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Abstract
Computed tomography (CT) is the most commonly used diagnostic modality for blunt abdominal trauma (BAT), significantly 
influencing management approaches. Deep learning models (DLMs) have shown great promise in enhancing various aspects 
of clinical practice. There is limited literature available on the use of DLMs specifically for trauma image evaluation. In 
this study, we developed a DLM aimed at detecting solid organ injuries to assist medical professionals in rapidly identifying 
life-threatening injuries. The study enrolled patients from a single trauma center who received abdominal CT scans between 
2008 and 2017. Patients with spleen, liver, or kidney injury were categorized as the solid organ injury group, while others 
were considered negative cases. Only images acquired from the trauma center were enrolled. A subset of images acquired in 
the last year was designated as the test set, and the remaining images were utilized to train and validate the detection models. 
The performance of each model was assessed using metrics such as the area under the receiver operating characteristic curve 
(AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value based on the best Youden 
index operating point. The study developed the models using 1302 (87%) scans for training and tested them on 194 (13%) 
scans. The spleen injury model demonstrated an accuracy of 0.938 and a specificity of 0.952. The accuracy and specificity 
of the liver injury model were reported as 0.820 and 0.847, respectively. The kidney injury model showed an accuracy of 
0.959 and a specificity of 0.989. We developed a DLM that can automate the detection of solid organ injuries by abdominal 
CT scans with acceptable diagnostic accuracy. It cannot replace the role of clinicians, but we can expect it to be a potential 
tool to accelerate the process of therapeutic decisions for trauma care.
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Background

Blunt abdominal trauma (BAT), resulting from incidents 
such as traffic crashes, falls, assaults, or occupational acci-
dents, is a common occurrence in the trauma bay [1, 2]. 
Studies have reported a high prevalence of intra-abdominal 
injury following BAT, with rates ranging from 12 to 15% 
[3]. Among these injuries, the spleen, liver, and kidneys are 
the most frequently affected organs, constituting approxi-
mately 80% of all visceral injuries [4]. Since the 1980s, there 
has been a significant shift from surgical to nonoperative 
management (NOM) for BAT, with numerous studies dem-
onstrating satisfactory outcomes [5–8]. The advancement 
of current diagnostic modalities, particularly computed 
tomography (CT), has played a crucial role in the NOM 
becoming a viable option for managing BAT patients [9]. 
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CT scans provide accurate assessments of the severity of 
organ injury [10], hemoperitoneum, the presence of contrast 
extravasation [11], and viscus injury [12] and are crucial in 
predicting the need for prompt intervention [13], thereby 
making them the preferred diagnostic tool for hemodynami-
cally stable patients. The extensive use of CT and a growing 
body of literature demonstrating promising results have led 
to the widespread acceptance of nonoperative management 
as the standard therapeutic strategy [14–17]. While CT and 
advanced technologies yield informative results, it is cru-
cial for clinicians to possess the necessary skills to differ-
entiate and detect abnormalities in high-resolution images. 
Although the CT image can present trauma or injuries, front-
line clinicians might misdiagnose due to lack of experience, 
a crowded working environment, or overloading duty [18, 
19]. Achieving higher diagnostic accuracy not only relies 
on the capabilities of the imaging modality but also on the 
clinician’s expertise.

The use of deep learning (DL) algorithms has proven 
capable of achieving diagnostic accuracy in medical imag-
ing comparable to that of experts [20], whether applied to 
plain radiographs [21] or advanced medical images such as 
CT or magnetic resonance imaging (MRI) scans [22, 23]. 
As we enter an era characterized by collaboration between 
human expertise and computational power, DL algorithms 
hold the potential to revolutionize future medical practices, 
particularly by alleviating the workload of healthcare provid-
ers in emergency settings [24]. Despite these advancements, 
the availability of trauma-related algorithms to assist trauma 
surgeons in managing time-sensitive and life-threatening 
injuries is still limited [25–28]. Moreover, there is a clinical 
need for an explainable and transparent AI model to support 
emergency radiologists and clinicians, a need that remains 
unaddressed [29]. The ongoing development and imple-
mentation of specialized DL models in trauma care hold the 
potential to enhance patient outcomes further and support 
healthcare professionals in delivering swift and effective 
treatment. Previous studies of DL in torsal trauma imag-
ing focused mainly on automatically grading specific organ 
injuries [30–32], injured area segmentation [22, 25], detect-
ing active bleeding [33], and quantifying the hemorrhage 
amount in the chest and abdominopelvic CT scans [34–37]. 
The process of slice-level labeling in trauma imaging, par-
ticularly for deformed injured organs, demands extensive 
effort from specialists. Utilizing three-dimensional (3D) DL 
architectures presents an opportunity to employ scan-level 
labeling, significantly reducing the burden of labeling efforts 
[38]. Additionally, the advent of novel open-source frame-
works for 3D organ segmentation offers promising avenues 
for expanded applications in CT imaging [39]. In the cur-
rent study, we have developed a DL-based algorithm that 
combines an open-source segmentation model with a 3D 
classification network. This algorithm is designed to detect 

and diagnose visceral traumatic injuries, thereby assisting 
clinicians in handling these lethal injuries. To the best of 
our knowledge, at the time of submission, this is the first 
published approach to detect injuries across multiple organs.

Materials and Methods

We selected patients from our trauma registry who under-
went contrast-enhanced abdominal CT scans between May 
2008 and December 2017 at Chang Gung Memorial Hospital, 
Linkou. The clinical information captured for each patient 
included age, gender, trauma mechanism, Abbreviated 
Injury Scale (AIS) scores for each body part, Injury Sever-
ity Score (ISS), interventions performed, final diagnosis, 
and outcome. We only enrolled the images acquired in our 
hospital. All of the images were acquired by the TOSHIBA 
Aquilion One 320 scanner in the emergency CT room. The 
protocols enrolled included routine abdominal scans, mul-
tiphase abdominal scans, and whole-body CT (only venous 
phase) with 5-mm slice thickness in axial view. In cases 
where a patient had multiple scans, only the earliest scan 
was included for analysis. We specifically utilized the venous 
phase of the scans for our study, excluding images of poor 
quality, those with artifacts, post-operative scans, or scans 
lacking an appropriate venous phase. CT scans obtained from 
external hospitals were not included in the study.

To ensure the accuracy of the image findings, a trauma 
surgeon who is an expert in medical image analysis with 
13 years of clinical practice experience carefully reviewed 
images, original radiologist reports, trauma registry, and 
medical records to determine whether the patients had 
spleen, liver, or kidney injuries as scan level annotations. If 
the image or report is questionable, a senior radiologist with 
a trauma subspecialty was consulted to determine the true 
label. The grading of organ injuries was performed accord-
ing to the AAST 2018 version [40], ensuring standardized 
and consistent assessment across all cases.

To increase the variability of abdominal CT scan images, 
we gathered an additional dataset from patients presenting 
with acute abdominal diseases such as appendicitis, biliary 
diseases, hollow organ perforation, intestinal obstruction, 
ischemic bowel, and other similar conditions, all of whom 
underwent abdominal CT scans in the emergency room. CT 
scans that depicted injuries to the spleen, liver, or kidneys 
were categorized as the positive group (indicating solid organ 
injury), while other findings were classified as the negative 
group (indicating nonsolid organ injury). Given the larger 
number of images in the negative group, we employed a ran-
dom sampling method to balance the class distribution by 
selectively reducing the number of negative scans (Fig. 1).

To address potential selection bias, images acquired in the 
last year were set aside as an independent test set, while the 
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remaining images were utilized as the developmental data-
set. This approach ensures a more robust evaluation of the 
developed model’s performance on unseen data. This study 
was approved by the Institutional Review Board (IRB) of the 
Chang Gung Medical Foundation with No. 202002333B0.

Image Preprocessing

The initial step involved obtaining the original CT scans in 
Digital Imaging and Communications in Medicine (DICOM) 
format from the Picture Archiving and Communication Sys-
tem (PACS). Specifically, the venous phase scans for each 
patient were identified and subsequently converted to the 
Neuroimaging Informatics Technology Initiative (NIfTI) 
format to facilitate subsequent 3D processing. Prior to fur-
ther processing, a window level ranging from − 50 to 250 
HU was selected. During the training process, we augmented 
the image dataset by applying techniques such as translation, 
rotation, scaling, and elastic distortions, thereby increasing 
the diversity and variability of the training samples.

We designed a two-step DL algorithm to detect specific 
solid organ injuries, as demonstrated in Fig. 2. First, to 
reduce the labeling effort, we apply an open-access organ 
segmentation model, Totalsegmentator v.1.3 [39], to gener-
ate the solid organ segmentation masks, including the spleen, 
liver, and kidney. The generated mask was then transformed 

into a 3D cuboid box to include the surrounding background 
of the target organ. The 3D cuboid box of each organ in the 
development dataset was used to train the injury classifica-
tion network. All images were resized to 64 × 64 × 64 before 
fitting into the classification model.

Solid Organ Injury Classification Network

The solid organ injury classification model was trained using 
entire abdominal CT scans as a baseline to compare with 
individual two-step organ injury classification models. The 
individual organ model was trained using the cropped cuboid 
image generated by the organ detection model. The spleen, 
liver, and kidney injury classification model was trained 
separately. The cropped organ was fed into a 3D Convo-
lutional Block Attention Module (CBAM) neural network 
[41] with a binary classification label. The input has dimen-
sions of 64 × 64 × 64. Initially, it is processed through two 
3D convolutional layers, generating outputs with four chan-
nels. Following this, the input goes through three distinct 
blocks, each comprising a varying number of residual blocks 
with a CBAM integrated as the final layer in each block. The 
process is completed with a Global Average Pooling and 
a Fully Connected Network layer. The final output dimen-
sions are 8 × 8 × 8. Ultimately, the entire network is trained 
using the angular softmax loss, which facilitates the learning 

Fig. 1  Dataset preparation
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of features that are discriminative in terms of their angular 
properties for classification. For example, when training the 
spleen injury classification model, we only identify whether 
the spleen is injured despite other intra-abdominal organ 
injuries to eliminate the interference of other organs. We 
use the grad-CAM algorithm [42] to visualize whether the 
model focused on the target lesion to determine the reli-
ability of the result. The results of the three organ model 
are also combined to calculate an overall solid organ injury 
detection rate.

Software and Statistical Analysis

The experimental setup utilized a workstation equipped 
with an Intel(R) Core(TM) i9-10900X CPU operating at 
3.70 GHz, accompanied by 96 GB RAM, and NVIDIA 
TITAN RTX and GeForce RTX 3090 GPUs. The worksta-
tion ran on an Ubuntu 18.04 operating system. The entire 
pipeline was implemented using Python v3.6.9 and PyTorch 
v1.6.0. Preprocessing of the images involved employing var-
ious Python libraries such as diocom2nifti, NiBabel, SciPy, 
and OpenCV. The image annotation process was conducted 
using the Medical Imaging Interaction Toolkit (MITK). At 

the same time, data augmentation was performed utilizing 
the tools provided by the Medical Open Network for Artifi-
cial Intelligence (MONAI).

For the statistical analysis, we utilized R version 4.2.2 with 
the “pROC” package. Model classification performance was 
evaluated through a confusion matrix, allowing us to assess 
accuracy, sensitivity, specificity, false positive rate (FPR), false 
negative rate (FNR), positive predictive value (PPV), and neg-
ative predictive value (NPV). Furthermore, we employed the 
receiver operating characteristic (ROC) curve and calculated 
the area under the ROC curve (AUROC) to assess model per-
formance (Fig. 3). The optimal cutoff value was determined 
using the Youden index, and all model performances were 
compared based on the cutoff value with the best Youden 
index. To estimate the confidence interval of the ROC curve, 
we utilized the bootstrapping method. The comparisons of per-
formance metrics between each organ-specific model and the 
whole image model were conducted using McNemar’s test or 
the binomial proportions test, as appropriate. The continuous 
variables of the demographic data were compared using the 
Kruskal–Wallis rank-sum test, while categorical variables were 
compared using the chi-square test.

Results

We gathered a total of 1496 venous phase abdominal CT 
scans from an equal number of patients. From this data-
set, we preserved 194 scans acquired in the last year as an 
independent test set, while the remaining 1302 scans were 
allocated to form the development dataset. Table 1 displays 
the demographic characteristics of this dataset. To ensure 
improved algorithm training, we balanced the classes within 
the development set. In the test set, the proportion of positive 
cases is relatively small, reflecting the clinical distribution. 
Among the 72 positive cases identified, 16 patients (22.2%) 
were found to have more than one solid organ injury.

The baseline whole image model exhibited a reasonably 
good AUROC of 0.842; however, it lacked the capability to 
identify the specific injured organ accurately. Even the visu-
alization heatmap was unsuccessful in pinpointing the site of 
injury. Among the 72 patients with solid organ injuries, 19 
(26.4%) cases were missed by this model. On the other hand, 
the spleen injury classification model displayed a high accu-
racy of 0.938 and successfully identified 25 (86.2% sensitiv-
ity) of the spleen-injured patients with eight false positives 
(5% FPR). The four patients the model missed were all cases 
of low-grade splenic injury. Similarly, the liver injury model 
showed a slight improvement over the whole image model, 
achieving an AUROC of 0.869. Nonetheless, it still failed to 
identify 12 patients with liver injuries (16.7% FNR), with 23 
false positives(15% FPR). For the kidney model, evaluation 
on both sides of the kidneys demonstrated a high specificity 

Fig. 2  A comprehensive overview of the algorithm design for solid 
organ injury detection



Journal of Imaging Informatics in Medicine 

of 96.6% (6 false positives, 3.4% FPR), but the sensitivity was 
relatively low at 83.3% (6 false negatives, 33.3 FNR). Combin-
ing the three organ models, the overall accuracy, sensitivity, 
and specificity to detect solid organ injuries in the CT scan 
reached 84.0%, 87.5%, and 82.0%, respectively (Table 2).

The p value of each model was statistically analyzed com-
pared with the whole image model.

Discussion

Up until now, we have developed a DL algorithm 
that automates the detection of solid organ injuries in 
abdominal CT scans. The diagnostic accuracy achieved 

0.938 (0.902–0.969), 0.820 (0.763–0.871), and 0.959 
(0.933–0.979) for splenic, hepatic, and renal injuries, 
respectively. These accuracy levels are accompanied by 
satisfactory sensitivity and specificity. Notably, for splenic 
and renal injuries, the model showed good diagnostic 
accuracy, providing precise locations of injuries through 
the use of heatmaps. The accuracy for hepatic injuries is 
comparatively lower, possibly owing to the cuboid crop-
ping method, which includes neighboring organs and 
introduces noise during model training, thereby dimin-
ishing performance. However, the diagnostic accuracy 
remains acceptable. This study is the first to introduce 
a multitask DL model specifically designed for trauma 
detection in abdominal CT scans. To enhance the model’s 

Fig. 3  The ROC curve and AUROC of each solid organ injury detection model. A Whole image model. B Spleen injury model. C Liver injury 
model. D Kidney injury model. The shaded area represented the 95% confidence interval
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explainability, we have incorporated Grad-CAM produc-
ing heatmaps into the examined images. This technique is 
commonly applied in medical image analysis to visualize 

the dominant parts of the input image for the prediction 
[43]. As in Fig. 4, the heatmaps focused on the injured 
organ part in our test set; however, this feature can only 

Table 1  Demographic 
characteristics of the dataset

Development set (n = 1302) Test set (n = 194) p value

Age, median [IQR] 44.00 [25.00, 69.00] 51.50 [28.00, 72.00] 0.033
Gender (male), n (%) 873 (67.1) 132 (68.0) 0.848
Etiology 0.003
Motor vehicle accident, n (%) 727 (55.8) 88 (45.4)
Fall, n (%) 160 (12.3) 22 (11.3)
Mechanical injury, n (%) 727 (55.8) 88 (45.4)
Other mechanisms, n (%) 47 (3.6) 7 (3.6)
Acute abdomen, n (%) 325 (25.0) 74 (38.1)
ISS, median [IQR] 18.00 [9.00, 29.00] 17.00 [9.00, 26.00] 0.983
NISS, median [IQR] 22.00 [12.00, 29.00] 22.00 [13.00, 34.00] 0.478
Solid organ injury, n (%) 668 (51.3) 72 (37.1)  < 0.001
Spleen OIS, n (%) 0.082
Negative 1026 (78.8) 165 (85.1)
Grade 1 39 (3.0) 2 (1.0)
Grade 2 82 (6.3) 5 (2.6)
Grade 3 56 (4.3) 10 (5.2)
Grade 4 70 (5.4) 6 (3.1)
Grade 5 29 (2.2) 6 (3.1)
Liver OIS, n (%) 0.818
Negative 969 (74.4) 150 (77.3)
Grade 1 71 (5.5) 6 (3.1)
Grade 2 110 (8.4) 17 (8.8)
Grade 3 96 (7.4) 13 (6.7)
Grade 4 47 (3.6) 7 (3.6)
Grade 5 9 (0.7) 1 (0.5)
Kidney OIS, n (%) 0.114
Negative 1086 (83.4) 176 (90.7)
Grade 1 71 (5.5) 4 (2.1)
Grade 2 62 (4.8) 5 (2.6)
Grade 3 41 (3.1) 3 (1.5)
Grade 4 28 (2.2) 5 (2.6)
Grade 5 14 (1.1) 1 (0.5)

Table 2  Performance of solid organ injury detection models on the test set

Whole image 
model

Spleen injury 
model

p value Liver injury 
model

p value Kidney injury 
model

p value Combined 
model

p value

AUROC  
(95% CI)

0.841  
(0.781–0.895)

0.945  
(0.888–0.988)

0.008 0.868  
(0.811–0.918)

0.499 0.870  
(0.721–0.994)

0.7344 – –

Accuracy  
(95% CI)

0.768  
(0.706–0.825)

0.938  
(0.902–0.969)

 < 0.05 0.820  
(0.768–0.876)

0.259 0.954  
(0.923–0.979)

 < 0.05 0.840  
(0.781–0.889)

0.655

Sensitivity  
(95% CI)

0.736  
(0.625–0.833)

0.862  
(0.724–0.966)

0.270 0.727  
(0.591–0.864)

1.000 0.833  
(0.667–1.000)

0.581 0.875  
(0.799–0.951)

0.041

Specificity  
(95% CI)

0.787  
(0.713–0.861)

0.952  
(0.915–0.982)

 < 0.05 0.847  
(0.793–0.907)

0.264 0.966  
(0.938–0.989)

 < 0.05 0.820  
(0.751–0.888)

0.480

PPV (95% CI) 0.671  
(0.591–0.759)

0.758  
(0.632–0.893)

0.494 0.583  
(0.490–0.696)

0.384 0.714  
(0.560–0.889)

0.908 0.741  
(0.648–0.834)

0.177

NPV (95% CI) 0.835  
(0.780–0.891)

0.975  
(0.951–0.994)

 < 0.05 0.915  
(0.876–0.954)

0.086 0.983  
(0.965–1.000)

 < 0.05 0.917  
(0.866–0.969)

0.031
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demonstrate the possible area the model focused on to 
make the decision rather than precisely contouring the 
injured area. Segmenting the injured part requires a huge 
labeling effort, especially for the ambitious boundary of 
the current task, which is challenging future work. The 
average processing time to generate results in our hardware 
setting was only 3 min, and the process can be automati-
cally initiated after the completion of image acquisition. 
In the context of trauma treatment, where time is critical, 
reducing diagnostic time can lead to early detection and 
intervention, potentially minimizing the risk of significant 
blood loss and improving patient outcomes.

The shift from operative to nonoperative management in 
patients with BAT has been primarily driven by advance-
ments in diagnostic tools and a reduction in complications 
associated with operative procedures [8, 44]. The critical and 
essential step in this process is the careful selection of suita-
ble patients. Abdominal CT scans play a vital role in assisting 
traumatologists with patient selection [45–47]. By utilizing 
DLM support, we can achieve a high negative predictive rate, 
with values of 0.975 (0.952–0.994), 0.914 (0.876–0.949), and 
0.967 (0.945–0.989) for splenic, hepatic, and renal injuries, 
respectively. A secondary check by clinical experts can fur-
ther reduce the misdiagnosis rate. The ultimate goal for both 
clinical data scientists and clinicians is to develop a multitask 
DLM that can significantly accelerate the patient evaluation 
process [48]. By leveraging the concepts demonstrated in 
this study, the future of solid organ injury detection modeling 

holds tremendous potential. The combination of advanced 
diagnostic tools and DLM support is paving the way for more 
accurate and efficient patient assessments, ultimately leading 
to improved trauma care outcomes.

Detecting traumatic solid organ injuries poses a signifi-
cant challenge in algorithm development, primarily due to 
the complex nature of image morphology and the occurrence 
of multiple organ injuries simultaneously. Often, injured 
organs share similar radiological findings, such as hemop-
eritoneum, hematoma, or contrast extravasation, making it 
difficult to distinguish between them. Moreover, accurately 
defining the precise location of the injured part within a 
specific organ proves to be a daunting task, particularly 
when compared with other body parts like brain hemorrhage 
identification [49]. In our current study, we have devised a 
two-step algorithm design to address these challenges effec-
tively. By focusing on specific organs in the first step, we 
aim to reduce the complexity and improve the algorithm’s 
accuracy in detecting organ-specific injuries. Additionally, 
to enhance the interpretability of the model, we employ a 
heatmap localization technique in the second step, allowing 
us to highlight the injured region within the specific organ. 
This localization approach greatly enhances the model’s 
explainability, facilitating better understanding and trust in 
the detection results. Through these advancements, our algo-
rithm demonstrates promising results in detecting traumatic 
solid organ injuries, offering potential benefits for clinical 
applications. A follow-up study in the future focusing on 

Fig. 4  Visualization examples of each solid organ injury detection 
model. A The heatmap from the whole image model indicates a 
failure to localize the spleen injury. B The heatmap from the spleen 
injury model accurately highlights the lacerated area and hematoma 

surrounding the spleen. C The heatmap of the liver injury model suc-
cessfully localizes a grade 3 injury. D The heatmap points out the lac-
eration in the kidney and the presence of a perirenal hematoma
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the expert evaluation of heatmaps could provide a deeper, 
clinically relevant understanding of our model’s utility in 
medical diagnostics.

Previous research has concentrated on segmentation and 
the automatic grading of the severity of injured organs. Dre-
zin et al. utilized a DL-based approach for segmentation, 
enhanced by decision tree analysis, to predict significant 
arterial damage in liver trauma, achieving an accuracy of 
0.84 [25]. Similarly, Farzaneh et al. proposed a framework 
for liver trauma detection and quantitative assessment 
applied to 77 CT scans [50]. Chen et al. developed a four-
component algorithm for the automatic grading of spleen 
injuries [51], and Farzaneh et al. also described automated 
kidney segmentation for trauma patients using active con-
tour modeling [52]. Zhou et al. use an external attention and 
synthetic phase augmentation module on a small dataset to 
improve the multiphase splenic vascular injury segmentation 
with DeepLab-v3 baseline [33].

Additionally, Tulum et al. developed a computer-aided 
segmentation system for traumatic kidney analysis [53]. In 
the classification realm for detecting organ injury, Wang 
et al. employed machine learning techniques with 3D active 
contours to identify spleen injuries, using a dataset of 54 
healthy and 45 lacerated spleens. This method was vali-
dated with fivefold cross-validation, achieving an AUC of 
0.91 in the test set [32]. Hamghalam et al. developed a DL 
model using 608 scans of each of the injured and nonin-
jured spleens, achieving an accuracy of 0.808 with fivefold 
cross-validation [54]. Compared with the previous studies, 
our approach offers an alternative approach to multitask DL 
algorithm design. We can obtain information about multiple 
solid organ injuries by inputting CT images into our model 
instead of focusing on a single organ. This design is particu-
larly well suited for the high-tension and crowded environ-
ment of trauma bays. Developing a globalized or generalized 
algorithm to address all issues within the same images can 
be challenging, especially with limited resources. However, 
with careful consideration of clinical domain knowledge and 
well-defined data labeling, it is possible to develop clini-
cally beneficial algorithms tailored to specific problems in 
medical image analysis. Large high-technology companies 
have also shown interest in these sectors [55, 56], and their 
involvement is expected to drive significant improvements 
in this technology. A notable advantage of the current algo-
rithm trends is the problem-oriented approach, where algo-
rithms are tailored to address specific medical challenges.

Moreover, using automatically cropped images and 
advanced analysis has the added benefit of reducing cal-
culation time and lightening the workload on worksta-
tions. Although the application of the Totalsegmentator 
will make the inference time longer, the cropping step can 
reduce the noise from the surrounding organ for classifica-
tion tasks to improve performance. This, in turn, translates 

to cost savings, as the investment and equipment require-
ments for deploying the AI algorithm can be kept reason-
able. While DL algorithms have proven their potential in 
assisting various healthcare tasks, little attention has been 
given to discussing the costs and minimal computer system 
requirements. Innovative DL network architectures, such as 
Transformer-based structures, have the potential to deliver 
superior performance and eliminate the need for the crop-
ping step. However, this approach requires significantly 
more computational power, particularly for processing 3D 
images. Setting up a system capable of deploying DL algo-
rithms often necessitates additional servers or computers 
equipped with graph processing units (GPUs), which can 
increase expenses for institutes. To address this, efforts have 
been made to optimize GPU usage and minimize the neces-
sity of high-end computers to make DL algorithms more 
accessible and cost-effective for implementation.

Limitations

The current study has several limitations. Firstly, the algo-
rithm was trained using images from a single trauma center, 
raising concerns about its performance when applied to 
images from other institutions with varying CT protocols 
and image acquisition methods. This discrepancy could 
affect the algorithm’s generalizability and raise questions 
about its reliability in different clinical settings. Secondly, 
the ground truth is based on the radiologist’s report and a 
single annotator’s confirmation. Moreover, the imbalanced 
distribution of solid organ injuries, such as kidney injury 
being relatively rare compared to spleen and liver injuries, 
may introduce bias during the performance evaluation. This 
could potentially lead to an overestimation of the algorithm’s 
accuracy for more common injuries and an underestimation 
for less frequent ones. The segmentation mask generated 
by the Totalsegmentator is also a concern for those largely 
deformed organs. This can lead to failure on the cropping 
step since the Totalsegmentator is trained on nontrauma 
images. Prospective multicenter data collection, incorpo-
rating clinical trauma scenario class distribution, is impera-
tive to ensure the robustness of the algorithm and to address 
these limitations. Incorporating multiple independent trauma 
specialist radiologists for image annotation in future stud-
ies promises to not only enhance lesion localization and 
characterization accuracy but also to address the issue of 
inconsistent AAST grading agreement [57]. Conducting an 
evaluation on a diverse dataset from multiple centers with 
a graphic user interface will help verify the algorithm’s 
performance in real-world scenarios, accounting for vari-
ous imaging protocols and organ injury distributions. It will 
strengthen the credibility and applicability of the algorithm 
as a clinical tool.
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Conclusion

The developed DLM serves as a valuable tool to assist medi-
cal professionals in identifying traumatic solid organ injuries 
with promising diagnostic accuracy. It is essential to note 
that the algorithm does not aim to replace the expertise and 
judgment of clinicians; instead, it complements their skills 
and knowledge. By leveraging the DLM, medical profession-
als can use this tool to accelerate the diagnostic process and 
improve the overall efficiency of trauma care.
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