple (%) P value Newly (%) Recurrent (%) P value

Deep learning 2 3 (4.05) 3 (13.04) 0.357 0 (0.00) 6 (7.41) 0.367
3 31 (41.89) 11 (47.83) 5 (31.25) 37 (45.68)
4 30 (40.54) 7 (30.43) 8 (50.00) 29 (35.80)
5 10 (13.51) 2 (8.70) 3 (18.75) 9 (11.11)
Total 74 23 16 81

Manual 2 0 (0.00) 2 (8.70) 0.015* 0 (0.00) 2 (2.47) 0.315
3 30 (40.54) 12 (52.17) 4 (25.00) 38 (46.91)
4 33 (44.59) 9 (39.13) 9 (56.25) 33 (40.74)
5 11 (14.86) 0 (0.00) 3 (18.75) 8 (9.88)
Total 74 23 16 81
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the limitations of the DL model in accurately identifying 
small tumors with subtle imaging features.

Discussion

We developed and evaluated a transfer learning-based auto-
matic tumor segmentation DL model using multi-sequential 
MRI data. Our results suggest that the DL segmentation 
model’s performance on our real-world MRI data is com-
parable to that of manual segmentation, as evidenced by 
semi-quantitative evaluation from an independent radiolo-
gist. Although pretrained on large datasets with structural 
imaging only, the model proved effective in the automatic 

segmentation of both structural MRI and ADC maps, dem-
onstrating substantial robustness.

Regarding the challenge of evaluating glioma segmenta-
tion performance in clinical situations, where ground truth 
labels may be imperfect or unavailable, our study contributes 
by introducing a 5-point semi-quantitative scale, offering a 
practical tool with proven reproducibility for radiologists 
and researchers to assess segmentation quality. We noted 
that certain DL cases with suboptimal DSC scores received 
higher subjective evaluations. This observation underscores 
the importance of including semi-quantitative assessment in 
the analysis of DL model performance. We suggest that the 
combination may offer a more meaningful and valid assess-
ment of output quality than DSC alone. This is particularly 
relevant when using local institutional datasets, that may not 
be as accurately segmented as established publicly available 
datasets like BraTS, because of the shortage of radiologists 
[24], demanding radiological workflow and time required 
for manual segmentation. Although experienced radiolo-
gists can quickly determine which segmentation is superior, 
it is far more time-consuming to actually produce precise 
detailed manual segmentations. This raises the possibility  
that the DSC of 0.6–0.8 may in part be due to inaccuracies 
in the 3D ROIs used as a ground truth and hence may lead 
to underestimation of the true performance of the DL model. 
Furthermore, the absence of DWI or ADC data in the initial  
publicly available training sets, and the relatively limited 
size of our institutional training dataset are two other factors  
that may have contributed to the less-than-ideal DSC scores. 
We speculate that geometric distortion characteristic of the 
echo planar DWI sequence and zero-value pixels present 
in the calculated ADC maps might pose challenges for a 
transfer learning model trained on data lacking echo planar  
images or calculated maps.

A range of methodologies has been reported for brain 
tumor segmentation, yielding varied outcomes. Singh et al. 
[25] applied a 3D U-Net with transfer learning across multi-
ple BraTS datasets, achieving a notable mean DSC of 0.98. 
However, their study lacks external validation with real-
world data. Another study [11] evaluated two AlbuNet3D 
models on the BraTS dataset: one model underwent pre-
training on Imagenet, followed by transfer learning on the 
BraTS data, while the other was trained directly on BraTS 
data. Notably, the transfer learning model, although show-
ing enhanced performance on the BraTS dataset, did not 
exhibit a significant improvement over the directly trained 
model when applied to a more heterogeneous, local institu-
tion clinical dataset. This outcome may partly be attributed 
to the difference in the data distribution and characteristics 
between the BraTS dataset and the local clinical dataset. The 
BraTS dataset is a standardized, curated collection of brain 
tumor images, which may not fully represent the variability 
and complexity encountered in routine clinical practice. In 

Fig. 5   A recurrent tumor. This figure depicts a small, recurrent tumor 
characterized by faint enhancement. The DL algorithm failed to label 
this region

Fig. 6   A postoperative recurrent tumor. Illustrated here is an enhanc-
ing tumor situated within a post-surgical resection cavity. The DL 
algorithm failed to label this region
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BraTS challenge, the nnU-Net [26] demonstrated remark-
able success, achieving the first place in the BraTS 2020 
[27] and 2021 [28] with DSCs of 0.889 and 0.931 for whole 
tumor, respectively. A recent study [29] used nnU-Net on 
local clinical data resulted in a performance drop (0.906 on 
BraTS vs 0.764 for WT on local data), similar to our findings 
(0.896 vs 0.729) with more heterogeneous and larger test 
data. This underscores the inherent challenge in maintaining 
model accuracy outside standardized datasets. Bouget et al. 
[30] developed an open-source automatic glioblastoma seg-
mentation tool using nnU-Net. It demonstrated considerable 
robustness across 14 different MRI data sources, achieving 
an average DSC of 0.866, but exclusively relied on T1CE 
MRI sequences and did not include postoperative or recur-
rent tumor cases. These factors constrain its broader clini-
cal utility, especially in GBM response assessment where 
evaluation of both enhancing and non-enhancing tumor 
components is critical. Our study demonstrates that transfer 
learning, refined with a small private dataset, can yield effec-
tive segmentation models, rivaling manual segmentation in 
accuracy in not only structural sequences (FLAIR, CE) but 
also functional sequence (ADC).

Our institutional MRI data is both technically and clini-
cally more heterogeneous than the BraTS training set, 
including more complicated cases, both pre- and post-
operative, single and multiple lesions, and multiple MRI 
sequences including ADC. Consistent with the prior lit-
erature, the DL model achieved higher DSC in segmenting 
newly diagnosed glioma cases compared to recurrent cases 
[31, 32]. Training dedicated models for postoperative treat-
ment monitoring may achieve better performance and is a 
logical next step.

The semi-quantitative assessment subgroup analysis 
showed higher quality of manual segmentation in unifocal 
vs multifocal GBM, but DL segmentation quality was not 
rated as significantly different between newly diagnosed and 
recurrent gliomas, or between unifocal and multifocal glio-
mas. Multifocal gliomas are more challenging to manually 
segment because of the complex shape and additional time 
required. As discussed, this raises the possibility that varia-
tion in the manual gold standard may contribute to variation 
in the quantitative DSC. Alternatively, it is possible that the 
semi-quantitative analysis was not sufficiently sensitive to 
detect an underlying decrement in DL segmentation that also 
contributed to the lower DSC in complex cases. This under-
scores the potential benefit of integrating both approaches 
to offer a more comprehensive assessment of segmentation 
quality.

Limitations of the study include the very heterogene-
ous dataset inherent to a multi-center, retrospective study, 
and the small sample size of our cohort. These constraints 
might be mitigated, at least in part, by training mod-
els on larger datasets specifically focusing on complex 

populations such as postoperative cases, if such datasets 
become available. Second, more sophisticated DL models 
than that we used have recently become available, raising 
the possibility that our results could be further improved 
by using a more advanced structure, such as Swin UNETR 
[33]. Because these technically more sophisticated models 
require more data and computational power than we were 
able to achieve, we chose the reported method as a balance 
between computational demands and model performance. 
Lastly, our ADC annotations encompass both tumor and 
edema regions, while in clinical practice, annotations often 
focus on intermediate ADC regions that indicate hyper-
cellular tumor zones and are predictive of outcome. We  
chose this approach because our primary objective was to 
demonstrate the potential of transfer learning-based DL 
model for segmentation of the overall area of abnormality 
on ADC maps, since, as has been previously demonstrated, 
the auto-normalized quantitative nature of the ADC maps  
makes it straightforward to identify the smaller intermediate 
ADC area by simple thresholding [34].

In conclusion, our study introduces a 5-point semi-quan-
titative scale that offers a reliable reference, simplifying 
assessments of glioma segmentation in clinical situations for 
radiologists and researchers. Our study demonstrates that a 
transfer learning-based DL model, fine-tuned on a relatively 
small private dataset, produces comparable performance to 
that of human radiologists in glioma segmentation on both 
structural and functional data. This approach has the poten-
tial to improve longitudinal imaging assessment of treatment 
response in clinical care and clinical trials. Future research 
should focus on optimizing the DL model for challenging 
clinical applications and patient populations, especially post-
operative recurrent glioma and multifocal glioma, as well 
as assessing the generalizability of model performance on 
larger, multi-center external datasets, and the stability of 
performance over time in longitudinal prospective use.
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